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Riemann zeros and a fractal potential
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The nontrivial Riemann zeros are reproduced using a one-dimensional local-potential model. A
close look at the potential suggests that it has a fractal structure of dimension d = 1.5.
PACS number(s): 05.45.+b

The implications of classical chaos for quantum sys-
tems are of considerable interest in physics. One of
the signatures most carefully studied is the energy-level
statistics of a quantum system. Gutzwiller's formula
[1—3] links this level density to the periodic orbits of the
corresponding classical dynamical system in a semiclas-
sical approach. It has been noticed that the Riemann (
function [4, 5], well known in number theory, has an in-
triguing relationship with chaotic systems [6, 7]. The so-
called nontrivial zeros of the Riemann zeta function ex-
hibit an intrinsically random distribution of the type seen
in the spectrum of a random Hermitian matrix (Gaussian
unitary ensemble or GUE), and there is a sum rule for-
mula for the density of these zeros which is analogous to
Gutzwiller's formula. All this is taken to suggest that
there may be a chaotic dynamical system whose quan-
tum eigenvalues are the Riemann zeros. The discovery
of such a system would have great significance to the
study of "quantum chaos;" and in any case it is inter-
esting to see that a classical mathematical function can
have a direct connection with modern physics. One of the
related systems is the hyperbolic billiard [8], whose aver-
age level density agrees with that of the Riemann zeros
in the leading order, and the fluctuations are of Gaussian
orthogonal ensemble (GOE) type.

The Riemann ( function is defined for Re(z) ) 1 by

()1 —pv=1 J qprimes
and for Re(z) ( 1 by analytic continuation. It has
so-called trivial zeros at the real points z = —2n, n =
1, 2, ..., oo. All its other zeros are complex and lie in a
narrow strip about the vertical line Re(z) = 1/2. Ac-
cording to Riemann's celebrated hypothesis (1856) the
nontrivial zeros all lie symmetrically on that line, i.e.,
((1/2 6 iE ) = 0, where the E are real. Riemann's
hypothesis is supported by numerical tests up to very
large values of E, but mathematicians are still unable
to prove or disprove it. For brevity we will refer to the E
as being the Riemann zeros, instead of their imaginary
parts. Assuming Riemann's hypothesis to be correct, the
density of the zeros obeys:
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while the fluctuating part has been shown to obey GUE
statistics [9]. This suggests that the E are eigenvalues of
a quantum Hamiltonian which is quantized from a clas-
sical chaotic system without time-reversal invariance [6,
10]. However, such a system has yet to be found.

Some time ago, we developed an algorithm to construct
a one-dimensional local potential model obeying GOE
level statistics [11]. This algorithm will be applied here
to the Riemann zeros, so as to reproduce the low lying
E . By so doing, we have effectively found a system
which has the imaginary parts of (a finite number of)
the Riemann zeros as its eigenvalues. However, it is not
what was expected, as the system is time reversible, and
being one-dimensional, it is apparently integrable. This
conundrum is partially resolved when we examine the
fractal structure of the resulting potential. To begin, we
describe its construction.

Consider a particle of mass m moving in a reHection-
symmetric one-dimensional local potential V(x),

II = + V(x).
2m

In the semiclassical approximation, the accumulated
number of states below E is

+msx

dxdp = — QE —V(x)dx,
H(E 7T 0

(5)
where we have chosen 2m/5 = 1, and x „is the x value
of the right-hand turning point.

Our first task is to find the potential V which gives rise
to JV (E) as in Eq. (3). I et V(0) = Vo, f(V) = dx/dV,
and difFerentiating Eq. (5) with respect to E, we have

f(V) 1 f E&
2 (2vr) (6)

where d(E) =
2 ln( —) is the average density of zeros.

It is this sum rule which is an analog to the Gutzwiller
formula for the level density of dynamical systems. The
sum over prime numbers p corresponds to the primitive
periodic orbits and A: is the repetition index.

As in spectroscopy of energy levels, the spectral den-
sity of the E can be divided into a smooth part and a
fluctuating part. The smooth part gives the number of
zeros below E as

A'(E) = ln
E E 7
2' 2' e 8
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This is called Abel's integral equation and its solution is

gV —V, ln ', + ~V I
~+ ~

27re2

(7)

Because Vo appears inside a logarithm, it should be non-
negative. In the limit Vo ~ 0,

~V, 2V
ln

7i '7t e (8)

F =) (e„—E„)

150

However, considering U as a function of x, this solution
is double valued for small x. We found there is a critical
value, Vo ——2ir, beyond which V(x) is single valued. The
choice of Uo afFects the potential at small x, but when x
is large, they all approach Eq. (8). A practical way to
fix Vo is to demand that our potential model fit the flrst
zero (14.134725); this leads to Vo ——3.100 73vr, somewhat
above the critical value. In Fig. 1 we plot V(x) for several
Vo values.

Our second task is to construct a potential which ex-
actly reproduces the E . Obviously, to reproduce all (an
infinite number of) the E is beyond our ability. A more
manageable goal is to reproduce the first N zeros. For
this we require numerical values of the E,n = 1, ..., %,
which can be found following Odlyzko's work I9]. For us,
the simplest way is to compute them using MATHEMAT-

IcA, in which the ( function is defined in the complex
plane.

Starting from the potential given by Eq. (7), one can
solve the Schrodinger equation to have a set of eigenval-
ues e, n = 1, ..., ¹ The least-squares function is taken
to be

We must now vary V(x) to minimize F. To do this, we
take the functional derivative of F with respect to V(x).
Since

be„
hV(x)

(nlHI~) = &.'(x) (10)

where P (x) is the normalized wave function, one has
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In practice, the functional derivative is replaced by the
partial derivative of F with respect to V(x) at specified
grid points. Thus the problem is transformed into mini-
mization of a function in a high order parameter space.
We have used the conjugate gradient method to perform
this minimization.

We have fitted up to % = 500 zeros. The Schrodinger
equation is solved by the Numerov method on a grid of
8392 points with an intergrid distance 0.005 on the pos-
itive real axis. Because the potential is assumed to have
reflection symmetry, only the x & 0 part is independent.
We achieved a fit of all N zeros with average deviation
less than 4 x 10 . However, the accuracy of solution of
the difI'erential equation by the Numerov method. , for the
last levels, is only 3 x 10, so this is the dominant error.
This is 0.02% of the average energy level spacing. With
smaller intergrid distance, this could be further reduced.

In Fig. 2 we show the potential fitting 500 levels, over
a region wide enough to include the smooth extension of
V(x) beyond the turning point of the last level. In the
inset we show, on an expanded scale, the fluctuations of
V(x) for the cases of 100, 300, and 500 levels.

We make the following observations: (1) there is no
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FIG. 1. Potentials V(x) which generate the smooth part
of the Riemann zero spectrum. The label in the inset is the
Vp value for the corresponding curve.

FIG. 2. Potential V(x) which fits the first 500 Riemann
zeros. Shown in the inset are the Huctuations for the poten-
tials fitting the first 100, 300, and 500 zeros. By fluctuation,
we mean the fitted potential minus the smooth part given by
Eq. (7) with Vo —3.100 737r.
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FIG. 3. Box-counting-method analysis of the fractal di-
mension of the potential curve for N = 100, 300, and 500.
Logarithms are to the base 10. The negative slope of the
curve is the fractal dimension minus 1. The box size for
logrs(u) = —1 and —2 in the original T space is 1 and 0.1,
roughly the range in which the fractal dimension is valid.

fluctuation beyond the last level's turning point; (2) for
a fixed N, the Huctuations of the fitted potential de-
crease as energy increases; (3) in a fixed 2: range, finer
structure appears in the potential built on the existing
structure as N increases. All these can be qualitatively
understood with the help of Eq. (11). The functional
derivative of F with respect to V(x) determines the di-
rection one moves in the parameter space. All the wave
functions decay exponentially beyond the turning point,
and thus quickly die away. This implies that the lower
energy levels have very small inHuence on the potential
beyond their turning points. Therefore the part of the
potential beyond the last level's turning point remains
unchanged. Clearly, the potential in the low energy range
has greater "responsibility" than that in a higher energy
range, thus it has more structure. The wave function in-
side the potential well is basically an oscillatory wave of
wave number k(z) = gE —V(x). The amplitude of the
wave decreases as the energy rises. In a fixed x range, a
higher level has a more finely oscillating wave function.
Thus as the number of fitted levels increases, we see more
and more fine detail in the potential. Based on this ar-
gument, the finest structure will be determined by the
wave number of the last wave function.

This leads to the following question [12j: what will
happen if an infinite number of levels are to be fitted?
For any fixed range of x, there will be an infinite number
of higher levels which afI'ect the determination of the po-
tential; thus there will be infinitely fine structure in the
resulting potential. These observations suggest the fitted
potential might have a fractal structure, to be described
by its fractal dimension. Since we cannot prove strict
self-resemblance in the refining process, the fractal ge-
ometry is only defined weakly, as is the case for example
for a coastline map.

Figure 3 shows our fractal dimension analysis using the
box counting method. We picked that part of the poten-
tial curve within 0 & z & 10 (2000 points). We then
rescaled the curve so that it fits in a 1 x 1 box. This area
is then divided into boxes of side u. The number of boxes
containing any part of the curve is counted to be nb. For a
given N, there is a lower limit on the width of the poten-
tial Huctuations. If the box size is smaller than this small-
est structure, one will have nb 1ju. Then on a log-log
plot, logio(nb) vs logio(u) will be a straight line of slope
—1. For a clearer view, we plot logio(nbu) vs logio(u)
which for dimension 1 should be a flat line with no slope.
Conversely, there will be a maximum size of the Huctua-
tions. If the box size is coarser than this, the box count-
ing method sees the curve as a thick line, and one will
again see zero slope. In between these two limits, finer
structure will be increasingly picked up as the box size
decreases. If the fractal dimension is a good prescription,
nb 1/u", then logiII(nbu) = (1—d) logiII(u)+const. We
have shown the results for % = 100, 300, and 500, and it
can be seen that there is a good linear region in between
the two limits in all three cases. As expected, the small
box limit moves to the left as N increases. The slope for
the N = 500 curve yields d = 1.5. If we go even higher in
%, we expect that d will not change much, but the linear
region where the fractal dimension is valid will expand.

In summary, we have found analytically a one-
dimensional local potential which generates the smooth
average level density obeyed by the Riemann zeros. We
have then shown how any finite number of low lying Rie-
mann zeros can be reproduced by introducing fluctua-
tions on top of the potential. The mystery of how a one-
dimensional integrable system can produce a "chaotic"
spectrum is resolved by adopting the concept of a fractal
potential which, in the infinite % limit, would lead to the
system having a dimension larger than one.
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