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An alternative approach to ordering transitions in lattice gases is presented. Our approach can be re-
garded as the lattice analog of the well-known freezing theory for continuous fluids based on density
functionals. Specifically, we discuss ordering in a three-dimensional model involving repulsive forces up
to second neighbors and compare our results with Monte Carlo simulations. The utility of our method is
demonstrated further by calculating the structure of a planar interface between coexisting ordered and
disordered phases. It is pointed out that our theory is a good starting point for investigating problems of

the interfacial kinetics.

PACS number(s): 05.50.+q, 64.60.Cn

I. INTRODUCTION

The formulation of a molecular theory of the fluid-
solid phase transition is a classic problem in statistical
mechanics. An important step has been taken by Ramak-
rishnan and Yussouff [1], who constructed an order-
parameter theory for the freezing transition, where the
molecular forces enter only via the direct correlation
function in the fluid state. This “freezing theory” has by
now been generalized by a number of authors [2—4]. Re-
formulated in the language of density-functional theory
[5], it has successfully been applied to several problems
including phase diagrams of monatomic systems, the for-
mation of colloidal crystals, or the structure of crystal-
liquid interfaces [6].

Our present purpose is to demonstrate that the main
ideas of freezing theory are also useful in the field of
discrete lattice-gas systems. In that context it represents
an alternative approach to ordering transitions in lattice
gases, which are common in describing, for example,
binary solid solutions [7], solid ionic conductors [8], or
hydrogen in metals [9]. In a recent study we discussed
the lattice-gas analog of density-functional theory [10].
Its application to ordering transitions in lattice gases ap-
pears to offer certain computational advantages in com-
parison with conventional lattice statistical methods
[11-13], in particular, in cases of long-range interactions
or in calculating interfacial profiles [14,15], although a
detailed comparison of the different methods with respect
to their quantitative accuracy remains to be done. More-
over, that theory may also pertain to certain problems of
the crystal-fluid interface, such as growth processes or
the roughening transition, which are often simulated by
lattice models [16—18].

After a brief review of the general formalism in Sec. II,
we analyze a specific model, where particles on a simple
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cubic lattice interact via repulsive nearest-neighbor
(Vnn) and next-nearest-neighbor (V) potentials. In
cases where the average occupation number of lattice
sites is in the vicinity of 77 =%, such a system undergoes a
first-order transition from a disordered, ‘““fluid” state to a
bece structure, as the temperature is lowered. In order to
investigate some general aspects of that transition, we
consider in Sec. III a three-parameter model for the
direct correlation function and discuss the relation be-
tween the corresponding correlations in the “fluid” state
and the bce order parameters. Specific examples are con-
sidered in Sec. IV. There we present Monte Carlo simu-
lation results in comparison with calculations of the
pair-correlation function from the lattice version of the
mean-spherical approximation (MSA). In Sec. V we
show that the interfacial profile and the interfacial ten-
sion can be obtained in a rather straight-forward way
within our formalism. We conclude our paper with some
remarks about possible extensions of our method to prob-
lems of the interfacial kinetics.

II. FORMALISM

Consider a system of interacting particles distributed
among the sites / of a regular lattice. The corresponding
lattice-gas Hamiltonian is assumed to be of the form

H:%IEI’V(I—I')mnz""EI(El_H)nl > 1)

where V(I —1') denotes the pair interaction, ¢; the local
site energies, and p the chemical potential. Lattice sites
are either vacant or simply occupied; hence, the occupa-
tion numbers satisfy

n12=n1 . (2)
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Our problem is to determine the grand-canonical average
(n;), A powerful tool in the analogous problem of com-
puting the average density of inhomogeneous liquids is
the density-functional method. As shown previously,
that method can readily be adapted to lattice gases de-
scribed by the Hamiltonian (1) [10]. For completeness,
let us summarize briefly the main points of the formalism
which we shall need in this paper.

We start with the following function of the set of mean
occupation numbers {{n;)}:

Q({({n)dN=e;{n) ) +F({{nP})—p3{n) . (3)
1 I

This function is minimized by the equilibrium values
(n,; )¢, and its minimum is equal to the grand potential of
the system. As usual [5], we decompose the intrinsic free
energy

F({<nl}):Fid+Fexc
into the ideal (noninteracting) lattice-gas free energy:

Fiy=kpT>[{n;) In{n;)+(1—{n; ) In(1—(n; )],
1

4)

and the excess part F,, . due to interactions. Minimiza-
tion of (3) then leads to the self-consistency condition for
the mean occupation numbers:

(nyy={1+exp[Blg;—p)—c (L, {{nIPN"", &)

which has the form of Fermi’s distribution function
modified by the correlation potential

aFexc
8<n1) ’

In the last equations T denotes the temperature and
B=(kg T)~'. In the following we confine ourselves to an
approximation where the quantity ¢! is linearized with
respect to the deviations {n; ) —# from some homogene-
ous reference state of the system characterized by the
mean occupation #:

L {n) P=c V@) +ScPU~1,7)np)—7) .
<

c (L {{n)})=—B (6)

(7

Quantitative tests presented in Ref. [10] lead us to con-
clude that (7) provides a sensible approximation for the
purpose of this paper. The kernel

=1, 7)=c(1—1",7)

is equal to the direct correlation function of the reference
state and can be related to the pair-correlation function
g(l—1') of the reference state via the lattice-gas analog of
the Ornstein-Zernike-equation:

g—=I")—1=CcU-I"+ayCcu-I")gl"—I')—1],
Iz

(8)
with
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8I,I’

C—I'"Y=c(l—-1')—

and
gU—1"=(1—8, X mn,) /7> . (10)

In order to simplify our notation, we have dropped in the
last equations the 77 dependence of the various correlation
functions. Note that in contrast to conventional density-
functional theory of continuous fluids, the functions
C(I1—1') entering (8) and ¢ (I —1") defined by (7) differ by
a local term §, ;. /(1—#r). This difference is ultimately a
consequence of the local hard-core repulsion between
particles taken into account through the constraint (2) on
our basic variables.

Given the pair interactions, the above scheme allows us
to relate the average occupation numbers of an inhomo-
geneous lattice gas to the pair-correlation function of the
corresponding homogeneous system. Our main concern
in the following will be to develop the lattice-gas analog
of the freezing theory of continuous liquids [2-6]. In
other words, we wish to apply the present scheme to
first-order lattice-gas phase transitions of the order-
disorder type. Therefore, we consider a system with con-
stant site energies €, =0. As the reference state we take
the homogeneous disordered phase, whose mean occupa-
tion satisfies

A=[1+exp(—Bm)]"!, (11)
where
p=p+kyTe' (7). (12)

A possible ordered phase is described by a nontrivial
periodic solution of the structure equation (5), which now
takes the form

(n;)= [l—l-exp

—ﬁn~zc(1—z')(<n,,>—ﬁ)H*l .
e

(13)

Considering the solution of (13) with {r; )#const, which
minimizes 2 =Q,_,, we have the following condition for
two-phase coexistence:

AQ=Q({{n)})—Qn)=0. (14)

The symmetry of the ordered phase depends on the sym-
metry of the underlying lattice and on the function ¢ (1),
which is determined by the interaction potential V' (I).

It is natural to parametrize the ordered structure in
terms of mean occupation numbers {n,) referring to
suitably defined sublattices a and then to solve the corre-
sponding order-parameter equations derived from (13). A
specific example will be treated in subsequent sections.

III. ORDERING TRANSITION
IN A THREE-DIMENSIONAL LATTICE GAS

Let us focus our attention on particles distributed on a
three-dimensional simple cubic lattice of spacing a in the
presence of repulsive two-body interactions extending up
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to second neighbors, and apply the scheme described in
Sec. II to possible ordering transitions. We do not at-
tempt here to explore the complete phase diagram, but
confine ourselves to the special case where the average
occupation of lattice sites is close to 7 =71. There we ex-
pect that ordering takes place to a bcc structure with a
cubic unit cell of size 2a. The simplest set of ¢ (/) values
compatible with this transition consists of c¢(0)=c;
c(l)=c;,c, when [ connects, respectively, nearest or
next-nearest neighbors, and ¢ (1)=0, otherwise. In addi-
tion we assume ¢; <0 (i =0,1,2). The problem of relating
¢ (1) to interaction constants in the underlying lattice-gas
Hamiltonian will be deferred to Sec. IV. According to
Eq. (8), the pair-correlation function in the disordered
state is now given as

3
g(l)=1+f—(%e“"@(k)[l—ﬁ@(k)]_l . as)

where
C(k)=co—(1—n)"!
+2c,(cosak, +cosak, +cosak,)
+4c,(cosak, cosak, +cosak, cosak,
+cosak, cosak,) (16)

and the integral in (15) is taken over the first Brillouin
zone of the substrate lattice. To characterize the bcc
state, we introduce order parameters {n,), where a= 4
refers to sites forming the bce structure and a=1B to the
remaining sites of the underlying simple cubic lattice.
Obviously, the average density of our “bcc crystal” is
determined as 7y, =({n,)+3(ng))/4 and may differ
from the density of the coexisting liquid 7. Putting
n,={n,)—", the self-consistency condition (13) takes
the form

(n,)=[1+expB(e™—m)] ', (17

with Bi chosen such that the density of the “fluid” is
=1 corr

=1 [cf. Eq. (11)] and the correlation potential e’ is
given by

3, a= A

—BeX T =com,t2(c;+2c,) X
a 0 1 2 (77A+27]B) ,

a=BhB .
(18)

It turns out that the corresponding grand-potential func-
tion Q({n 4),{np)) shows a double minimum structure
for a range of parameters ¢;. It is in turn possible to find
¢; values such that these two minima, corresponding to
the disordered and the ordered phase, become equal, i.e.,
they fulfill condition (14). Simultaneously, these parame-
ters ¢; should be consistent with the actual pair-
correlation function in the fluid state at coexistence. This
will be discussed further in Sec. IV, where we investigate
an explicit interaction model.

Let us also remark that for a number of triples
(cgscy,c,) fulfilling Eq. (14), we have found that the cor-
responding maximum values of the static structure factor

2523
S(q)=1+n3[gl)—1]e'! (19)
1

fall in the narrow range S(gq, )=8.3+0.2. Here g,
denotes the position of the main peak of S(g). This is to
be compared with the “quasiuniversal” value S(q,,)=3
observed in continuous liquids at coexistence with a bcc
phase [19]. Clearly, this difference is due to an enhanced
“preordering” caused by the underlying lattice.

IV. MEAN-SPHERICAL APPROXIMATION
AND MONTE CARLO SIMULATION

In Sec. III we examined some general features of the
ordering transition regarding the c¢;’s as arbitrary nega-
tive parameters. Now we briefly discuss approximate
analytical techniques to calculate the direct correlation
function from the interaction model described above. A
simple method is the mean-spherical approximation,
which is well known in liquid structure theory [20] and
which has also been applied to lattice-gas problems
[21,22]. Setting the hard-core radius equal to the lattice
constant, we have the closure relations

g)=0, |ll<a (20)
and

c(h=—-pv(), |llZa, 21

where (20) reduces to g(0)=0, implied already in our
definition (10) of g (/). Then the only unknown quantity
we need to determine is ¢ (0). Let us now assume

Vnn for I,1' nearest neighbors

V(I—1')= {Vynn for 1,1’ next-nearest neighbors

0 otherwise .
(22)

With these assumptions, ¢ (0) is found by evaluating the
Ornstein-Zernike relation (8), setting I =0, and substitut-
ing ¢;=—BVnn and ¢, =—BVynn into (16). This leads
to a special case of the three-parameter freezing theory
discussed in Sec. III. Setting R = Vynn/ VNN = 3> We Ob-
tain parameters c¢; =cMSA(T). Under the condition of
two-phase coexistence, T =TMSA, these are explicitly
found as c,=—3.03, ¢c; =2c,=—1.97. The correspond-
ing values {7 , ) =0.629 and {np ) =0.133 obtained from
(14) imply a small discontinuity of the density at coex-
istence, 7, —7=~7X1073% Simultaneously, we obtain
the pair-correlation function g (1), which is displayed in
Fig. 1.

Next we compare these results with Monte Carlo simu-
lations, where we use L XL XL lattices up to a size
L =24a with periodic boundary conditions. For the mo-
ment we ignore the small density change at the transition
and study the structure of homogeneous phases for fixed
a=1 or (n,)+3(ng)=1. On the high-temperature
side of the transition, we start from random initial
configurations and, after thermalization, obtain the pair-
correlation function g(/). Data points averaged over
about 50 independent runs are shown in Fig. 1 for the
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FIG. 1. Pair-correlation function of the disordered phase for
R =%: open circles, results of Monte Carlo simulations for a
lattice of size L =24 and BV N =1.7 (near coexistence with the
bee structure); open triangles, MSA results for BVyy=1.97
(MSA coexistence); and solid circles, MSA results for
BVan=1.7.

case R =1 and BV N =1.7, which is close to the estimat-
ed transition temperature (see below). Note that the peak
structure in g(I) reflects short-range order where the
structure of the low-temperature bcc phase builds up lo-
cally. Obviously, a good quantitative representation of
these data is achieved through the parameters
¢; =cMSA(TMSA) given above, as seen from Fig. 1.

For low temperatures our simulations start out from an
ideal bcc structure, where the B sublattice is initially
empty. After thermalization, we obtain {(n ) as a func-
tion of temperature. Results for L =12a are plotted in
Fig. 2, where again we have used R =1. At BV (=1.78,
the values of the order parameter presented in the Figure
are stable up to 10° Monte Carlo steps per particle
(MCS). The value given for BV yn=1.72 corresponds to
10® MCS, where, however, we still observe a weak decay.
On the other hand, for BV =1.7, the bce structure is
completely molten after about 10> MCS. Also, we ob-
serve that the stable points in Fig. 2 are insensitive to
changes of the system size up to L =24a. Hence, we
roughly estimate Vyn/kpgT,.~1.73£0.05 for the transi-
tion temperature T,. Note that the temperature width of
the two-phase region at # = is expected to be less than
our uncertainty in locating 7, from the data in Fig. 2.
For the discontinuity {7 4 ) —# of the order parameter at
T,, we estimate from Fig. 2 a value in the vicinity of 0.5
to 0.4. This is to be compared with the corresponding
prediction within the MSA, which yields
(n4)—n=0.384 at T,. Thus, it appears that the param-
eters ¢;=cMSA(TMSA) are essentially consistent with
simulation results both for the pair-correlation function

presented in Fig. 1 and the discontinuity of the order pa-
rameter at T,.. We regard this as a satisfactory test of our
freezing theory on lattices.

It turns out, however, that at a given temperature, the
MSA substantially underestimates the correlations in the
disordered state. This becomes apparent from Fig. 1,
which also displays the pair correlation gMSA(I) at
BVNn=1.7. As a consequence, the MSA transition tem-
perature turns out to be substantially lower,
Van 7k TMS4=1.97. Nevertheless, the MSA does pro-
vide a useful qualitative description of the grand-
potential function and the corresponding phase diagram
in the vicinity of 7 =1 (Fig. 3). We have also investigated
the solution of the corresponding Percus-Yevick (PY)
closure relation, which, however, gives an even lower
transition temperature, Vyy /kp TEY=2.1.

So far, we have assumed R =1 in our calculations. By
varying R, both the MSA and the PY approximations
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FIG. 3. Part of the phase diagram indicating the two-phase

region near to 7 = ¢, as computed within the MSA (see text).
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predict an enhancement of 7T, as R increases, e.g.,
Van 7k TMSA=1.52 for R =0.75.

V. INTERFACIAL PROFILE

Another class of problems that is well adapted to
density-functional theory is the calculation of interfacial
profiles between a crystalline and a liquid state [2]. Previ-
ous work on spatially continuous systems is generally
based on the assumption that the order parameters, in
that case the Fourier amplitudes of the density with
respect to reciprocal-lattice vectors, are slowly varying
functions on passing through the interface. In our
present context we are naturally dealing with a local rep-
resentation. No assumption as to the width of the inter-
face relative to interatomic distances is needed at this
stage.

To be specific, we consider the ordering transition dis-
cussed in Sec. IV and examine the structure of a planar
interface between both phases. For simplicity we assume
a (0,0,1) interface perpendicular to the z axis of the cubic
substrate lattice. Let us regard the substrate lattice to be
built from lattice planes at positions z; =ka,
k=0,%x1, --- In the vicinity of the interface, the B
sites introduced in Sec. III are no longer all equivalent.
Consider a B site in the kth plane and its two nearest-
neighbor A sites. If the latter are in the same plane, the
B site is called B1. Otherwise, we call it B2. The three
sublattices 4, B1l, and B2, which have to be dis-
tinguished now, are enumerated by a=1, 2, and 3, re-
spectively, and their relative degeneracies y, are given by
Y1=v2=1, y3=2. Next, in order to parametrize the in-
terfacial profile, we introduce sublattice occupation num-
bers (n,(z;))={n,, ), which satisfy the limiting forms

(ny,), k—»—o

<na,k )— (23)

n, k—s+ow.

As before, (na ) denotes the occupation of sublattice a in
the bulk bcc phase and is given by (n;)={(n,),
(n,»=(n;)=<ng). The proper generalization of the
structure equation (17) now takes the form

(ngi)={1+exp[Bley —m)1} . (24)
Here, £} is determined by

_’}/aﬁga,k =7/ac077a,k +2(Ga,B7]B,k +Ka,BAnB,k ) ’ (25)
B

where 7, , = (na,,,k )—n,

ANk =Nak +1 T Mok —17 2N,k >

021
(Gop)=2(c;+2c,) |12 2 2], (26)
120
and
0 4c, ¢
(Kgp)= |4cy 2c; 4decy | . 27
¢, 4c, O

2525

Equations (24) together with the boundary conditions (22)
determine the order-parameter profiles across the inter-
face as well as the k-dependent density
ﬁk =2a7’a< Nk >/4

Before presenting numerical results, we first discuss a
simple variational solution, based on the ansatz

(g ) —A=(ny)—)f(z /N, (28)

where f(z)=(14+e?)~!. A is a variational parameter
which determines the width of the interface and which
for simplicity is taken independent of a. Expression (28)
is substituted into the grand potential Q({n,; ).
Minimization with respect to A gives A=2.07a and
order-parameter profiles represented by the solid lines in
Fig. 4. There we have assumed the same values for the
parameters 77 and c¢; as given in Sec. III. It is seen that
our model, which involves repulsive forces only, yields a
smooth profile extending over about 4A ~ 8 atomic layers.
This behavior is similar to results obtained by Haymet
and Oxtoby [2] within a continuum freezing theory for a
bce crystal-melt interface and to predictions by the Tem-

0.7

a)
06 r

05 ¢

(ng )

03 r

31

0.2

004 + b)

002

dQ/3¢ny )

1 1 1 1 " 1 1

-20 -10 0 10 20
k

FIG. 4. Properties of the interface between coexisting fluid
(m=1) and bcc structure: (a) mean occupation numbers of
different sublattices across the interface and (b) distribution of
30 /3{n 4, ) across the interface for the variational solution
(open squares) and after numerical iteration (solid squares).
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kin model [13].

Alternatively, we can solve numerically for {n,;).
This is achieved by an iterative procedure based on ficti-
tious dynamical equations:

aQ
a(na,k > ’

with Az chosen appropriately. Comparison of the numeri-
cal result with the variational solution in Fig. 4(a) shows
that (28) gives an excellent description of the structure of
the interface. The numerical solution leads to only minor
differences in the characteristic widths of the different
profiles {n, ;) and also to a small asymmetry in their z
derivatives. The small error in our variational solution
becomes more apparent, if we substitute it into the right-
hand side of Eq. (29). This leads, for example, to the
quantity 3Q/3{n 4, ) plotted in Fig. 4(b). Upon subse-
quent numerical iteration, that quantity decays to almost
zero after a few iteration steps.

Given the equilibrium shape of the interface, we can
also calculate the interfacial tension

(gt +A0)=Cny (1)) + At (29)

o=[Q(n ) —QmA)]/N, (30)

where N, denotes the number of bcc unit cells in the
(x,y) plane. For the profile shown in Fig. 4(a) (R =0.5),
we get Bo ~6X 1073, which is substantially smaller than
the value obtained in Ref. [2] for crystal-melt interfaces.
We interpret this difference as an effect due to the
discrete lattice which leads to a higher degree of local or-
dering in the fluid phase. Since (na, x ) turns out to vary
slowly with k& on passing through the interface, it is
reasonable to derive a continuum form of the present
theory, which is done in the Appendix.

VI. CONCLUSIONS

In this paper we formulated the lattice-gas analog of
the freezing theory for continuous classical liquids based
on density functionals. Basically, this theory uses the
static correlations in the disordered state as input and
predicts the magnitude of the order parameters and other
thermodynamic quantities associated with the crystalline
state. In applying our discrete version of the freezing
theory to ordering transitions in lattice gases, one should
note that part of the hard-core effects are already taken
into account by requiring that lattice sites be occupied at
most by one particle. This should allow us to treat the
explicit interactions, contained in the excess free energy
F.,., in a simpler way than is usually done in the corre-
sponding continuum problem. Hence we confined our-
selves to the linear approximation expressed in Eq. (7),
which could be improved but appears sufficient in the
present context. Generally, we expect that our method is
particularly suited to lattice-gas problems involving
longer-range interactions or spatial inhomogeneities. As
an explicit example, we studied a system where particles
on a simple cubic lattice interact via repulsive nearest-
neighbor and next-nearest-neighbor forces. For average
occupations in the vicinity of 7 =1, this leads to a first-
order transition from the disordered “fluid” state to a bce
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structure. By comparison with Monte Carlo simulation,
we showed that a simple parametrization of the direct
correlation function, based on the mean-spherical ap-
proximation, accounts for both the pair-correlation func-
tion in the disordered state and the discontinuity of the
order parameter at 7,. The transition temperature itself,
however, is underestimated by the MSA.

In an extension of this theory, one may consider situa-
tions away from thermodynamic equilibrium. If the den-
sity is the only variable obeying a local conservation law,
one may use the spatially varying local chemical poten-
tials u; =30 /3{n,) as driving forces in constructing ap-
propriate kinetic equations [23-25]. To illustrate how
one might proceed, let us again assume a planar interface
at equilibrium, as discussed in Sec. V. Now, after super-
cooling the system by a small amount A7, the ordered
phase tends to grow and the interface is expected to move
accordingly. Ignoring the small density change 7. —7,
we expect that equations of motion for nonconserved or-
der parameters {n,; ) of the form

31y ) /3t <30/ ny ;)

should hold. This suggests a dynamic interpretation of
the recursive formula (28). In fact, solving (28) for the
case AT+0 we find solutions of the form of stable inter-
facial profiles moving with a velocity v < AT for small
AT. Further work, however, is needed to establish an ap-
propriate description of the interfacial kinetics. This
seems an interesting problem in view of recent experi-
ments on the growth velocity of colloidal crystals [26].
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APPENDIX

We discuss here the continuum form of the theory of
Sec. V, appropriate to slowly varying order-parameter
profiles. This will enable us to give a simple expression
for the interfacial tension, in analogy to Ginzburg-
Landau theory.

Writing z;, =ka —z, we regard n, , —n,(z) as func-
tions of the continuous variable z. The grand potential
then becomes a functional of n,(z) of the form

BlQ{n,(2)} —Q(7)]

=N, [dz[ofn,(2)+on,(z)], (AD
where n;(z)=dn(z)/dz and
o(nL(2) =LK, sni(2)n}(z) . (A2)

a,B

Here the matrix K, ;5 is defined by Eq. (27). An expres-
sion for w, is readily derived and need not be given ex-
plicitly. The interfacial profiles are now determined by
the Euler-Lagrange equations
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dw, 4 Ow,
on, dz 3dn,,

=0, (A3)

subject to the appropriate boundary conditions [cf. Eq.
(23)]. As usual, in the continuous form of the theory the
quantity

dw,

—h:wo_‘_wl—zn,a B (A4)
a Ong

is locally conserved, dh /dz=0. By using the boundary

conditions for n,(z) as z— o0, we conclude that 2 =0.

Hence, we obtain the interfacial tension (5.8) in the sim-

ple form

2527

o=(BN) 'SKop [ dzn(2npz), (A5)
a,B
which is analogous to Ginzburg-Landau theory [27].
Finally, substituting our approximate variational solu-
tion
ne(z)=ny,)—n)f(z/A)
[see Eq. (28)], we obtain

0':(6BN”)'1}\,2K11,B(<’1Q>_ﬁ)(<n3>_ﬁ) . (A6)
a,B

Using bulk order parameter {n,) as given in Sec. III, we

obtain Bo ~7X 1073, in good agreement with the numeri-

cal result of Sec. V.
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