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Real symmetric random matrix ensembles of Hamiltonians with partial symmetry breaking
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We investigate random matrix ensembles E(e) containing real symmetric matrices H =H' '+@V,
where H' ' is block diagonal, each block a member of the Gaussian orthogonal ensemble, coupled to-
gether by the Gaussian random elements of e V. E(e) could model, for example, a chaotic Hamiltonian
apart from an approximate integral of the motion. We focus on transitions in eigenvalue and eigenvec-
tor projection statistics of E(e) upon variation of their respective scaling parameters. Expressions for
the probability density of nearest-neighbor level spacings as well as the spectral rigidity are given, and

supported by numerical data, and their application in determining a symmetry-breaking perturbation is
discussed. We derive an expression for the probability density of projections of eigenvectors of E(e)
onto those of E(0) valid for suKciently small e and use it to calculate ensemble averages and distribution
functions. Each of these results is compared with numerical data. We furthermore use E(e) at small e

to calculate average time-dependent transition probabilities of nonstationary states.

PACS number(s): 05.45.+b, 02.50.—r, 24.60.Ky

I. INTRODUCTION

Random matrix theory provides a framework to pre-
dict various properties of Hamiltonians of which our
knowledge is either incomplete or which are too compli-
cated to solve practically. Rather than solving a given
Hamiltonian, one defines a matrix ensemble such that the
probability density of elements therein is least biased to
information available about the Hamiltonian and then
calculates ensemble averages of the corresponding spec-
tra. In the simplest case, a quantum. number is taken as
either totally conserved or totally nonconserved, so that
the Hamiltonian is block diagonal, each block represent-
ing a set of values of the good quantum numbers. If the
Hamiltonian is time-reversal invariant, the blocks are real
symmetric, and ignorance of additional details about any
block may be expressed by defining an ensemble of ma-
trices whose elements are independent Gaussian random
variables known as the Gaussian orthogonal ensemble
(GOE) [1,2]. The GOE is furthermore ergodic, i.e., aver-
ages over the spectrum of one member of the ensemble
are almost always identical to ensemble averages [3],jus-
tifying the latter procedure. The GOE has predicted
energy-level statistics and spectral intensity distributions
for systems where direct calculation would have other-
wise been impossible. Even where is has been possible to
calculate a statistical distribution of, say, level spacings
from a known Hamiltonian, comparisons with the GOE
have been illuminating, suggesting connections between
spectral fluctuations predicted by the GOE and chaotic
dynamics of autonomous, classical Hamiltonians [4].

A matrix with block-diagonal structure, each block
represented by a GOE member, obtains when the Hamil-
tonian contains totally conserved and totally noncon-
served integrals of the motion. The GQE strictly applies
as a model in only this case, what Dyson [S] has referred
to as its "all-or-nothing" character. More often one en-
counters a system in which one or more integrals of the

motion are approximately conserved, whereby a different
matrix ensemble is required. The investigation of one
such ensemble is the topic of the following.

Modifications to the GOE accounting for approximate
integrals of the motion were proposed by Dyson [S] and
Rosenzweig and Porter [6] and reformulated in the con-
text of information theory of Balian [2]. The additional
constraint of an approximate integral of the motion is
realized by coupling blocks belonging to different values
of an approximately good quantum number by Gaussian
random elements whose variance e refiects the (small)
symmetry breaking. Like the GOE, the modified Gauss-
ian ensembles, which we call E(e) in the following, are
themselves ergodic [3].

The ensemble E(e) has hereto been suggested to model
symmetry breaking in both atomic and nuclear systems.
In their classic study of spectra of transition metal atoms,
Rosenzweig and Porter [6] observed that the energy-level
statistics of the GQE alone could not account for the
variety of statistics found in these atomic spectra, due to
effects of spin-orbit coupling. Combining the spectra of
all atoms belonging to a given period, and grouping with
respect to parity, they found that the spectral statistics of
each of the three periods studied may be described as fol-
lows. For one of the periods, taking total angular
momentum J to be a good quantum number yields level
statistics that correspond to those of the GOE. For a
second period, the levels labeled again by J are described
by random, Poisson statistics, at least as indicated by the
nearest-neighbor level-spacings distribution. Taking spin
S and orbital angular momentum L to be good quantum
numbers, however, they found GOE statistics for this
second period. Spectra belonging to atoms of a third
period were found to be intermediate between Poisson
and GOE statistics when labeled by J. To explain these
findings, the authors proposed the ensemble E(e), each
matrix containing many blocks labeled by values of S, L,
and parity. They computed numerically the probability
density of nearest-neighbor level spacings, varying the
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coupling parametrically. Where spin-orbit coupling is
sufticiently weak, Poisson statistics are found, whereas
sufficiently strong coupling brings the level statistics of
E(e) to the GGE limit. The third period referred to
above was fit by an intermediate coupling strength.

Eigenvalue statistics of E(e) have also been studied in
the context of isospin symmetry breaking. Guhr and
Weidenmiiller [7] proposed E(e) to analyze transitions in
energy-level fluctuations of two isospin states with
Coulomb coupling. They computed numerically the
level-spacings distribution and spectral rigidity for vari-
ous values of the coupling and fit them to the same level
statistics obtained experimentally for the low-energy
spectrum of Al [8] to determine the strength of symme-
try breaking within the errors of the latter results. In the
same study, they also obtained analytical forms for level
statistics of unitary ensembles, but as the unitary ensem-
bles do not model the same problem, these expressions
could not be directly compared with the experimental
data.

In a recent series of studies, Bohigas and co-workers
[9—11] applied ensembles similar to E(e) to model sys-
tems whose classical phase-space dynamics are largely
chaotic, but which also contain partial barriers to trans-
port between chaotic regions. Members of the GOE
represent the chaotic regions, their dimension corre-
sponding to the fraction of available phase space this re-
gion represents; these are coupled by elements whose
variance is related to the classical Aux across a barrier.
For the case of two weakly coupled regions, ensemble
averages of projections of eigenvectors of E (0) onto those
of E(e) were calculated. It was furthermore observed
from this result that a wave packet initially in one region
would remain localized there in the long-time limit, what
was called "semi-classical" localization [11], since the
corresponding classical dynamics is delocalized. The
ensemble-averaged dynamics of a nonstationary state in
the short- and long-time limits was calculated and com-
pared with wave-packet dynamics using a model Harnil-
tonian.

As E(e) has by now been applied to several problems
including symmetry breaking in atoms and nuclei, as well
as the semiclassical analog of classical Aux across partial
barriers, it is worthwhile summarizing what is known to
date about E(E), both from these studies and others. To
our knowledge, only the work of Bohigas and co-workers
[9,11] has considered eigenvector statistics of E(e), re-
ferred to above. Other studies have focused on eigenval-
ue statistics. As demonstrated by Dyson [5], Rosenzweig
and Porter [6], and most generally by Pandey [12,13], ei-
genvalue statistics scale with a single parameter
A—= g D, where D is the local mean level spacing. Nu-
rnerical studies of level-spacing statistics have been car-
ried out with respect to A, for cases where E(E) models a
Hamiltonian with a two-value [7] and many-value [6] ap-
proximately good quantum number, as already men-
tioned. An approximate expression for X2(r;A), the vari-
ance of the number of levels in an interval that on aver-
age contains r) 0 levels, was derived by French et aI.
[14]. It is expected to be most useful for spectral analysis
when the number of blocks is small [14]. The number

variance X (r; A) is a two-point fiuctuation measure and
may be used to express any other two-point measure [3],
notably the spectral rigidity b,3(r;A), which has been
commonly applied in analyses of semiclassical spectra
[15]. Numerical estimates to b,3(r;A), already referred
to, have been given for E(e) in the case of two blocks [7].

The purpose of this article is to extend the aforemen-
tioned studies of eigenvalue and eigenvector statistics of
E(E), focusing mainly, but not exclusively, on the small A

regime, where expressions for eigenvalue and eigenvector
statistics can be derived. If one is to determine whether a
symmetry has been broken, e.g. , from a sequence of ener-

gy levels, or to predict dynamics within a system where
manifolds of states are weakly coupled to one another,
the small A regime is anyway of special interest. To
determine the completeness of a symmetry breaking,
however, one needs eigenvalue statistics for larger A, and
this will also be treated in the following. Comparisons
with numerics are made where needed to demonstrate the
range of A over which the following expressions are val-
1d.

After defining E(e) is Sec. II, we examine in Sec. III ei-
genvalue Auctuations with respect to A, giving expres-
sions for the probability density of nearest-neighbor level
spacings Ps(S; A) and the spectral rigidity. These expres-
sions are in part intended to complement the recent nu-
merical analysis of these statistics for the two-block en-
semble in Ref. [7]. Ps(S;A) given here is valid for any
number of blocks. Although it is derived assuming small
A, we find in comparisons with numerics that it closely
describes transitions with A nearly to the limit of the lev-
el spacings of the GOE. To determine the completeness
of a symmetry breaking, we turn to a longer-range statis-
tic 63(r;A) obtained directly from X (r;A) given by
French et al. [14]. As the latter is expected to be most
useful for only few blocks, we compare 63 obtained from
it with numerical results to assess its description of spec-
tral transitions for matrices containing up to eight blocks,
finding consistently good agreement. We observe further-
more that transitions of Ps(S;A) and b, 3(r; A) occur over
di6'erent and complementary ranges of A. In analyzing a
set of energy levels to determine if a symmetry is broken,
Ps($; A ) substantially reduces the upperbound on A from
that obtained by 63(r;A), whereas 63(r;A) provides a
larger lower bound on A, and is hence a better indicator
of the completeness of a symmetry breaking.

In Sec. IV we analyze projection statistics of E(e). We
derive an expression for the probability density of the
projection y of an eigenstate of E(E), whose approximate
quantum number has value b', onto an eigenstate of E(0)
with quantum number value b&b'. The probability den-
sity P~(y) scales with A„=e Dz, where D& is the local
mean spacing of levels in block b P(y) given he. re is val-
id for small Ab. Although obtained using a series of ap-
proximations to the zero-order level spacings, we observe
P (y) to closely fit numerical results at small Az over the
full range of y, spanning several orders of magnitude.
From P (y) one obtains the ensemble average of y, (y ),
which we compare with numerical results over a wide
range of values of A&. Various other aspects of projec-
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The ensemble to be studied in the following, E(e),
contains d-dimensional real-symmetric matrices
H =H' '+ e V, where H' ' is block-diagonal with
blocks, each of which is a member of the GOE, and
where V contains independent Gaussian random elements
that couple the blocks of H' '. The index 6 labels a block
and db is the dimension of block b. The structure of H
looks like

(o)Hb

Hb(o)

(la)

(O)Hb =N

where U, is a Gaussian random variable belonging to V.
The matrix elements of H inside the block are indepen-
dent Gaussian random elements with zero mean and vari-
ance

((Hi, ;, )') =—,'(1+&;, )gi, , (lb)

(1—2e2), 0&e&2
I+db

(lc)

The blocks are coupled to one another by elements that
are also Gaussian random with zero mean and

((H )2) =e2 (1d)

This definition of E(e) was introduced by Dyson as an
application of his Brownian motion model of the Gauss-
ian ensembles and was chosen so that the variance of any
eigenvalue x; of E(e) is independent of e [16]. Building
on the Brownian motion formalism, Pandey [12,13]
showed that the energy-level statistics of E(e) and a
variety of other matrix ensembles scale with the local pa-
rameter

tion statistics, such as the distribution function of y and
the dependence of (y ) on the level statistics of E (0), are
also discussed. Finally, the average time-dependent prob-
ability of being in an eigenstate of block b for a nonsta-
tionary state starting in an eigenstate of b' is calculated
using E(e) and Ab (( l.

II. ENSEMBLE

local perturbation parameter A defined by Eq. (2). We
begin with a short-range statistic, the probability density
of nearest-neighbor level spacings Pz(S;A) obtained to
lowest order in A using degenerate perturbation theory.
In the derivation we exploit an observation by Caurier,
Grammaticos, and Ramani (CGR) [17],used in obtaining
a distribution for the Poisson to GOE transition valid for
small perturbations. As we shall see upon comparisons
with numerics, P&(S;A) given here closely fits results of
E(e) over nearly the full transition in the spacings distri-
bution, from A=0 to the GOE limit.

To determine P~(S;A), we have to consider separately
the cases where nearest-neighbor levels of H' ' belong to
the same block or to different blocks. More precisely, we
write Pz(S;A) as the sum of two terms

Ps(S;A) =P~ i~i,.(S;A)+Ps i, i, ,(S) . (3)

(4)

We integrate (4) first over v, where P„(u)
=+(2n) 'e ', then let e =S sing, leaving

P (S;A)= dOe "' P (SsinO) .S ~/'2 z

S,blab' e

P~ & &.(S) is the probability density of level spacings be-
tween nearest neighbors i and j, where i,j P b, i.e., both
belong to the same block of H' '. These levels are not
affected by the perturbation to lowest order in A. An ex-
pression for P~ & &(S) appears in Eq. (8) below. To ob-
tain P~(S;A) we focus now on Pz t, && (S;A)

The perturbation calculation is done to determine
Pz &&& (S;A), the probability density of level spacings be-
tween nearest neighbors i and j, where i E.b, jEb', and
b&b'. We consider a two-dimensional matrix whose off-
diagonal elements are A' v, where U is a Gaussian ran-
dom variable and A is given by Eq. (2). The diagonal ele-
ments are —e/2 and e/2 (the trace is irrelevant to what
follows, so we set it to 0), where P, (e) is the A=0 level-
spacings distribution for i and j (i Hb, jHb', and b&b'),
to be defined by Eq. (9) below. The level spacing S is

then S=)/e +4Av, and its probability density is ob-
tained from

Pz &&& (S;A)= f f du de 5(S—&e +4Au )P, (e)P„(u) .

A(x)=e D (x), (2)

where D is the mean level spacing around the local ener-

gy x.
In the following, we take db to be large for all b, so that

the level density of any block pb is given by the semicircle
law p&(x)=(1/mg&)(2d&g& —x )'~, e=0, and the total
level density is p(x)=g&p&(x). We will furthermore
con6ne our numerical analysis to eigenvalues and their
corresponding eigenvectors in the region x =0 and write
Eq. (2) as simply A=e D, where D =p '(0).

III. EIGENVALUE STATISTICS

In this section we analyze energy-level fluctuations
over short and longer energy ranges with respect to the

For A((1 and S=1, CGR have pointed out that the
main contribution to the integral is where 9=sr/2, so
that we may set sinO= 1. The integral over O then yields

Pq ~~q (S;A)=S&m/8AIO(S /16A)e ' P, (S), (6)

where Io is a Bessel function.
We still need Pz z & (S) in (3), as well as P, (S) in (6),

which is the same as Pz &&t, ,(S;0). Both are given in Ref.
[18]. They are particularly simple if we assume that the
nearest-neighbor level-spacings distribution for the levels
of each of the X blocks is given by the Wigner distribu-
tion
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P (S)=—S exp ——S8'
2 4

(7)

0. 8

0. 7

0. 6

Equation (7) is a very close approximation to the exact re-
sult of the GOE [1]. Using (7), one finds [18]

—(77/4) f~ S

Ps, b=& (S) —S—X fb2 iI7r
erfc f&S

2

0. 3

0.2

0. 1

X + erfc
b

f&S
0. 8

0. 5 1.5 2. 5

where fb =db Id, the fraction of levels in block b;
erfc(x) =(2/&m. ) J"exp( —u )du. Likewise, P, (S) is

given by [18]

0. 7

0. 6 .

P, (S)= g fb
e

—
( 77/4)f S

v'Yr
er c f&S

2

b
—(77/4)f &

~7r
erfc f&S

2

2

0. 3

0. 2

0. 1

0.5 1.5 2. 5

XQ erfc
b

f&S
0. 8

0. 7

This would complete the definition of Ps(S;A) except
for two drawbacks, namely that for A & 0,
f 0 Ps(S;A)dSA1 and f o P&(S;A)SdS&1. We can get
around these by introducing two parameters c& and ca,
which are adjusted so that both of the above conditions
are satisfied, i.e., Pz(S;A) is normalized and (S)=l.
We then have

2 2 2 2

Ps(S; A) =cbrc~&nISAIO Se P, (cDS )
16A

0 6

o. 4

0.3-
/

o. o

0.1

0. 5 1.5 2. 5

+c&P& b b (cDS) . (10)
0. 7

When the number of blocks is large, the second term
on the right-hand side of (10) is small. Moreover, P, (S)
approaches a Poisson distribution. In the large-X limit,
then, we see that (10) approaches Ps(S;A) given by CGR
for the transition away from the Poisson distribution,
apart from the additional constants we have added, c~
and cD, for reasons discussed above.

We now test the accuracy of Eq. (10) against numerics.
For illustrative purposes, we look at the two-block en-
semble, studied numerically in Ref. [7]. The matrix en-
sembles in all our numerical tests consist of about 2000
matrices with d=400, d& =d2=200, from which the
middle 20% of the eigenvalues of each matrix have been
used for the evaluation. We can then use Eq. (2) for A at
x =0 to a very good approximation. In all, we have
O(10 ) level spacings from each ensemble.

Figure 1 contains four plots of numerical results of
Ps(S;A) for E(e) with d, =dz =200. The range of A was

0. 6

0.5

~ 0.4-

0.3

~
0. 5 1.5

S
2. 5

FIG. 1. Pz(S;A) from Eq. (10) and numerical results for
d] =dp =200, and (a) c& = cD = 1.000, A =4.05 X 10; (b)
c&= 1.020, cD = 1.015, A= 8. 11 X 10; (c) c& = 1.125,
cD =1.080, A=4. 05 X 10; (d) cz = 1.560, cD = 1.230,
A=3.24X10 '. The dashed line in (a) and (b) is the Pz(S;0)
limit, and the dashed line in (c) and (d) is the Wigner distribu-
tion, Eq. (7).
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chosen so that transitions in the spacings distribution
may be observed near both limits, i.e., the A=O and
Wigner distribution limits. We must furthermore adjust
cD and cz in Eq. (10) with A to fulfill, respectively, the
(S)=1 and normalization requirements. In the follow-
ing, we satisfy these conditions to within 1%. Since Eq.
(10) then fits data where (S ) =1, it is necessary to "un-
fold" the numerical levels so that the local mean spacing
is also unity.

Figure 1(a) shows both numerical results and the pre-
diction of Eq. (10) for A=4. 05 X 10 . Here we have
simply used c&=cz =1. The dashed line in the figure is
the A=0 spacings distribution. The figure indicates close
agreement between the numerically obtained histogram
and the curve generated by (10). We also observe that the
main difference between these and the A =0 spacings dis-
tribution is found at S=0. As expected from (10),
Ps(0;AWO) is 0, and for small A, nearly degenerate levels
repel to yield slightly larger spacings, as seen by the sharp
peak at S=0.07.

Figure 1(b) makes the same comparisons as 1(a), but at
A=8. 11X10 . Level repulsion is seen to be much
stronger than in 1(a), as the closely matching results of
(10) and numerics differ substantially from the A=O re-
sult over a range of S up to = 1.

Figures 1(c) and 1(d) show results for A where Ps(S;A)
is converging to the Wigner distribution, Eq. (7). In 1(c)
and 1(d), A=4. 05 X 10 and 0.324, respectively. While
a clear difference from the Wigner distribution is still ob-
served in 1(c), the difference in 1(d) is small. We notice
that Eq. (10), derived by perturbation theory, and numer-
ical results agree very well as the limit of the Wigner dis-
tribution is approached. This is true in general, but
somewhat more so when N is small, since small-N
Ps(S;0) resembles the Wigner distribution more than
does Ps(S;0) when N is large. Clearly we cannot deter-
mine the completeness of a symmetry breaking by look-
ing at Ps(S;A) alone. For this it is necessary to analyze
alternative statistics more sensitive to long-range level
Auctuations, which we turn to now.

A commonly applied long-range level statistic is the
spectral rigidity, or A3. As mentioned in the Introduc-
tion, Guhr and Weidenmiiller [7] studied E(e) numerical-
ly with N=2 to estimate isospin mixing in Al by fitting
the A3 they obtained to that calculated from the low-
energy spectrum [8], within the error bars of the data
provided. Below, we consider an expression for 63 ob-
tained directly from a form for the number variance X
given by French et al. valid for small N [14] and compare
it to numerical data.

The A3 statistic was proposed by Dyson and Mehta
[19] to determine the mean-square deviation from the
smoothed spectral staircase and is referred to as the spec-
tral rigidity because it shows dramatically the spectral
correlation of a GOE level sequence, whose average A3
rises logarithmically with the number of levels, and a ran-
dom level sequence, for which 63 rises linearly. Pandey
[3] showed that b, 3 is related to the number variance
X (r)=(N(r) ) —(N(r)), where N(r) is the number of
levels in some length r and ( ) denote averages over a

For the GOE, the two-level correlation function is [19]

X (r) = In(2vrr )+y+ I+—,
' [Si(~r )]=2

7T2

Si(err—) —cos(2~r )
2

—Ci(2mr )+ vr r 1 ——Si(2m r )
2 2

(12)

where Si and Ci are, respectively, the sine and cosine in-
tegrals and y is the Euler constant.

Applying binary correlation theory [20] French et al.
[14] obtained an expression for X (r) valid for general A

X (r;A)=X (r; ~ )+ ln 1+(N —1) wr
7r' 4(~+~ A)

(13)

where X (r; ~ ) is the GOE limit, Eq. (12). The parame-
ter r is determined at A=0, using [3]

X (r;0)=g X (fbr; ~ ),
b

(14)

where fb =d„/d, the fraction of levels contained in block
b. Equation (13) is valid for values of r greater than the
number of blocks r ~N, so we may apply it usefully for
the model containing matrices with a few blocks. Using
Eqs. (11) and (13), we have

b3(r; A) = 63(r; ~ )+ (N —1) 1 2 1

2 (g2r2 2(g4r~

Xln(1+a r )

+ tan '(ar )

1 9+
2A2r 2 4

(15)

2(~+sr A)

where 53(r; ~ ) is the GOE limit.
Figure 2 contains several plots of b, 3(r; A) generated by

Eq. (15) for the two-block ensemble d
&
=dz, where we use

~=0.70. Six curves are plotted, which from top to bot-
tom correspond to A=O. O, 0.01, 0.08, 0.24, 0.80, and ~,
respectively. For the smallest A represented, b, 3(r; A) lies
quite close to 63(r;0). An upper bound to A from levels
whose 63 fits the A=O curve would then be somewhat
smaller than 0.01.

We have seen that a much smaller upper-bound to A
can be determined from the level spacings. For example,

stretch of levels, or the ensemble, equivalent due to the
ergodic properties of the GOE. In terms of X (r), b, 3(r)
is [3]

6,3(r)= I (r 2r —s+s )X (s)ds .3 4.
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0.5

0.2

0.1

I

10 15 20 25

FIG. 2. 53(r;A) for d& =d2 using Eq. (15) with ~=0.70.
From top to bottom, A=O. OO, 0.01, 0.08, 0.24, 0.80. The bot-
tom curve is the GOE limit 63(r; ~ ).

blocks, comparing it with numerical results of an ensem-
ble of matrices with eight blocks. Results for an ensem-
ble of 500 matrices (the middle 20% of the eigenvalues of
each matrix were used) and d i

= =d 8
= 100 are plot-

ted in Fig. 3, together with the predictions of Eq. (15) for
two values of A, A=0. 08 and 0.48; &=1.85. The upper-
most curve in Fig. 3 is b,3(r)=r/15, the result for a ran-
dom sequence of levels. For r to about 5, b,3(r;0) for
N =8 lies close to this line, illustrating how rapidly the
Poisson limit is approached with N. Each curve generat-
ed by (15) fits the numerics very closely. Some deviations
are observed at small r, and for the smaller A also at
larger r, but in both examples the dashed curves
representing the numerical results follow the respective
predictions of (15). For these and other cases where
N~8, we have found Eq. (15) to be a useful fit to
b3(r; A); we have not tested N ) 8.

Fig. 1(a) indicates symmetry breaking at A=4X10
more than an order of magnitude smaller than the upper
bound on A determined by Fig. 2. On the other hand, for
A=0. 24 and 0.80, the spacings distribution is close to
that of the GOE limit, whereas A3 for each of these pa-
rameters is clearly different from b3(r, ~). Analysis of
A3 thus provides a larger lower bound to A and is thereby
a more sensitive indicator of the completeness of a sym-
metry breaking than Ps(S;A). The main observation
here is that these two statistics reveal A transitions in
complementary intervals of A. The short-range Pz(S;A)
is most useful at small A, while the longer-range b, 3(r; A)
is more sensitive to larger A.

As remarked, Eq. (15) is most useful when N is small,
since it should be valid for r «N. When N is large,
French et al. [14] have proposed an alternative expres-
sion for X (r;A) valid for small N, from which of course
63(r;A) could be expressed. Here we test (15) to see if it
is indeed useful where there are a larger number of

0. 8

0 7

0. 6

0.5

0. 4

0. 3

0. 1

FIG. 3. 63(r;A) for N=8 and d& = ' =d8=100. The
dashed curves are from numerics, where A=0.08 and 0.48, for
the upper and lower curves, respectively. The superimposed
solid curves are the corresponding predictions of Eq. (15) with
v =1.85. Also plotted is A, =r/15 (uppermost curve), the result
for a sequence of random levels; the GOE limit (bottom curve);
and 63(r;0) for the case of eight blocks of the same dimension
(second curve from top).

IV. PRO JECTION STATISTICS

We now turn to transitions in the eigenstates of E(e),
specifically statistics of projections, y, of eigenstates of
E(e) with approximate quantum number value b' onto
eigenstates of E (0) with quantum number value b W b '.
We present here an expression for the probability density
of y, P~(y), which quantifies the extent of mixing of zero-
order states upon introduction of the perturbation e. The
scaling parameter for P (y) will be seen to be

Ab —e Db

where Db is the local mean level spacing of levels in b.
We approximate P~(y) by applying degenerate perturba-
tion theory for the contributions to y from nearest-
neighbor bb ' levels, and nondegenerate perturbation
theory and approximations to the level spacings for the
rest. Despite the series of approximations required to ob-
tain a form for P (y), the resulting expression gives a
very close fit to numerical data over the full range of y, as
seen by comparison with a numerical example.

From P (y) one may of course calculate ensemble aver-
ages of y, but only the contribution from nearest bb' lev-
els is needed when Ab is sufficiently sma11. This was
recognized by Bohigas, Tomsovic, and Ullmo [9,11] who
calculated (y ) for small Ab without first calculating
P~(y), finding (y ) =&8/mAb . One implication of this
small value for (y ) is that a wave packet starting in b',
which is weakly coupled to the states of b, will have only
a small long-time probability of being found in b, i.e., will
remain localized in b', which has been called "semiclassi-
cal" localization [11].

Below we determine P (y) and examine various aspects
of projection statistics of E(e). After calculating (y)
from P (y ), we consider whether (y ) at small Ab is sensi-
tive to the level statistics of E(0), comparing the cases
where b ' and b are members of the GOE, with that where
the levels of b' and b are random. We find that to lowest
order in A&, (y ) is the same in both cases, so that the
level statistics in each of the blocks are largely irrelevant
to the localization properties of the ensemble when Ab is
small; more important are the size of the random cou-
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pling elements and the level density. We then compare
the lowest-order expression for (y ) with (y ) obtained
from numerical y distributions of E(e), over a wide range
of A„. Using P (y), we also obtain and discuss the distri-
bution function of y, focusing on the fraction of P (y)
found at and above (y ). Finally, we examine localiza-
tion properties of E(e) more closely, applying the two di-
mensional ensemble to calculate the small-Ab average
time-dependent probability of being in an eigenstate of b
given that only a b' eigenstate is initially occupied.

Starting with the first-order, nondegenerate perturba-
tion expression for the eigenstates, we have

where S,"=—E, —E, i Hb', jE.b. The projection y of the
lj ) 's onto i ) is then given by

(18)

db /2

y =(' Pbl') =yp+ X (yk+y k) . —
k=1

(19)

Since each yk is a random number, the probability densi-

ty of y, P (y), is the convolution of the probability densi-
ties of yI„each k an integer between —d&/2 and db/2,
where db, the dimension of b, is assumed to be large.

For y0, we need degenerate perturbation theory, while
for y&, k&0, we use the nondegenerate expression. Thus
we have

—1/2

P (y)= f f Ii y —— 1 — 1+4—
ya 0 0 2 0

XP (v)P (o. )dv do, (20a)
r

(y)= f f 5 y ——P (v)P (o )dv do. , k&0,
yj 0 0 O

v

(20b)

where P (v)=v I/2vre ve ~, the Porter-Thomas dis-
tribution.

P (o ) is determined by Ps (S), where the level spac-
0 0

ing S0 is the nearest-lying level of b to some level of b', b

having been randomly superimposed onto b'. A deriva-
tion of the probability density of S0 in this case is given
in Refs. [18j, [21j, and [22j; if the nearest-neighbor level
spacings of b are described by the Wigner distribution,
then Ps (S) is a Gaussian random variable and P (o ) is

0 0

the Porter- Thomas distribution

where U is a Gaussian random variable with zero mean
and variance e . To calculate the probability density of
( i

l Pb l
i ), we need the probability densities of S,,

To simplify the notation, we define the index k, where
lk l

ranks lS,J l
from smallest to largest; k =0 corresponds

to the ij pair for which lS," l
is smallest; k (0 (k )0) cor-

responds to S;J (0 (S;i)0). Let v =—U and ok =Sk, and-
define yk —=v/o. k. We can then express y as the sum

D 2

P (o)=D b '~ e (21)

It is worthwhile at this point to examine how well Eq.
(22) describes the probability density of y obtained nu-
merically. We have generated a y distribution from an
ensemble of 6400 matrices, db =db = 100 and
@=6.32X10 . Only the middle eigenvalues were used
so that pi, =10/m. The results are plotted in Fig. 4(a), to-
gether with the corresponding prediction of Eq. (22).
Close agreement is seen for larger y over a range of an or-
der of magnitude, but is very poor at small y.

To improve our estimate to P (y ), we need to consider
additional terms in (19). We do this by first assuming
that for all k&0, the probability densities of the yk's are
paired such that P~, (y)=P~, (y), P z(y)=P z(y), etc.
This approximation will greatly simplify the final expres-
sion for P (y), as we shall see below. Let I be the index
corresponding to each pair, where I =

l
kl. Then

I=k=p l=l 1=2

PI Pk =I'P/ = I» IA—O

where o denotes convolution.
To solve for Pt, in (23), we first need to define P (cr )

1

and P, (o. ) to solve (20b). We guess an expression that
contains both the fact that each goes to 0 as o' ~0, and
that the corresponding S has a mean spacing of roughly
Db. A function that satisfies both is

—4 / D

7T b

(24)

which when transformed to Ps(S) is more familiar as a
close approximation to the nearest-neighbor spacings dis-
tribution of the Gaussian unitary ensemble. From (20b)
and (24), we have

32''2A3 zz

5/2 1/2 8
b

2 (25)

Using (22) and (25), we have an estimate to P (y) that
incorporates the three largest terms in the perturbation
expansion (19). The resulting P (y) is then a convolution
of (25) with itself, to account for o.

&
and cr &, together

with (22) to account for crp In terms o.f index I in (23), we
have so far P~(y)=Pi p»»Pi —,. The r—esult is plotted in
Fig. 4(b), together with the same numerical results shown
in 4(a). Agreement between the numerical results and
our estimate to P (y) is better than in 4(a) to an addition-
al order of magnitude in y, i.e., P (y) is well described

where a factor 2 has been introduced to Db ' because the
nearest b level may be on either side of a given b' level.
Using (21) in the double integral (20a), we have

P (y)=+2Ab/~(y —y )

X [(y —y )(1—8~Ab )+2m AI, ] ', 0 (y (
—,
' .

(22)
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(27)

Since P =P P, we havey —k

P, (y)=l A 'e ' A ', l~2. (28)

We define P„(y) as the convolution of all P& for l ~ 2, and
define n& as a limit on l, which we recognize as nb l2 and
which can be made arbitrarily large. Then

nl

1=2

nl
~lyg 81„e

1=2

over about two orders of magnitude in y. Moreover, the
fit to the smallest y's, described poorly by Eq. (22), is in
much better qualitative agreement with the data.

The rest of the terms in Eq. (19) will now be included
by assuming all the levels not yet accounted for are found
only at intervals of Db, or

P, (o)=.6(o —lkl D~) (2&)

for Ik I

~ 2. Integration of (20b) yields

k /2A

,

(y) =
1k l (2n.Aby )

' e

Our final expression for the probability density of y is
given by

Py(y)=pi=a'Pi=i P, (30)

(y) =&8i~Ain (31)

It turns out that (y ) is actually insensitive to the level
statistics of b and b' when Ab is small. To see this, we ex-
amine the extreme case for which the levels of b are ran-
dom. Then

which is the convolution of Eqs. (22), (25), (25), and (29).
Results from (30) are plotted in Fig. 4(c). Although
several approximations were made in arriving at (30), the
most severe ones leading to (25) and (29), the close fit to
numerics over the observed range of y, more than three
orders of magnitude, provides a posteriori justification for
them.

To calculate the ensemble average of y, (y), from
P~(y), only Eq. (22) is needed to lowest order in Az.
From (22), keeping only terms lowest order in A„, we
have

8I „=I(A2 —2() . (A, I )
—

A, l )

X(Ai+, —Ai) . (A,„—A()j ', 2(l(n
1n —1

(29)

—2~' "/D
P (o. ) =D 'o. ' e (32)

8„„= g (A, , —A.„)
1=2

C. 6

XI I Ab o

where the factor 2 appears before Db
' in the exponent as

in (21). Using (31), the double integral (20a) yields

P (y)=&2lvrAb (y —y ) +O(Ab), 0 y

(33)

0. 3

0. 2

C. 7-

0

where O(Ab) contains all terms of order Ab or higher.
To refine P (y ), we need the contribution due to the
next-nearest level spacings, which for a Poisson sequence

1/2 2o /Db
is p (o ) ~ o'~2e '. Due to level repulsion between

next-nearest and more distant bb' neighbors, contribu-
tions to P (y) from these will be of order Ab or higher, so
that to lowest order in Ab we have

0 5

0 3
v

0 —4

0. 7 .

0. 6

0. 5 .

0.3 .

0. 2

0. 1

FIG. 4. (a) Histogram of P~(log&0(y)) obtained numerically
for d, =d2=100 and @=6.32X10 '. The superimposed curve
is the corresponding prediction of Eq. (22); (b) same as (a), but
curve is the convolution of Eq. (22), (25), and (25); (c) same as (a)
and (b), but curve is given by Eq. (30).

P (y)=&2lmAI', (y —y ) 0 y ~ —' (34)

and the ensemble average (y ) =&8/vrAb~, the same as
(31).

We now compare (y ) given by Eq. (31) with numerical
data to examine to what values of Ab and (y ) this simple
estimate holds. Ensembles of 1600 matrices and
db =db. =100 were used, and e varied over a wide range
of values. The results are plotted in Fig. 5, together with
the predictions of Eq. (31). In this example of two blocks
of equal dimension, (y ) cannot exceed 0.5; we observe
that this limiting value is approached around Ah=1,
where the perturbation strength e is the size of Db. For
(y ) as large as 0.15, we find Eq. (31) agrees very well
with numerics, to within 1%, and agrees to within 5% up
to (y) =0.25.

We conclude this study of time-independent projection
statistics by considering the distribution function of y ob-
tained from P (y). As is evident from Fig. 4, y extends
over several orders of magnitude, and only a relatively
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2

(P, , (t)) = J dS f du 1 — 1+4
0 0 S

1/2
2

5

XP, (u)Ps(S), (38)

t

—3

log l 0 (-Y( )

FICx. 5. Prediction of (y ) given by Eq. (31) (solid curve) and

(y ) obtained numerically (points) at various values of
log&0(Ab )

lg(t)) = & e
' " l+„&&+,li),

k =1,2
(36)

where
l %k ) is

l
i ) (

l j ) ) when k = 1 (2). Defining
P, .(t) =—

l (j l p(t) ) l, and identifying y = 1 —
l (

ch�ili

) l,
one finds

P, (t)=4(y —y )sin. St
(37)

where S=E~ Ei, and Ei(E2) i—s the eigenvalue corre-
sponding to

l
i ) ( lj ) ). For two-dimensional matrices,

S=)/S +4u, where S is the unperturbed level spacing.
Using degenerate perturbation theory, we have
y =[1—(1+4u /S )

' ]/2, so that the ensemble aver-
age of the time-dependent transition probability is

small fraction of all y's is observed to be around (y ) or
larger. We define F ((y ) ) to be the distribution function
of y at (y), namely the probability that y ((y). The
fraction of y ) (y ) is then 1 F((y )—). Using (22), and
keeping only terms lowest order in Ab, one obtains

F (( )) 1
&y&'"(1—2&y&)

(35)
(1—(y) )'"

which simplifies to F ( (y ) ) = 1 —(y ) ' where (y ) ((1.
This gives an indication of the spread in y, as one finds
that only the fraction (y )', or [(8/~)As ]'~, of all y's
lies at or above its ensemble average when A& is small. A
comparison of (35) with numerics shows agreement over
the same range of Ab as observed for (y ).

As remarked above, small (y ) predicted for weakly
coupled manifolds of GOE levels implies that a wave
packet occupying levels of one manifold at initial time
t =0 remains localized there in the lone-time limit. We
now consider this point in more detail, calculating the
average time-dependent probability (P, ~

(t) ) of occup. y-
ing a b state starting in a b' state. We have seen that only
nearest bb' states contribute to lowest order in A&, so we
calculate the time-dependent probability using an ensem-
ble where d =2, and i E.b' and jEb. For this two-state
problem, we have

where P (u) =+2/me~e ' ~~' and Ps(S)
~E~Dz

=2Ds 'e ' [see discussion up to (21)].
To lowest order in u/S, Eq. (38) is familiar as a time-

dependent perturbation expression for the case where a
time-independent perturbation v is switched on at t =0.
(P; (t) ) will clearly increase from 0 as t for very small
t, a dynamic that may be described as ballistic. At larger
t, we expect (P, J(t)) to enter the golden rule regime
[11], i.e., depend linearly with t On.e may also refer to
this as a difFusive regime, where the transition rate is
analogous to a diffusion constant. After very long times,
the integrand in (38) oscillates very rapidly upon integra-
tion over S, leaving &P; (t)) =~(y )/. 2, so that for
large t the wave packet is localized in b'. The latter two
regimes are respectively given by

2'As Ds t ( short times)
(P, ,(t))= +2~As =rr(y ) /2 (long times) .

(39a)

(39b)

We notice that the diffusive and saturation regimes
scale differently from one another. Whereas (P; (t)).
scales as A& in the asymptotic region, it scales as A&D& in
the linear regime. This means that if we scale (P; J(t) )
in the diffusive regime, i.e., to At, DI„ the long-time limit
of (P; /(t)) increases with the level density of b by a
factor of D& when Ab is small. This relation cannot,
of course, be valid for all At, since at some point there is
complete delocalization, probably at Ah=1. How large
A& can be for this relation to be valid is indicated by Fig.
5, which suggests A& up to =0.03.

We integrate Eq. (38) numerically over u and S, and
scale ( P, ( t) ) in the golden rule regime, defining
r = t ACED&. Results for Ds ' =4.50 and As = (i)
5.0X10 7, (ii) 1.0X10 ', (iii) 2.0X10 ', (iv) 4.0X10 ',
and (v) 8.0X 10 are plotted in Fig. 6. Linear depen-
dence of (P; (t)) with ~ is observed at small r, falling
on the line (P; (t)) =2nr, Eq. (39a). At even shorter
times we find a quadratic dependence with ~, but this
occurs over too small a range of ~ to be seen in the figure
(below &=10 ). There is no apparent critical time at
which (P; (t)) saturates to its limiting value, but rath-
er a smooth approach over a broad range from the linear
regime to the asymptotic value rr(y ) /2. The conclusion
drawn above is clearly shown in the figure, i.e., for a
given golden rule rate, we observe always more delocali-
zation in the long-time limit as the level density of b in-
creases.
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0.006

0.004

FIG. 6. (P;,(t)) vs r=tA~D&, obtained by numerical in-
tegration of Eq. (38) for DI, '=4. 50 and A&=5X10, 1X10
2 X 10, 4 X 10, and 8 X 10 (from bottom to top). The
straight line is the transition probability given by (39a).

V. CONCLUSIONS

We have investigated various predictions of an ensem-
ble E(e) of real-symmetric matrices H=H' '+@V, where
H' ' is block diagonal, each block a number of the GOE,
coupled together by the Gaussian random elements of eV.
The blocks of H'' ' may be labeled by values of the good
quantum numbers of 0' '; then eV is related to the
strength of a symmetry-breaking perturbation [2,5,6,7].
The ensemble may also model systems whose correspond-
ing classical dynamics is characterized by a partial bar-
rier to transport between two chaotic regions of the phase
space; then the fraction of levels contributed by each
block is proportional to the phase-space fraction each of
the chaotic regions occupies, and the perturbation matrix
refiects the classical fiux across the barrier [9—11].

This study has been divided into two main areas. The
first focuses on the analysis of energy-level sequences.
We investigated level Auctuations over short and longer
ranges of energy with respect to variation of the local
perturbation parameter A, defined by Eq. (2). The shor-
test range considered was the spacing between nearest-
neighbor levels. An expression was given for the proba-
bility density of nearest-neighbor spacings Ps(S;A) and
found to describe very closely numerical results for the
ensemble over a range of A approaching the limit of the
Wigner distribution. This is apparently because P~(S;A)
comes quite close to the Wigner distribution already in
the perturbation regime and is undoubtedly one reason
the Wigner distribution perturbation is so often observed
in spectral analyses, as it would be even in cases where
the underlying Hamiltonian contains approximate in-
tegrals of the motion.

Transitions in statistics over longer-energy ranges were
studied by evaluating the spectral rigidity, or 63 statistic,
obtained from an expression for the number variance by
French et al. [14] valid for general A and small block
number N. This expression has been compared with A3
obtained numerically, with close agreement for H' ' con-
taining up to eight blocks. Transitions in Pz(S;A) and
A3 occur in largely different and complementary ranges
of A. Pz(S;A) yields a much lower upper bound to a
symmetry-breaking perturbation than b, (r;3A), whereas

the latter is a more sensitive indicator of the complete-
ness of a symmetry breaking.

The second part of the study involves statistics of the
eigenstates of the ensemble. We derived an expression
for the probability density of the projection y of an eigen-
state of E(e), whose approximate quantum number has
value b', onto eigenstates of E(0) with value b&b'. The
probability density of y, P (y), was obtained from a full
perturbation expansion and some approximations to the
zero-order eigenvalue spacings and is valid when the scal-
ing parameter Ai„defined by Eq. (16), is small. Despite
the approximations, the fit of P (y) to numerical results is
very close over the full range of y. Various statistics ob-
tained from P (y ), such as the distribution function of y,
and the ensemble average (y ) were also calculated and
compared with numerics.

We furthermore studied the average time-dependent
probability for a state starting in an eigenstate of block b'
to be in eigenstates of b for small Ab. Here we observed
four dynamical regimes: a ballistic at very short times; a
diffusive, or golden rule regime at short times; a satura-
tion regime at long times; and a transition regime be-
tween the latter two. The long-time saturation of the
transition probability is (m/2)(y), and scales as Ai„
whereas the diffusive rate scales as AbD&. For a given
diffusion rate from b' to b and small A&, a wave packet
becomes more delocalized at long times with increasing
level density of b by the factor D&

'

Although E(e) has been defined by Eq. (1) so that H' '

may contain any number of blocks N, it is perhaps most
useful as a model when N is small. This is because for
large N the level statistics are very close to Poisson statis-
tics, and in this limit the analysis may be simplified by
defining another ensemble Ep(F), the same as E(e), but
where H' ' is simply diagonal. In this case, the probabili-
ty density of nearest-neighbor level spacings for any value
of the coupling strength e has been given for the two-
dimensional ensemble [23], where it is observed to fit en-
sembles of large matrices very satisfactorily. As men-
tioned above, a small-A expression for the number vari-
ance has also been given for Ep(e) [14]. Projection statis-
tics of EI, (e) have also been analyzed and found to scale
differently from the eigenvalue statistics [24], a property
that is also revealed by a perturbation analysis of Et, (e).
An alternative description of Poisson to GOE statistics is
given by an ensemble of banded matrices [25]. Indeed the
banded matrix ensemble resembles more closely than
E(e) or Ep(e) the ensemble studied by Bohigas and co-
workers [9—11], since in the latter each block of H' ' is
coupled to at most only two others, giving the matrices a
banded appearance when H' ' has suKciently many
blocks.
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