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Kramers problem in periodic potentials: Jump rate and jump lengths
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The Kramers problem in periodic potentials is solved separating the intrawell and interwell dynamics.
Both the jump rate and the probability distribution of the jump lengths are obtained by a Fourier
analysis of the decay function f (q); at high and intermediate potential barriers, in the first Brillouin
zone, f (q) essentially coincides with the energy half-width of the quasielastic peak of the dynamic stru-
ture factor. The method is applied to the Klein-Kramers dynamics; numerical results are obtained in a
wide damping range by solving the Klein-Kramers equation with cosine potential and homogeneous fric-
tion, at high (16k& T) and intermediate (6k& T) potential barriers. The jump rate exhibits the expected
turnover behavior; an increasing deviation from the exponential decay of the jump-length distribution is
found as the damping decreases. The low-friction, multiple-jump regime is quantitatively characterized.
The comparison with asymptotic analytical approximations of the Mel'nikov and Meshkov kind suggests
that finite-barrier corrections are significant even at high potential barriers, especially in the under-
damped regime.

PACS number(s): 05.40.+j, 82.20.Db, 05.20.Dd, 05.60.+w

I. INTRODUCTION

The theory of noise-activated transitions among states
of local stability is a topic of great importance in many
areas [1]. In particular, a large class of phenomena in
physics and chemical physics may be modeled on the
basis of the Brownian motion in an external potential U;
in that case the proper transport equation is a Fokker-
Planck equation (FPE) with an external force [2,3]. The
first solution to the escape problem of a classical particle,
subjected to a thermal Gaussian white noise, out of a
deep potential well was obtained by Kramers [4]. He cal-
culated the escape rate r in the two opposite limits of
high and very low friction g (spatial and energy diffusion,
respectively); in-both cases Kramers results are asymptot-
ic and become exact in the limit of a very high energy
barrier I, Kramers turnover theory was originally
developed for a metastable well with only one escape
path, in order to elucidate some points in reaction-rate
theory. Due to the relevance of his contribution the
escape-rate problem is now commonly known as the Kra-
mers problem [5,6] and the corresponding FPE is called
the Klein-Kramers equation (KKE) [2].

Substantial improvements of the Kramers theory have
been obtained only in the last decade. Several authors
[7—9] found corrections to the linear dependence of r on

in the underdamped limit, obtaining a reasonable
behavior in the turnover region, not covered by the Kra-
mers formulas. Recently, memory effects [5,10—15],
position-dependent friction [16,17], and finite-barrier
corrections, both in the spatial-difFusion regime [18—20]
and at low friction [5,21] have also attracted considerable
attention.

The largest part of the results on the Kramers problem
concerns the metastable [5,6] and bistable [5,9,22] poten-
tials, which are of primary interest in the study of chemi-

cal kinetics. In condensed-rnatter physics we find a
variety of phenomena, ranging from superionic conduc-
tion [23] and atom diffusion at crystal surfaces [24] to
Josephson-junction theory [2,6], which may be con-
veniently described by the KKE with a periodic (or tilted
periodic) potential. Particularly rich is the phenomenolo-

gy in the field of surface diffusion of classical adatoms. In
this case the surface periodic potential originates from
the underlying crystal and is in general a temperature-
dependent free energy [25,26]; thus, in high-temperature
diffusion, the barrier height may be of the same order of
magnitude as the thermal energy k~T [24,27] and then
far from the asymptotic Krarners limit. Moreover, also
the friction in the plane parallel to the surface may de-
pend periodically on the adatom position, being stronger
at the well bottoms than at the saddle points [25].

The Kramers problem in a periodic potential [28] is

qualitatively different from the escape problem out of a
metastable well mainly for two reasons.

First, the periodic potential is multistable and the es-
caped particle may be again trapped, due to the presence
of the thermal Auctuations, in any other well; this means
that jumps of a single lattice spacing or of many lattice
spacings are possible [29]. In the following, jumps longer
than a single lattice spacing will be referred to as "multi-
ple jumps" and the escape rate r. in a periodic potential
will be called the jump rate. The full solution of the Kra-
mers problem in periodic potentials must include the cal-
culation of the jump-length probability distribution
(JLPD) [28]. Evidence of multiple jumps has been recent-
ly found in the diffusion of adsorbates at crystal surfaces,
both experimentally [30] and in molecular dynamics
simulations [31]. Activation of multiple jumps is clear
evidence of low-friction diffusion [29].

Second, in the periodic case there are two equivalent
escape paths (to the left and to the right side) instead of
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the single path of the metastable well. The relationship
between the total jump rate r from a periodic well and
the escape rate r from a likewise metastable well is not
trivial. It results that r ~ r ~2r as the friction increases
from zero to infinity [28,32]; in fact, while in the spatial-
diffusion regime the Aux of escaping particles is con-
trolled by the number of escape paths, at very low fric-
tion all the particles with energy greater than the barrier
energy can escape independently of their position in the
well and of the direction of their velocity.

Up to now, the diffusion in a periodic potential has
been studied mainly from the point of view of the calcula-
tion of the diffusion coeKcient D and of some correlation
functions such as the velocity autocorrelation spectrum
and the mean-square displacement [2,33—35,29]. At high
barriers, in the jump-diffusion regime, D is simply related
to r and to the mean-square jump length ( I ) [35]:

The separation of r~ and (I ) a. llows a detailed descrip-
tion of the diffusive motion; in general, this separation is
not trivial except for the case of high friction, where only
single jumps are possible and (l ) =a, with a the lattice
spacing.

In spite of the great interest in diffusion problems in
lattice systems and of the relevant advances in the study
of the Fokker-Planck dynamics [2,29], the results for the
Kramers problem in periodic potentials are few [5]. Here
we can mention an old (and of debated paternity [36]) ex-
act calculation of the diffusion coefficient D [37,38] in the
very-high-friction limit, where the dynamics is well ac-
counted for by the simple Smoluchowski equation (SE)
[2,3,5,39] and r is simply related to D by Eq. (1.1)
[40,35], because the diffusion proceeds by single jumps
[29]. Recently Mel'nikov presented in his review paper
[6] an approximate formula for the r and the JLPD in a
periodic (really the more general tilted periodic) poten-
tial. In a different context Moro and Polimeno [41]
solved the Kramers problem in a fourfold periodic poten-
tial with cyclic boundary conditions. They were able to
calculate numerically the partial transition rates to
different wells; however, due to the cyclic boundary con-
ditions, they could not distinguish jumps which differ by
a multiple of four lattice spacings (for instance, they
could not distinguish between a triple jump to the left
and a single jump to the right).

In this paper we will develop the theoretical approach
sketched in a previous Rapid Communication [28]; the
Kramers problem will be exactly (this term will be more
precisely defined in the following) solved for a one-
dimensional periodic potential U(x) (without tilt), calcu-
lating both the jump rate r. and the JLPD. The method
can be applied to any kind of periodic potentials and also
to position-dependent friction; in this paper it will be ap-
plied to the case of a cosine potential with homogeneous
friction. Other shapes of U(x) and a position-dependent
friction will be treated in a forthcoming paper. The jurnp
rate r and the JLPD will be obtained by comparing two
expressions for the dynamic structure factor 5, . The first
expression is derived from jump-difFusion theory and it

contains r and the jurnp-length probabilities as parame-
ters; the other is obtained by numerically solving the
KKE with the matrix-continued-fraction method
(MCFM) [2,29]. The numerical results for r and for the
JLPD will be compared with analytical approximations
of the Mel'nikov and Meshkov kind [6,9,32].

The starting point of any rate theory is a clearcut sepa-
ration of time scales, the rate itself being a well-defined
quantity only if the escape events are rare [5,6]. This fact
may be expressed in different ways as a weak-noise limit
[5] or as a metastability condition [6]. In both cases the
inverse rate is requested to be much larger than a typical
time scale of the well dynamics, such as the period of the
small oscillations at the well bottom ~„,. In periodic sys-
tems the rate problem has a precise sense if the intrawell
dynamics is faster than the interwell dynamics, character-
ized by ~,h, i.e., by the time employed to cross a unit lat-
tice spacing by a particle traveling at the thermal equilib-
rium velocity. Therefore the rate condition, ~„,((~,h, is
essentially a jump condition [29] and implies E, ))k~ T;
actually the exponential dependence of the rate on E, al-
lows a precise definition of r as E, is of few k~T
(E, ~ 5k&T in the case of a cosine potential [6,29,42]).
The important point is that the Kramers problem in a
periodic potential is a kind of refined jump theory where
the entering parameters (r and jump probabilities) are
fully specified by the underlying kinetic equation, not
necessarily a FPE: in fact the jump rate problem has been
solved with the same method also in the case of the
linearized Boltzmann equation with the Bhatnagar-
Gross-Krook (BGK) collision kernel [43]. In the usual
jump theory [44] r and the JLPD .are phenomenological
parameters, often estimated by employing the transition-
state-theory rate r~sz and neglecting the possibility of
multiple jumps; this approach can lead to large errors
both in the overdamped and in the underdamped regime
[31,45].

Although multiple jumps seem to play an important
role in surface diff'usion [30,31] and in chemical-physics
problems [41], results about the JLPD are very few, the
most important being the approximate analytical solution
by Mel'nikov [6]; the phenomenological assumption of an
exponential decay of the jump probabilities [46] is not ful-
ly supported by the Fokker-Planck dynamics, in particu-
lar at low friction where the initial energy distribution of
the escaping particles deviates strongly from the equilib-
rium distribution [9,47]. A precise separation of the
low-friction multiple-jump regime from the single-jump
regime is still lacking [29].

The paper is organized as follows. In Sec. II the theory
is fully developed in the general case. In Sec. III the nu-
merical results about r and the JLPD are presented and
compared to analytical approximations for the case of
cosine potential and homogeneous friction. Both high
(E, = 16k& T) and low (E, =6k& T) barriers are treated in
detail. The conclusions are contained in Sec. IV.

II. THEORY

As stated in the Introduction, the jurnp rate r and the
JLPD are calculated by comparing two expressions for
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the dynamic structure factor. The first expression is de-
rived from jump-diffusion theory and contains r and theJ
jump probabilities as parameters; the other expression is
obtained by numerically solving the Klein-Kramers equa-
tion with the MCFM.

Consider a particle diffusing in a periodic potential
U(x) with minima in the positions . . . , —a, O, a, . . .
The particle is coupled to a heat bath by a friction q,
which, in the general case, may depend on the position x;
the time evolution of its phase-space probability distribu-
tion f (x, u, t) is ruled by the KKE

af P(x) af a 4T af
U +gx v +

ar ax m aU aU m aU

(2.1)

where F(x)= —U'(x). The dynamic structure factor
S,(q, co) is the time Fourier transform of the characteris-
tic function X, (q, t):

2, (q, t) = ( exp I iqa [i ( t) —l (0) ] I ) . (2.8)

dP (ia, t) =r g ~„IP[(l+n)a, t) P(la—, t)]
n(wo]

(2.9)

This master equation is solved with the condition of hav-
ing the particle in the lth cell at the time 0. In an even
system the probability of jumps of equal length to the
right or to the left are equal,

X, describes the motion among the sites of the discre-
tized lattice and can be obtained by solving a proper mas-
ter equation for the probability P ( la, t) of finding the
diffusing particle in the Ith cell at a certain time t. The
particle hops out of the cell with a rate r. and can
thermalize in any other cell; the probability of thermaliz-
ing in the cell around (I +n)a, with n&0, is vr„. Notice
that r. is the total jump rate; the partial rate for a jump
to the cell in (i+n)a is given by the quantity r vr„. The
evolution of P (la, t) is described by

S, (q, co) = f X, (q, t)e ' 'dt, (2.2)
7T n 7Tn (2.10)

with
therefore, having introduced the probability P„ofa jump
of length I ii I

&

X,(q, t) = (exp[iq[x (t) x(0)]] )—, (2.3) P„=~„+m (2.1 1)

where the angle brackets refer to the thermal average. X,
can be calculated from the probability density f (x, u, t)
solving the proper kinetic equation [29,43], in our case
the KKE (2.1).

Let us consider the motion of the particle from the
point of view of jump-diffusion theory, in order to get one
of the above-mentioned expressions of the dynamic struc-
ture factor. In order to separate the intracell and inter-
cell dynamics, we can split the quantity x (t) in two parts:

x (t) =al(t)+x, (t), (2.4)

(2.5)

If the dynamics inside a cell and the diffusive motion
among the lattice sites are characterized by well-
separated time scales, as happens in the case of
sufficiently high barriers, the right-hand side in Eq. (2.5)
can be factorized as

X, (q, t) =(expIiqa[l(t) —l(0)]] )

X (e pxIiq[ (xt) —x, (0)]] ) . (2.6)

At times much larger than 1/g, where q is the value
of the friction at the bottom of the potential wells, the
second factor in Eq. (2.6) relaxes to a function of q only
and X, becomes of the form

X,(q, t)=h(q)X, (q, t),
with

(2.7)

where the cell index i ( t) is integer and—a l2 & x, (t) & a l2. The same splitting is done for x (0);
therefore X, is written as

X, (q, t) = (e pIxiqa [1(t) l(0)]]expIiq[x, (t)——x, (0)] I ) .

the following expression for X, is obtained:

2, (q, t) =exp[ f (q)t], — (2.12)

where f (q) is an even periodic function of q which con-
tains the jump rate and the jump-length probabilities as
parameters:

f (q) = r g P„[1 cos(n—aq) ] .
n =1

(2.13)

Finally, from Eqs. (2.2), (2.7), and (2.12) we get an expres-
sion for the dynamic structure factor S„which results in
a simple Lorentzian form:

f (q)+a)
(2.14)

Equation (2.14) has been obtained by making a factori-
zation [see Eq. (2.6)] and a relaxation approximation [see
Eq. (2.7)]. Therefore we expect S„as given by the solu-
tion of the proper kinetic equation, to be of the form
(2.14), with f (q) periodic, if both q and co are sufficiently
small. In particular we expect the form (2.14) to give a
good description of the quasielastic peak of S, as a func-
tion of co at fixed q; the inelastic peaks, which are related
to the well dynamics and may appear in S, at cu multiple
of the small-oscillation frequency co „[48,29], are obvi-
ously not described by Eq. (2.14). Moreover we expect
Eq. (2.14) to improve its validity at large amplitudes of
the potential, because in this case the diffusive dynamics
and the well dynamics are characterized by very different
time scales. We will check the approximations leading to
Eq. (2.14) for the specific example discussed in the follow-
ing section. A third approximation has been made by
neglecting the time of flight between lattice sites with
respect to the inverse jump rate in the master equation
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(2.9); this approximation has been discussed in detail in
Ref. [42], where it has been shown that its validity im-
proves exponentially with the barrier height. In particu-
lar it results that the time of Aight is two orders of magni-
tude shorter than the inverse rate for a cosine potential
with a barrier of about 4k~T, in the spatially limited
diffusion regime.

From Eq. (2.14) f (q) can be extracted as

S,(q, 0)
f(q) = limco —1 (2.15)

o S, (q, co)

If S, is exactly a Lorentzian at every co, the limit in the
right-hand side of Eq. (2.15) is not necessary. The
Lorentzian shape implies the full width at half maximum
(F~HM) Ace(q) of S„which was considered in Refs.
[28,43], to be simply 2f (q). Of course, in general this is
not true, but, as we will see in the following section for a
cosine potential, f (q) and bee(q)/2 tend rapidly to be-
come equal as the potential barrier increases.

The jump rate r and the jump-length probabilities are
recovered by integrations [28]:

r, =—f f (.q)dq, (2.16)

f f(q)cos(naq)dq .
mr o

(2.17)

Now, if we are able to solve in some way the KKE calcu-
lating the dynamic structure factor, we can obtain the
function f (q) by making the limit specified in Eq. (2.15)
[or equivalently from b co(q)/2] and the jump rate and the
JLPD can be obtained by Eqs. (2.16) and (2.17), respec-
tively.

The most efficient numerical method to solve the KKE
is the MCFM, developed by Risken (see Ref. [2], where a
complete description of the method with many applica-
tions is given). In the periodic case the MCFM is based
on the expansion of the solution into a basis set of plane
waves for the position variable and of Hermite functions
for the velocity variable. The method allows the numeri-
cal calculation of the Green function of the KKE (i.e. , of

U(x) a mU(x)=, y(x)=
1/2

g(x), (2.18)

1/2
2~ ka T
a m

in these units the lattice spacing is 2~ and the first Bril-
louin zone in reciprocal space corresponds to ~q~

~
—,'.

The rate is obviously normalized as an inverse time. In
the following we will use these dimensionless quantities, if
not otherwise specified. Moreover, for simplicity, we will

write these variables without overline.
The expression for the dynamic structure factor re-

sults:

S, (q, co) =2N Re Gg&(k, ice)M „M&* „
p, I = —oo

(2.19)

where q = r +k with r integer, —
—,
' & k ~

—,', and

1 1M„= dx exp ——U(x) exp(irx) .
277 2

(2.20)

The coefficients M„are real in the case of even potentials.
The normalization factor X is given by

N '= f dx exp[ —U(x)] (2.21)

and the matrix Goo is expressed by a matrix continued
fraction:

the conditional probability distribution), by which the
average contained in the definition (2.3) of the charac-
teristic function X, can be computed. The details of the
numerical method for the calculation of the dynamic
structure factor S„ in the general case of position-
dependent friction, are given in [29]. Here we only report
the results. First of all, it is convenient to define some di-

mensions variables:

2m. — a F (x)X= X, FX
a ' 2' k~T

G (kz)=(zI+B IzI+I +2B [zI+21 +3B (zI+31 + . ) 'B ] 'B ] 'B ) (2.22)

The matrices I, B+, and B are given by

1r'p= dx exp( —ilx)y(x)exp(ipx),
277

= 1~'B'+~(k)= f dx exp[ —i (l+k)x]B(x)
277

X exp[i(p +k)x ],
iB ~ (k) = f dx exp[ —i (l +k)x ]B(x)2'

X exp[i(p +k)x ],
with

(2.23)

B(x)= +—F(x), B(x)= — F(x) . —1 1

Bx 2 ~x
(2.24)

For practical purposes the matrix continued fraction
(2.22) has to be truncated to a certain number of itera-
tions; obviously matrices of finite size must be used. De-
tails about the number of iterations and the size of the
matrices needed to achieve a good numerical convergence
can be found in the following section.

III. RESULTS FOR COSINE POTENTIAL
AND HOMOGENEOUS FRICTION

Throughout this section we will apply the theory de-
scribed in Sec. II to the case of cosine potential and
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homogeneous friction; in unnormalized units

2&XU(x)= —A cos (3.1)

i)(x)=i) . (3.2)

In this case the solutions of the KKE depend on two di-
mensionless parameters; a good choice is the couple (y, g)
defined by

a my=
2~ k~ T Xf, g= (3.3)

y is the normalized friction and g is related to the energy
barrier E, =23 by

E, =4gk~T . (3.4)

The matrices I, B+, and B [Eq. (2.23)] take the form

I lp pip

Bi~(k) =(p +k)o'~+ 'g(5'~+' ——5'i' ')
(3.5)

(3.6)

The parameter range that can be covered by the
MCFM is very wide: problems arise only at extremely
low friction (y & 10 ) or at very high barriers
(E, )20kiiT). The computational effort is different ac-
cording to the values of the parameters. In fact, both the
size of the matrices and the number of iterations needed
to get a good numerical convergence in the computation
of S, (q, co) depend on q, co and on the parameters y and g.
The dependence on co is weak, at least if we consider co in
the quasielastic peak. The dependence of the number of
iterations on q is not negligible. In fact, in the first Bril-
louin zone it is easier to get the convergence at high q
(around —,') than at small q. For instance, at q =

—,', g =4,
y = 10 matrices 31 X 31 and five iterations are sufhcient to
compute S, with a precision better than one part over
10; 12 iterations are necessary at q =0.01. However, the
most important dependence is on y and g. Decreasing y,
both the size and the number of iterations increase and
the same happens when increasing g. The effect of y on
the matrices' size is important in the region below the
turnover in the rate curve (y & 1); at y higher than the
turnover and g smaller than 5 it is easy to get very precise
results without cumbersome computations. At q =0.01,
g =1.5, y=10 matrices 13X13 and six iterations are
needed for a precision better than one part over 10; at
y =1 we need the same matrices but with 25 iterations
and at y=0. 1 (which is well below the turnover, as we
will see in the following) we need 190 iterations with ma-
trices 41 X41. The calculations become rather cumber-
some at y & 10; for instance, at y = 10 and g = 1.5 a
precision better than 1% is achieved with matrices
111X111and 2000 iterations. The same matrices and
iterations are sufhcient at g =4 and y = 5 X 10

Let us analyze the behavior off (q) and of b,co(q)/2 for
different values of the potential barrier. f (q) has been
extracted from the numerical S, by Eq. (2.15); b,co(q)/2
has been numerically calculated looking for the half-

c

c3 =0.25

/

/

I
f

l

I

r

l

1

l

I

1

I

I

l

I

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Flax. 1. The function f(q) (full line), defined in Eqs. (2.15),
compared with the half-width of the quasielastic peak Ace(q)/2
(dash-dotted line) at a low potential barrier, E, =k&T, and
y=1. The q range in the figure extends to the position of the
second diffraction peak.

width at half maximum of the quasielastic peak of S,.
We will see that both f (q) and b,co(q)/2 tend to the same
periodic function as g increases. In Fig. 1 the full line
represents f (q) for an intermediate value of the friction
(@=1) and for a rather low potential barrier (g =0.25,
corresponding to a barrier of

kiter).

In this case f (q) is
clearly not periodic, as b,n~(q)/2 (dash-dotted line), indi-
cating that the dynamics cannot be described, even ap-
proximately, by any discretized jump model. Moreover
the two functions are largely different at q )—,

' (i.e., out of
the first Brillouin zone). This fact means that the quasi-
elastic peak cannot be described by a simple Lorentzian,
even at rather small q; therefore the approximations lead-
ing to Eq. (2.14) are not valid. At higher barriers (g = 1,
see Fig. 2) f (q) and he@(q)/2 are periodic and practically
coincide in the range of q plotted in the figure (the max-
imum difference being of about l%%uo); in this case, in
which the barrier is of few kz T, the shape of the quasi-
elastic peak is Lorentzian (at least at co up to its half-
width) in a q range extending to several Brillouin zones.

The periodicity of f (q) can be verified at different
values of y (see Fig. 3). At y = 1 the shape off (q) is very
close to a simple cosine; from Eq. (2.13) we see that the
cosine is related to single-jump diffusion, i.e., to the case
in which P& =1 and all the other jump probabilities van-
ish. At lower y, f (q) is rather different from a cosine;
this implies that long jumps are important. These quali-
tative indications will be quantitatively analyzed in Sec.
III B.
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0.008
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A. The jump rate rj.

The jump rate r is calculated by the numerical in-
tegration of f (q), as follows from Eq. (2.16), which, in
normalized units, takes the form

r, =2I f(q)dq . (3.7)

In Fig. 4, r~ (full lines) is reported as a function of y at
E, =6k&T and 16k~ T, respectively. The jump rate r~ ex-
hibits the usual turnover between the low-friction in-
crease and the high-damping 1/y behavior. As the bar-
rier increases, the position of the maximum slowly shifts
to lower y values: at g = 1.5 the maximum is at y =0.56,
at g =4 it is at y =0.46. Moreover, the value of the rate
at the maximum, r' "', approaches the transition-state
rate rTsT [49,5],

0.002 ~osc
rTsr = exp( —4g), (3.&)

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 !.8 2 where

(3.9)

FIG. 2. The same as in Fig. 1, but with a barrier of 4k&T.
The full and the dash-dotted lines almost coincide.

In Fig. 4, rTsT is represented by the straight dotted lines;

y 0.01 x'lO '

x&0 '

0.05

0
2

xlQ "
'1.5

Q I I I I I I I I I I I I I I I I I I I I I I I I I & I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9

xlO '

0.12

0.5
0.08

3
xlQ "

0.06

0.04

Q I I I I I I I I I I I I I t I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9

0 0.25 0.5 0.75 1.25 1.5 1.75

&I&. 3. f (q) at a barrier of 8k~ T for three difFerent values of
the friction.

FICx. 4. The jump rate r~ (fu11 lines) as a function of the fric-
tion for two different potential barriers E, =6k& T (upper panel)
and E, = 16k& T (lower panel). The straight dotted lines
represent the transition-state rate rrsr [see Eq. (3.8)]; the dashed
lines are the results for r~ [see Eq. (3.16)].
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rM"= '"
exp( —4g) f w(q, A)dq,

7T 0

the function w (q, b, ) is given by

w(q, b. ) =4 sin (mq)exp[2y(q, 5)—y(0, 2b, )],
with

(3.10)

(3.1 1)

1 &md.
&p(q, h)= g erfc

m=i ~ 2
cos(2~mq) . (3.12)

The complementary error function erfc(x) is defined by

QO

erfc(x) = — exp( —u )du .v'~ x
(3.13)

6 is the dissipation for a travel from the left to the right
at the barrier top; in the case of position-dependent fric-
tion [32] 6 is given by

f q(x)+2m [ UM —U(x) ]dx,
kg T —a/2

(3.14)

where UM is the maximum of the potential; for cosine po-
tential and homogeneous friction UM = 3 and

the difference between rrsT and rj' '"' is of about 32% at
g = l. 5 and of about 13% at g =4.

Of course rTsT gives only a rough estimate of the rate
in the turnover region, outside this region the numerical
results should be compared with more sophisticated
theories. An analytical approximation to the jump rate
in a periodic potential has been obtained by Mel'nikov [6]
by reducing the KKE to an integral equation of Wiener-
Hopf type with gaussian kernel. This approximation,
which will be called rM" in the following, is valid at low
friction, essentially in the region below the turnover.
Also rM" is expressed by an integral in the first Brillouin
zone of a periodic function:

"M "jC= ——
rj

(3.19)

which is reported in Fig. 5 as a function of g for three
different values of the friction y. At every y, as expected,
C is a decreasing function of g, rM being asymptotically
correct in the limit of high barriers. In the spatial-
diffusion regime (y=10), C is not very large, being less
than 0.11 at g =1.5 and less then 3.5X10 at g =4. In
this regime the discrepancies between r. and rM have
been recently explained [19] by taking into account the
finite-barrier corrections to r ",' a very accurate analyti-
cal approximation to r is obtained by considering the
first-order term in the expansion in 1/g of those correc-
tions. In the turnover region (y= 1), C is even smaller,
whereas it becomes larger in the region below the turn-

It should be noticed that rM practically coincides with
r " for y larger than the turnover friction, because, in
this limit, the deviations of rM" from rTsT are exponen-
tially small in b, [6,9].

The expressions for rM" and r do not contain finite-
barrier corrections and therefore are exact only in the
asymptotic limit of high barriers (g~ oo ); moreover,
they are connected by the bridging expression (3.16),
which is clearly an approximation. However, rM is in

very good qualitative agreement with r (see Fig. 4); the
essential features of the rate curve, such as the position of
the maximum, are well reproduced even in the case of
rather low barriers. From the quantitative point of view,
there are some discrepancies between rj and rM; in gen-
eral rM overestimates the correct rate. Let us consider
the relative difference C between rM and r:

b, =8y&2g (3.15) 0.16

An approximation to the jump rate valid in the whole
friction range may be obtained by a multiplicative bridg-
ing procedure [5,9]. This approximation, which will be
referred to as rM, is given by

0.14

0.12

~OSC

rML"r""exp(4g) . (3.16)
0, 1

The high-friction rate r " is the well-known Kramers
formula for spatial diffusion [4], multiplied by a factor 2
because of the two escape paths and generalized in order
to take into account the possibility of a position-
dependent friction [32]:

0.08

0.06

HF oscr
2

jb

4' b

jb

2' b
exp( —4g), (3.17)

0.02

where qb and cob are the friction and the curvature at the
top of the barriers, respectively; in our case the friction is
homogeneous and cob =co„,; therefore

0
1,6 2 2.4 2.8 D.2 3,6 4 4.4 4-.8

r
V'2g

(3.18)

FIG. 5. Relative diff'erence C [see Eq. (3.19)] between rM [Eq.
(3.16)] and r~ as a function of g for three different damping re-
gimes.
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over (@=0.2). However, the smallness of C around the
turnover may be due to compensation effects introduced
by the multiplicative bridging; in the turnover region and
below, the discussion of the discrepancies between the
numerical results and the analytical approximation is
better done by comparing r and rM, i.e., by discussing
the behavior of the relative difference C ":

LF

CLF ~M j (3.20)

HALF

0.4

In Fig. 6 C" is reported as a function of y at rather low
(g =1.5) and at high (g =4) barriers. It is clearly shown
that the relative difference between the numerical results
and the analytical approximation becomes more impor-
tant in the energy-diffusion regime. For instance, C " is
larger than 0.35 at g =1.5 and y =10 and larger than
0.1 at g =4 and y = 5 X 10 . Therefore even at barriers
of the order of 20k~T the difference is not negligible.
Also at very low friction the discrepancies between the
two results decrease with g and probably they may be ex-
plained by taking into account the finite-barrier correc-
tions; however, to our knowledge, there are not analytical
calculations of those corrections for a periodic potential
in the region below the turnover. It should be pointed
out that the magnitude of the finite-barrier corrections at
very low friction depends significantly on the shape of the
potential, in particular on the shape at the barrier top [5].
For instance, the corrections should be even more impor-
tant for a potential with a "Oat" maximum, such as a po-
tential with vanishing second derivative at the position of
the maximum. On the contrary, the corrections should

B. The probability distribution of the jump lengths

The jump-length probability distribution is obtained by
the Fourier analysis of the function f (q), as follows from
Eq. (2.17). In normalized units Eq. (2.17) takes the form

4 1/2P„=——f f (q)cos(2mnq)dq . .r. oJ
(3.21)

The Wiener-Hopf method furnishes also an analytical ap-
proximation to the jump probabilities [6]. In the follow-
ing the analytically calculated jump probabilities will be
called P„. The P„are correspondingly obtained by the

be less important for a potential with a cusp. However,
the cosine potential may represent a large class of poten-
tials of interest in physical problems; different potential
shapes will be treated elsewhere [50]. In the region
around the turnover and above, C""increases; this is due
to the fact that the approximations leading to rM" are not
fulfilled; in fact, while the correct rate rj reaches a max-
imum and then decreases, r~ is monotonically increasing
with the friction and tends to rTsT [Eq. (3.8)] in the limit

p —+ oo.
Finally, we remark that in Ref. [28], the jump rate r~

has been compared with an analytical expression, of the
Mel'nikov and Meshkov kind, for the escape rate IBM out
of a symmetric bimetastable potential. Above the turn-
over r~ and rBM do not differ at all; below the turnover
there are small differences, of the order of a few percent;
as could be expected, r~ results in better agreement with
r, but the whole discussion of the differences between r
and r~ can be essentially repeated also for the difference
between rj and rBM.
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FICx. 6. Relative diff'erence C"" [see Eq. (3.20)] between rl"
[Eqs. (3.10)—(3.13)] and r, as a function of y at low (g = 1.5) and
high (g =4) potential barriers. The underdamped regime is
considered.

FIG. 7. The jump-length probability distribution (JLPD) at
g = 1.5 and y =0.03. The black dots correspond to the numeri-
cally calculated probabilities P„[see Eq. (3.21)], the open circles
to the analytical approximation P„[see Eq. (3.22)].
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FIG. 8. The same as in Fig. 7, but at different y and g. FIG. 10. The same as in Fig. 7, but at different y and g.

Fourier analysis of the function w(q, b, ), defined in Eq.
(3.11);

P„=—2 J w (q, 6 )cos(2vrnq)dq f w (q, b )dq
0 0

(3.22)

The results on the JLPD are reported in Figs. 7—21. In
Figs. 7 —10 the behavior of ln(P„) (black dots) and of the
analytical approximation (open circles) is reported up to
rather high n, in order to study also the asymptotic
behavior of the probabilities. Four couples (y, g) are
selected in the region below the turnover, where multiple

jumps become important, as will be clear in the following.
The important parameter which determines the decay of
the P„ is the dissipation 6; as expected, long-jump proba-
bilities decrease as 6 increases. In any case, the numeri-
cal results are consistent with an asymptotic exponential
decay of the P„ for large n. However, at y =0.03 and for
both values of g, deviations from the exponentiality be-
come evident up to rather large n. The decay of short-
jump probabilities is faster. The deviations from ex-
ponentiality are less important at y =0.1.

—10

o
0
~ 0

0

I I I i I I I i I t I

2 4 6 8 10 12 14 16 18

p ~
p ~

p ~

0
I i I i I s I i I i I

2 4 6 8 10 12 14

FIG. 9. The same as in Fig. 7, but at different y and g.

FIG. 11. The JLPD for two different couples (y, g) corre-

sponding to the same dissipation 6 [see Eq. (3.15)]. Black dots:

y =
—,0, g =4. Squares: y =(—,)', g = —.
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FIG. 12. The single-jump probability Pi (fu11 lines) as a func-
tion of y at a barrier of 6k& T. The dashed lines are the analyti-
cal approximation P, [see Eq. (3.22)]. In the lower panel the
underdamped regime is magnified.

FIG. 13. The same as in Fig. 12, but at a potential barrier of
16k~ T.

A qualitative explanation of the behavior of the P„
may be given by considering the energy distribution of
the escaping particles out of the cell of departure. At low
friction, the energy distribution deviates strongly from
the equilibrium Boltzmann distribution [47,9], being
shifted to lower energies; the average energy decreases
proportionally to 6'~ [9]. The particles with less energy
are more probably captured in the first wells; after having
passed some wells (whose number depends on how strong
the deviations from equilibrium in the initial distribution
were) most of the low-energy particles have been cap-
tured and the distribution of the traveling particles be-
comes an equilibrium distribution. Beyond this point, the
decay of the P„becomes exponential, as happens in the
case of higher friction, where the energy distribution of
the escaping particles is already an equilibrium distribu-
tion out of the well of departure.

At small n, the analytical approximation (3.22) is in
good agreement with the P„,especially in the case of high
g and small dissipation, i.e., at very low friction. In fact,
the hypotheses leading to Eq. (3.22) are essentially two
[6]: first of all, the energy barrier E, Ik~ T is assumed to
be very large; then, the dissipation on the unit cell 5 must
be much lower than the energy barrier. Therefore we ex-

0.9
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FIG. 14. Single-jump probability P& (fu11 lines) as a function
of g at a friction y=0. 2. The dashed line is the analytical ap-
proximation P, [see Eq. (3.22)].
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FIG. 15. Double-jump probability P2 (full lines) as a function
of y at a barrier of 6k&T. The dashed lines are the analytical
approximation PP [see Eq. (3.22)]. In the lower panel the un-

derdamped regime is magnified.

FIG. 16. The same as in Fig. 15, but at a potential barrier of
16k~ T.

pect the P„ to be an accurate approximation in the case
of g ~ ~ and y~0. In any case, the behavior of the P„
shows more pronounced deviations from the exponential
decay. The correct asymptotic slope for large n is never
reproduced. The probabilities of very long jumps are
overestimated by the analytical approximation; this fact
is apparent in Fig. 9, where the less favorable case with
respect to the validity of Eq. (3.22) is shown.

According to Eq. (3.22) and to the definition of w [see
Eqs. (3.11) and (3.12)], the JLPD should be determined by
the unique parameter A. In general this assumption is
not correct; different couples of (y, g) corresponding to
the same 6 lead to different JLPD's. This is shown in
Fig. 11, where we report the numerically calculated
JLPD for two couples (y, g) both corresponding to the
same dissipation 6: y =

—,', g =4 (black dots) and

y = ( —,', )', g =—', (squares). The asymptotic decay is

clearly different and the case of lower friction and higher
barrier shows more pronounced deviations from ex-
ponentiality, being in better agreement with the P„of
Fig. 10, which correspond to both couples (y, g).

The best agreement between the P„and the P„ is
found in the case of short jumps. In Figs. 12—l7 the
behavior of the probabilities of single and double jumps is
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FIG. 17. Double-jump probability P2 (full lines) as a function

of g at a friction @=0.2. The dashed line is the analytical ap-
proximation P2 [see Eq. (3.22)].
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when it is possible to obtain an unambiguous definition of
the rate, our solution is exact.

In this paper, the theory has been applied to a simple
cosine potential with homogeneous friction. A wide
range of frictions and potential barriers has been covered,
the computational effort becoming really heavy only at
g &5 and y(10

Our numerical method does not contain free parame-
ters [7], does not employ arbitrary bridging procedures in
the turnover region [7,6], it is not an asymptotic result
in the very high barrier limit [7,6, 14], and it allows a
quantitative determination of the finite-barrier correc-
tions, whose importance has been recently recognized
[12,19—21].

%'e have compared the numerical r. and JLPD with
analytical approximations of the Mel'nikov and Meshkov
kind [9]; to our knowledge, this approach is the only one
which has been extended to the periodic case [6]. The
Hamiltonian approach [14], successfully tested in a re-
cent paper [51] in the case of a metastable well, has not
yet been extended to periodic potentials. In our case, the
agreement between the numerical results and the analyti-
cal approximation is rather good, most of the differences
being due to finite-barrier corrections (at least for r ). It
has been found that the corrections are particularly im-
portant in the underdamped regime.

The method of solution of the Kramers problem
developed in this paper may be generalized in several
directions. Of course, different shapes of the periodic po-

tential as well as position-dependent friction can be treat-
ed. Moreover, different kinetic equations, such as the
linearized Boltzmann equation with BGK collision kernel
[43], can be considered; the method may be applied also
to the generalized Langevin equation with exponential
memory friction [34].

Finally, we remark that low friction [24,31], small bar-
riers [27], and position-dependent damping [25] may be
of great interest in diffusion of atoms at crystal surfaces.
In a recent molecular dynamics simulation of the motion
of a single CO molecule adsorbed on Ni(111), Dobbs and
Doren [31]found clear evidence of long (multiple) jumps.
The authors estimated an energy barrier of 6k~ T
(g = l. 5) and a velocity relaxation time corresponding to
y =5X10 at a temperature of 200 K. They extracted
from the simulation the JLPD; the single-jump probabili-
ty is smaller than 40% and the mean-square jump length
is of about 10a . They found that almost all jumps occur
on straight lines; therefore a one-dimensional model for
the JLPD may be meaningful. The KKE with cosine po-
tential gives, at those g and y, a mean-square jump length
of the same order; however, the simulation does not show
the typical KKE deviations from the exponential decay
of the jump probabilities.
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