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In this paper we solve the replica Ornstein-Zernike (ROZ) equations in the hypernetted-chain
(HNC), Percus- Yevick (PY), and reference Percus- Yevick (RPY) approximations for partly quenched
systems. The ROZ equations, which apply to the general class of partly quenched systems, are here
applied to a class of models for porous media. These models involve two species of particles: an
annealed or equilibrated species, which is used to model the fluid phase, and a quenched or frozen
species, whose excluded-volume interactions constitute the matrix in which the fluid is adsorbed.
We study two models for the quenched species of particles: a hard-sphere matrix, for which the
fluid-fluid, matrix-matrix, and matrix-fluid sphere diameters o.ii, a.oo, and o.oi are additive, and a
matri~ of randomly overlapping particles (which still interact with the fiuid particle as hard spheres)
that gives a "random" matrix with interconnected pore structure. For the random-matrix case
we study a ratio oo&/cr&z of 2.5, which is a demanding one for the theories. The HNC and RPY
results represent significant improvements over the PY result when compared with the Monte Carlo
simulations we have generated for this study, with the HNC result yielding the best results overall
among those studied. A phenomenological percolating-fluid approximation is also found to be of
comparable accuracy to the HNC results over a significant range of matrix and fluid densities. In
the hard-sphere matrix case, the RPY is the best of the theories that we have considered.

PACS number(s): 61.20.Gy, 61.20.Ja, 47.55.Mh

I. INTRODUCTION

This paper is part of an ongoing project [1] of extend-
ing the methods of liquid-state physics (integral equa-
tions, renormalized perturbation theory, etc.) to apply
to continuum systems with quenched disorder. Such sys-
tems include engineering composites, porous materials,
gels, amorphous materials, spin glasses, etc. Many such
materials can be regarded as being constructed from suc-
cessively quenched layers, each layer being added to those
already in place and allowed to equilibrate, then frozen
in place before the next layer is added. The simplest
such system consists of just two layers or fractions, one
quenched and one annealed. The basic idea is that the
particles in the quenched fraction constitute a disordered
matrix through which the particles in the annealed frac-
tion move.

A simple mixture of this kind, in which quenched and
annealed particles possess only excluded-volume interac-
tions, has already been studied as a model for the prop-
erties of Quid adsorbed in a microporous material in pa-
pers by Madden and Glandt [2], Madden [3], and Fanti,
Glandt, and Madden [4]. The quenched species of im-
mobile particles in the mixtures considered in [2] are as-
sumed to have been formed by a quench from an equi-
librium distribution; that is, their distribution represents
a realization of an equilibrium ensemble equilibrated in
the absence of the mobile (annealed) particles. In [2]

Madden and Glandt present both Mayer expansions and
integral equations for the properties of such systems. In
[3] Madden generalized the formalism of [2] to the case in
which the quenched distribution is essentially arbitrary
and in [4], Fanti, Glandt, and Madden obtained numeri-
cal results in the Percus-Yevick (PY) approximation.

In earlier work [5], two of the authors (J.G. and G.S.)
pointed out that the Ornstein-Zernike equations given in
[3] (and in the earlier [2]) are not the exact Ornstein-
Zernike equations associated with the cluster expansions
therein. Instead they correspond to an approximation in
which a certain class of terms is neglected in the clus-
ter expansion of the direct correlation function for an-
nealed particles. We shall refer to this as the Madden-
Glandt (MG) approximation. In Refs. [1] and [5], a
set of coupled integral equations were developed that are
exactly satisfied by the correlation functions of a partly
quenched system. We call these equations the replica
Ornstein-Zernike (ROZ) equations. Several closures to
these equations were suggested and discussed in [1] and
[5], including some that seem especially appropriate for
the porous media models already described. The MG ap-
proximation, in particular, proves to be a natural one in
the context of the ROZ approach as well as an interaction
site approach [6].

The purpose of this paper is to test the results of var-
ious closures of the ROZ equations against extensive nu-
merical simulations of these models of porous media. We
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want to contribute to understanding the limits of valid-
ity of various closures to the ROZ equations; this is a
necessary part of a systematic theory of partly quenched
media.

This paper is organized as follows. In Sec. II we state
the ROZ equations, which are the Ornstein-Zernike equa-
tions for partly quenched systems. We motivate these
equations, but do not repeat the derivation given in [1]
and [5] here. In Sec. III we develop a number of clo-
sure conditions for these equations. We emphasize those
expected to be of special value for systems involving a
molecular liquid adsorbed in a microporous medium. In
Sec. IV we discuss numerical algorithms which we have
found effective at solving the ROZ equations even at high
densities of matrix and jor fluid particles. In Sec. V we
discuss the procedure for studying adsorbed-fluid prob-
lems by Monte Carlo simulation. We discuss in detail the
results of our Monte Carlo simulations, comparing them
to numerical solution of the various approximate closures
of the ROZ equations developed earlier. We also include
a technical Appendix.

II. THE REPLICA ORNSTEIN-ZERNIKE
EQUATIONS

In this section we state the replica Ornstein-Zernike
(ROZ) equations. Several natural closures for them will
be presented in Sec. III.

The ROZ equations are a set of coupled integral
equations satisfied by the correlation functions of a
partly quenched system. In Refs. [1] and [5] we sketch
the derivation of these equations by mapping a partly
quenched system onto a limiting case of an equilibrium
system (called the replicated system) and considering the
standard Ornstein-Zernike equations for the latter. We
give further details and discussion in Ref. [7]. We will
not repeat the derivation here, but will instead discuss
the intuitive meaning of these equations. We consider
here a two-species system in which the species-0 parti-
cles are quenched or frozen in place and the species-1
particles are annealed or allowed to equilibrate. We will
refer to the species-0 particles as matrix particles and
species-1 particles as fluid particles. Species-1, i.e., fluid
particles are taken to have hard-sphere interactions of
range oil with each other and hard-sphere interactions
of range olo with the matrix particles. There are two
natural choices for the potential vpp(r) between matrix
particles. Taking the matrix particles to be hard spheres
is one of them. The simplest case is one of additive diam-
eters, 2o.lo ——o 11 + o.oo. If the matrix particles are large,
this gives a model for a porous medium composed of con-
solidated grains. (If the matrix particles are smaller, im-
penetrable particles, this gives a model for the short-time
response of a suspension. ) On the other hand, taking the
matrix particles to be spheres that freely overlap each
other, but are still impenetrable to fluid particles, gives
a well-studied porous-media model with a highly nontriv-
ial pore structure (the case of randomly centered spheres,
which we shall refer to as the random-matrix case). We
will consider examples of both choices: one in which the
matrix particles are randomly centered, and one in which

cii(12) = c,(12) + cb(12). (2.2)

We can then write the exact ROZ equations as

~00 = coo+ pocoo hoo, (2.3)

h 10 = Clo + po Clo hoo + pl Cc hlo &
(2.4)

~11 = Cll + Po Clo 3 h01 + Pl Cc (3 611 + Pl Cb Ac&

(2.5)

h =c +pic h (2 6)

where, by symmetry, cpi = cip and hpi = hip. Here the
symbol denotes a convolution.

An alternative equation for hpi that ean be derived
from (2.2)-(2.6) is

hol ——col + Pocoo hol + Pl col S h, . (2 7)

When cpp, epi, cii, c„and the (p;) are prescribed, (2.2)—
(2.6) are a closed set of equations for hpp, hpi, hii, and
hc.

they have a hard-sphere repulsion with range o.ll and
&00 —&10 —&11~

In discussing the correlation functions of partly
quenched media, it is natural to separate the fluid-fluid
total correlation function hii (r) into two parts as follows:

hii(12) = h, (12) + hb(12). (2.1)

Here the functions h, (r) and hb(r), which we call the
connected and blocked functions, respectively, are the
natural basis set both for stating the ROZ equations
and for discussing their closures. These functions are
defined in terms of subsets of the Mayer graphs con-
tributing to hii(r) [2, 3, 8]. The graphs in hii(r) such
that the two root points are connected by at least one
path of bonds and vertices that includes only pi vertices
contribute to h, (r). The remainder of the graphs con-
tribute to hb(r). The connected function h, (r) accounts
for correlations between a pair of fluid particles that are
transmitted through successive layers of fluid particles;
the blocked function hb(r) accounts for correlations be-
tween fluid particles "blocked" or separated from each
other by matrix particles. (We note that even though
the matrix particles are immobile, they tend to order the
fluid particles on either side of them and thus are capa-
ble of mediating correlations "through" a layer of rna-
trix particles. ) At very low matrix porosities, i.e. , very
high densities of matrix particles, the volume accessible
to fluid particles is divided into small cavities, each to-
tally surrounded by matrix particles. In this limit, the
function h, (r) describes correlations between fluid par-
ticles in the same cavity; the function hb(r) describes
correlations between particles in difFerent cavities. We
make a similar separation of the direct correlation func-
tion,
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III. APPROXIMATE CLOSURES FOR
POROUS-MEDIA MODELS

cb(12) = exp[ppO ]
—1 —ppO (3.1)

where 0'(l2) is the "overlap volume" integral

(12) = d3 fip(13) fpi(32) (3.2)

As noted in [1] there is a class of approximate clo-
sures of the ROZ equations that imply the approxima-
tion cb(r) = 0, which was used explicitly in [1—4], and
which we call the Madden-Glandt (MG) approximation.
This class of closures includes the Percus-Yevick (PY)
closure, c,~ = f,~y;~, where f,z is the Mayer function,
and the cavity function y,~ is defined by the equation
g,, = (1+f,,)y,,

We shall begin our discussion with the special case of a
random matri~ in which the Huid particles interact with
the matrix but not with each other. Thus opp = o ii = 0,
oip g 0. This is the quenched-annealed version of the
Widom-Rowlinson model [9]. It is also a simple off-lattice
version of the Lorentz gas [10]. Because of the choice of
interactions in this model, one can exactly solve for the
correlation functions. One finds immediately that hpp =
cpp = 0. The only Mayer graphs that contribute to the
function cii(r) are those diagrams containing two fluid-
particle root points and two or more quenched-particle
field points, each joined directly to each of the two root
points whereas cip(r) is just fip(r). Using techniques
that are standard in Mayer theory, one can sum this class
of diagrams to give

We now generalize this model by including a hard-
sphere excluded-volume interaction between the Huid
particles, with the other interactions as before, so that it
remains a random-matrix model. The resulting model is
no longer exactly solvable. However, in the pq —+ 0 limit,
(3.1) is still exact, as is the HNC approximation. This
limit describes the case in which any finite number (for
example, two) fluid particles are in a matrix of infinite
extent, and it represents a natural reference system for
the porous-medium problem.

Physically, the contribution (3.1) of cb to hi i represents
a reinforcement or cooperative efFect of the overlapping
inclusions that make up the porous matrix. When o.pq is
significantly larger than o~~, such reinforcement is very
substantial for the intermediate to high densities of ma-
trix inclusions that characterize many microporous ma-
terials. At low density p~ of adsorbed Quid, this contribu-
tion to hii from cb is the dominant one. At higher fluid
densities, the picb h, of (2.5) turns out to be a compet-
ing term that tends to cancel the ct, term more and more
completely as p~ increases, so that the PY approximation
(in which both the cb and the picb C3 h, contributions are
neglected) is quite good when pi is substantial, even for
~01 + ~11~

When the matrix consists of particles that are hard
spheres with respect to one another (with opp + alii
2crip) the pi —+ 0 limit remains a useful one, which de-
scribes an equilibrium system of hard spheres of diameter
capp plus a finite number of "tracer" hard-sphere particles
of diameter o~q and zero density pq. This reference sys-
tem is particularly simple when o.qq ——o.pp since it is then
just a one-species hard-sphere system at density pp.

We have also c,(r) = 0 and

h, (r) = 0. (3.3)

hlo = clp flp )

while (2.5), when (3.4) is used, reduces to

hii = cii+ pofio foi (3.5)

From (3.1) and (3.5), the hypernetted-chain (HNC) clo-
sure,

c,~ = Pv;z + h,~
—ln g,~—, (3.6)

is trivially satisfied for i = 0, 1 and j = 0, 1. It is inter-
esting that this version of the Widom-Rowlison model,
in which one of the species is quenched, can be exactly
treated so simply, while the fully equilibrated Widom-
Rowlinson mixture cannot be [9].

There are no annealed paths at all in this model because
the bond fii(r) = 0. Thus cii = cb and hii ——hb and the
entire contribution to cii(r) comes from graphs ignored
by the MG approximation. Equations (2.4) and (2.7)
reduce easily to hqp ——cqp. But from its Mayer expansion,
cip is just fip, so

A. HNC-type approximations

We first consider approximations of the HNC type.
There are two reasons for expecting these to be accu-
rate for describing matrices formed by freely overlapping
particles. The first is that the HNC is exact for nonin-
teracting Quid particles and also for interacting Huid par-
ticles in the low Huid-density limit. The second reason
for expecting the HNC to have a wide range of validity
for calculating the correlation functions of a Huid in a
random matrix is that this same approximation has been
found to be quite accurate in calculating the material
correlation functions for this system [11]. The material
correlation functions are the standard quantities used to
incorporate the statistics of porous media into the cal-
culations of their bulk properties, for example their per-
meability to Huid How. These functions are basically the
correlation functions of two tracer particles immersed in
a many-body system of the inclusions which make up the
matrix. Because tracer particles by definition are at "zero
density, " the diagram summation leading to Eq. (3.1) is
exact also for these functions. Here again this "zero-
density" approximation is found to have a wide range of
validity [11].

The reference HNC closure has the general form

c,~(r) = h,z(r) —in[1+ h,~(r)] —Pv, ~(r) + b,~(r) (3.7)
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for (i, j) = (0, 1) or (1,1). Here v,z is the pairwise po-
tential interaction between species i and j particles. The
functions (b,~) are called bridge functions; they are to be
approximated by using the bridge functions from a sim-
pler, reference system. If this is taken to be the ideal gas

I

the bridge function is simply zero, and therefore the ref-
erence HNC reduces to the standard HNC approach. For
the matrix models considered here, these can be rewrit-
ten

—1 —q,, (12) lf 7 KOij
exp [

—Pv;z(r) + p,z(12) + b,z(r)] —1 —p,z(12)
(3.S)

where (i,j) is (1,0) or (1, 1), and p,~(r) = h,~(r) —c,~(r).
Also

d] $ —d/p —dpp ~

This gives

(3.11)

cb(12) = exp [pb(12) + bb(r)] —1 —pb(12). (3.9)
Cll fllgll + doo) (3.12)

This latter equation represents the HNC closure that
comes out of the ROZ equations, in which (before one
takes the replica limit) cb represents correlation between
two noninteracting replicas of the same fluid particle.

For the random matrix, the reference HNC is simply
the ordinary HNC, as already noted. For the hard-sphere
matrix, the bridge functions bpl and bll can be obtained
from the equilibrium hard-sphere mixture. The function
bb(r), which is used in the closure for cb(r), can be ap-
proximated in various ways. However, in our study here
only the simple HNC approximation is numerically in-
vestigated for the hard-sphere matrix.

B. PY-type approximations

We now consider closures of reference Percus-Yevick
(RPY) type. We have in general for this family of closures

clp floglp + doo ~ (3.13)

COO fppgop (3.14)

d3«f»(») f»(14)pp(3) po(4) fpl (32)fpl(42)

The tail function for a mixture of hard spheres can be
calculated from the bridge function for this system, using
the standard approximations for this purpose.

Previous simulations of this system show the usual
PY approximation to be accurate through moderate fluid
densities. We can partly justify this result through dia-
grammatic analysis of the correlation functions. The two
lowest-order terms in density that appear in the expan-
sion of cb (and dP1) are

=f, y, +d, , (3.10)
(3.15)

where f,~ is the Mayer function and y,~ is the cavity func-
tion. Also, the functions (d,~ (r)) are called the tail func-
tions; they are to be approximated using the tail func-
tions from a simpler model. The function dll contains all
the terms in cb because, by definition, it contains all the
terms in cll that lack a Mayer bond between the roots
and all contributions to cb, by definition, have this prop-
erty. We can thus incorporate the cooperative effects of
the contribution (3.1) by approximating dll by cb, and
using for the latter the reference system value (3.1). For
many applications, it is then also natural to let dpi' = dg~
and dpp = dpp as well, where the superscript R refers to
the reference system obtained by letting pl —+ 0. This
yields a version of the reference PY (RPY) approximation
that seems appropriate to quenched-annealed mixtures.
For this reference system, the RPY gives the result (3.1)
for the function cb(r) in the random-matrix case for all
P1 ~

Let us now consider the RPY for a hard-particle matrix
composed of particles similar in size to those of the fluid
with oqp ——o.~~

——o.pp. The reference system for this
model is identical to the equilibrium hard-sphere fluid.
To see this, note that the two annealed tracer particles
do not disturb the statistics of the quenched particles
they are immersed in. Also these particles are here taken
to be identical in size to quenched particles. Thus, we
have

and

d3 d4 flp(13) flp(14) po(3) fpp(34) po(4) fol(32) fol(42).

(3.16)

The same near cancellation of these terms that helps ac-
count for the accuracy of the PY approximation for hard
spheres at moderate densities [6] will also tend to operate
in favor of the PY approximation.

By construction, the reference PY becomes increas-
ingly accurate for low fluid-particle density. But one
also expects the RPY approximation to perform better
at higher fluid-particle density than the PY approxima-
tion. One sees readily by analysis of the Mayer series in
the RPY approximation that the terms given by (3.15)
and (3.16) are correctly included in cb.

Finally we should mention a phenomenological approx-
imation which we shall denote on the generalized perco-
lation theory (GPT). If one considers h, to represent the
correlation between particles inside a pore in the matrix,
one might argue that for the fluid percolating through
the pores, h, should be calculated from the total corre-
lation function of an equilibrium fluid at an equivalent
density equal to the average density of the fluid inside a
pore. This can be estimated from
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pi = pl/H

with

H = exp —47I poooi/3

(3.17)

(3.18)

These expressions can be rewritten in a form more suit-
able for numerical computation by using the functions

This approximation will prove useful for moderate to high
fluid densities.

IV. NUMERICAL SOLUTION OF
INTEGRAL EQUATIONS

I' p(k, ) = k, p p(k, ),

H p(k, ) = k, h p(k, ),

C p(k, ) = k, c p(k, )

(4.3)

In this section we give an algorithm for solving the
ROZ equations for fluid in a quenched matrix, even at
very high matrix density and/or fluid-particle density.

As a first step for the solution of the set of equations
(2.3)—(2.7) these must be east into a form suitable for
numerical computation. It is convenient to express all
equations in terms of short-range and well-behaved func-
tions. A natural choice is the linear combination

(4.1)

Solving Eqs. (2.3)—(2.7) in terms of the direct correlation
functions c~p(r) and using Eq. (4.1), one gets

Here the tilde atop a quantity denotes its Fourier trans-
form. Also, we adopt the notation that capitalized quan-
tities (like C, e.g. ) are related to the corresponding un-
capitalized quantities (like c) by a factor of k and cor-
respondingly for the functions in r space. We calcu-
late Fourier transforms on a discrete mesh of N points
with spacing Ak, where we choose Ak42: = vr/K. This
guarantees orthogonality between backward and forward
Fourier transforms. We employ discretized Fourier trans-
forms which can be written, e.g. ,

c10 1 + hoo po
10 Clo + 7cl 1 Pl + cb Pl

cll + ciO po + ciO h00 po pl (cll cb )ll Cll + 2
(1 —cii pi + cb pi)

~ ~

F p(k, ) =4vrdr) I' p(r, )sin

~ ~

I' p(r, ) = ) I' p(k, )sin

(4.4)

cb + clo po + clo h00 p
b = —cb+

(1 —Cll pl + Cb pl)

(4.2)

The equations (4.2) then become

Cio(k ) y(k, )

kj Cll(kj) Pl + Cb(kj) pl

kj Cl1(kj) + PQC10(kj ) X(kj) kj pl Cll(kj) Cb(kj)
F„(k,) =-C„(k,)+ '

k, —Cii(k, ) pi + Cb(k, ) pi

I'b(k, ) = Cb(k, ) +-
kzCb(k, ) + P0Cio(k, ) y(ks)

Cll(kj) Pl + Cb(kj ) pl

-2

(4 5)

r —I'10(r) if r ( o—10
1o( ) = CZ;f„) (4.6)

with y(k~) = k~ + poH00(k~).
We need to supplement the Ornstein-Zernike equations

(4.2) by providing additional relations, usually called clo-
sure relations, between the (F,s) and the (C,~). We will
specialize the closures developed in Sec. III to the sys-
tems studied here.

(1) Reference Percus Yevick closures. If-the reference
system is chosen to be an ideal gas, the standard or naive
PY approximation results. If the reference system of this
paper is used to evaluate (3.10) the results, expressed in
the notation of this section, are

( )
r —Fii(r) if r (—cTii

Cll if r ) crii. (4 7)

The Qrst condition in each of the two braces in (4.6)
and (4.7), the "short-range" condition, is exact; it sim-

ply enforces the excluded-volume constraints on H10(r)
and Hii(r). The second condition of each pair sets the
functions C10(r), C10(r), respectively, equal to their val-
ues in the reference system. Setting both reference func-
tions equal to zero gives the standard PY approximation,
to which the MG approximation reduces for hard-sphere
systems.

In the random-matrix case, the reference system de-
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o(r) = [ooi 4o()ir'+ 1'sr ]3
(4.8)

In the case of a hard-sphere matrix, the RPY approx-
imation can be expressed as follows:

r.p-(~) if' «.p
rdoo(r) ifr & o. p,

where (n, P) is (1,0) or (1, 1), and

T[yoo(T) + cpo(r)] if r & o 11
rcop(r) if r ) crii,

(4.9)

fined by the p —+ 0 limit yields CM(r) = 0 and Cii(r) =
rcb(r) with cb(r) given by (3.1). For hard-sphere poten-
tials one obtains

c.p(k, ) = c.'p(k, )+) c.p,„r.p(k, ) —rop(k, ),

where

~ p; l =D p(li —ll) —D pU+l)

(4.14)

(4.15)

C-p(r) = F[r-p(r)]
where F[ ] stands for any direct functional relation
(PY, HNC, ...).

(3) Once Fourier transformed, both C p and I' p, one
can perform a first-order Taylor-series expansion around
the initial estimate (which we will denote by a zero su-

perscript)

(4 ") and
where ceo(r) aild yap(r) are pure hard-sphere quantities
that can be obtained by solving the Ornstein-Zernike
equation using as input the Verlet-Weis parametriza-
tion of the radial distribution function [12] and the
Henderson-Grundke parametrization [13] of y(r)
exp[Pu(r)]g(r).

(2) Reference hypernetted-chain closure. If the refer-
ence system is chosen to be an ideal gas, the standard or
naive HNC approximation results. If the reference sys-
tem of this paper is used to evaluate the general reference
HNC scheme (3.7) the result is

C p(r) = r —I' p(r—) ifr &o p
rexp[I' p(r)/r] —r —I' p(r) ifr & cr p,

(4.11)

where (n, P) is (1,0) or (1, 1), and

(4.17)

D~p(i) = —) ! ! cos(vril). (4.16)
1 . /OC p(r) l

The derivative in this latter expression depends on the
closure to be used. For PY-type equations we have

(
OC p(r)l —1 if r & cr p
cjr p(r)g 0 if r & o~p!

and OCb/Orb = 0. The HNC closure yields

p() q () (4.18)(Br p(r)
Expression (4.16) above can easily be evaluated by means
of standard fast Fourier transforms.

(4) The problem now reduces to solving Eqs. (4.13)
with Eq. (4.14) inserted to obtain the new I' p. This can
be achieved by means of the Newton-Raphson method

Cb(r) = r exp [rb(r)/r] —r —rb(r). (4.12) ar p(kj) = —) J ,, C p(kl) (4.19)
At low densities and for PY-type approximations these

equations can be solved by simple substitution meth-
ods (convergence might be speeded up by using Broyles
mixing iterates procedure). However, at higher densities
of Huid and/or matrix particles, and in particular when
solving the HNC closure, a more sophisticated numerical
procedure is required. The method we have used here
belongs to the family of hybrid Newton-Raphson proce-
dures developed by Gillan [14], and it is in fact an ex-
tension of previous work by Labik, Malijevsky and Vonka
[15] and by two of the authors in collaboration with Hpye
[16]. The procedure can be sketched as follows:

(1) Set the difFerence functions

C'io(k&) = rio(k&) —Fip(kj),
c 11(kj) —rll(kj ) Fll(kj))
4b(kj) = rb(kj) —Fb(kj)

(4.13)

equal to zero in a large domain of k space defined by
kz, j = 1, . . . , M. Here by F~p we denote the algebraic
expressions on the right-hand side of Eqs. (4.5).

(2) Given a first estimate of the I'
p (a PY solution for

an equilibrium mixture or even for two noninteracting
fluids will sufBce in this respect) one gets C p(r) from
the desired closure relation

dr p(kj)
JaPyv;jl np Pv jl - pv;jl ~

dC„(kj)
(4.20)

Explicit expressions for the Jacobian elements derived
from the Eqs. (4.5) can be found in the Appendix.

(5) Once a converged solution from the Ne~ton-
Raphson is obtained for I' p(kj) (in the range j
1, . . . , M one performs a direct iteration on Eqs. (4.5)
for j = M+ j, , N and the result is combined with the
output of the Newton-Raphson method to yield a com-
plete new estimate for I' p(r) and one iterates from step
2 until convergence is achieved. We assume convergence
when

- 2) mew (&) roid(&) & 10—&

2

for all values of nP.

P»it

and a new Newton-Raphson estimate is obtained every
time Eq. (4.19) is iterated by

r "+&' ——r"&+ aI' &.

The 3acobian elements in Eq. (4.19) are given by
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TABLE I. Technical details of the simulation conditions for the random obstacle system
(crop = O, crip = 2.5, crii = 1).

po
0.05
0.01
0.01
0.02
0.02

Np
333
80
20
38

380

pl
0.0257 + 0.0005
0.0258 + 0.0001
0.4180 + 0.0020
0.1900 + 0.0020
0.0124 + 0.0001

Ni
171
206
836
361
235

No. of moves
1.5 x 10b

2.0x 10
7.0x 10
2.0x10
1.3x 10

No. of matrix configurations
30
40
40
30
40

The MG equations follow automatically from the ROZ
equations when the PY approximation is made, and they
do not pose special problems. We note in passing that
contrary to what was found in previous works on equa-
tions of Ornstein-Zernike type [16, 17], here the Jacobian
matrix must unavoidably be recomputed each iteration,
otherwise the system becomes unstable.

V. NUMERICAL RESULTS

In this section we present the results of solving the
ROZ equations, in the various approximations of Sec.
III, for the two models of quenched media studied in this
paper. We compare these to detailed simulations of these
models, which supplement earlier simulation results by
Fanti, Glandt, and Madden [4].

The simulations were performed in a cubic box of fixed
volume V with periodic boundary conditions using the
Monte Carlo method. We choose to use a grand canon-
ical Monte Carlo (GCMC) sampling technique [18, 19]
which is convenient when the volume accessible to the
fluid particles consists of disjoint or porously connected
areas. The detailed procedure was as follows. First a
matrix configuration is constructed. For the quenched
hard-sphere case matrix configurations consisted of in-
dependent equilibrium configurations taken from a tra-
jectory in phase space sampled from the grand canoni-
cal ensemble at an average density pp = Np/V (Np ls
the average number of matrix particles). Diff'erent con-
figurations were typically separated by 2000 attempted
displacements per particle. In the random-matrix case
a matrix configuration was obtained by simply inserting
Np possibly overlapping spheres in the volume V. Next,
an arbitrary number of fluid particles was inserted into
the matrix by "brute force, " i.e. , by randomly choosing a
position in the volume and assuring that the inserted par-
ticle did not overlap with either the matrix or the other
fluid particles. The fluid system was then equilibrated at
an average density pi = Ni/V (Ni is the average number
of Huid particles) using GCMC sampling and an equilib-
rium trajectory in phase space was generated along which

Attempts of displacement, creation, and destruction
of a particle were performed in cycles. The decisions for
acceptance of the three types of steps were determined
from the conditions [19]

creation:

displacement: e +U~" ) (,
e&U/kT )(~&+ &

zU
' )

AU kTdestruction: 1 + e++/ ~

Ng

where AU is the change in energy involved in the pro-
posed step (note that AU = oo if there is overlap
between two particles, and AU = 0 if there is not),
z = exp(p, /kT)/As is the activity (p, is the chemical po-
tential, k is the Boltzmann constant, T is temperature, A
is the de Broglie wavelength), Ni is the number of Huid
particles prior to the attempted move, and g is a random
number in the interval (0, 1).

As GCMC are performed at a fixed chemical potential
and the latter is unknown for the present system, p was
varied until the desired Huid density was obtained. For
the densities considered in the present study an insertion
method based on a randomly selected point turned out to
be sufficient. At higher densities a cavity-biased insertion
procedure could be advantageously applied [20—22].

We first discuss the results for fluid in a matrix made
of freely overlapping obstacles. (For brevity we will term

the fluid-Huid pair distribution function was calculated.
For specified densities pp and pi, the number of matrix
particles Ko was generally chosen so that the number of
fluid particles was at least of the order of 200. The precise
characteristics of the various Mc runs are summarized in
Tables I and II. The GCMC method involves three types
of moves:

(1) displacement of a particle,
(2) destruction of a particle,
(3) creation of a particle at a random position in the

medium.

TABLE II. Technical details of the simulation conditions for the quenched hard-sphere system
(~oo = ~io = ~ii = 1).

po
0.30
0.609

No
256
507

pi
0.299 + 0.003

0.0996

Ni
256
83

No. of moves
1.6x 10

0.15x 10

No. of matrix configurations
12
30
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1.5
I
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FIG. 1. Fluid-fluid pair-distribution function gii(r) for a
random-matrix system at pe = 0.01 (high porosity, H = 0.52)
for high and low fluid density (upper and lower figures, respec-
tively). Solid circles denote GCMC results. In this model
o.qq ——1, o.yp = 2.5, and oop = 0. The HNC, RPY, and GPT
approximations are versions introduced by Given and Stell in
Refs. [1], [5], and [7] in the context of their ROZ equations
and described here in the text. The PY approximation was
first used for this system in [4].

FIG. 3. Fluid-fluid pair-distribution function gii(r) for a
random-matrix system at po = 0.02 (low porosity, 8 = 0.27)
for high and low fluid density (upper and lower figures, re-
spectively). Solid circles denote GCMC results. In this model
o xx

——1, o.io = 2.5, and ooo = 0. Notation as in Fig. 1.
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FIG. 2. FFluid-matrix distribution function for the
random-matrix system. Densities, geometric parameters, and
notation as in Fig. l.

FIG, 4. F'luid-matrix distribution function for the
random-matrix system. Densities, geometric parameters, and
notation as in Fig. 3.
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HNC

RPY
PY
GPT

~ GCMC

p = 0.05
p = 0.0257

1

FIG. 5. Fluid-fluid distri-
bution function for a system of
extremely high matrix density
(po ——0.05, H = 0.03) and low
fluid density (pi = 0.0257). No-
tation as in Fig. 1.

~ 0 ~ ~ ~ ~

0
1

l

1.5 2.5 3.5

this a "random matrix"; our model for a consolidated ma-
trix composed of nonoverlapping particles will be called
a "hard-sphere matrix. ") The random-matrix model was
studied by Fanti„Glandt, and Madden [4] using Monte
Carlo simulation for fairly low densities of both Huid par-
ticles and matrix particles. In this regime they found
that the PY approximation gives good agreement with
simulation. We have reproduced the results they report.
We have also obtained simulation results at other com-
binations of fluid and matrix densities for this system
which we present here. The ratio between fluid-fluid and
fluid-matnx interaction ranges is ooi/crii = 2.5 in our
random-matrix comparisons. The ratio was chosen to be

considerably greater than one in order to bring out the
eKect of the ct, contribution to cubi in the ROZ equations.
This contribution, which is missing in the PY approxi-
mation, increases rapidly with increasing trip/0 ii . Fluid-
Huid and Quid-matrix correlation functions are found in

Figs. 1—4 for high and low matrix porosity and high and
low fluid densities. The porosity of the matrix is de-
scribed by Henry's constant, defined by Eq. (3.18), which
accounts for the amount of space available in the matrix
for insertion of a fluid particle.

Among the approximations we have considered for the
random-matrix case, the HNC appears to be best in an
overall way over a considerable range of conditions. How-

Cb

p1
- 0.02

p1 =0.002
p, = 0.0002

4
C9

2

FIG. 6. Difference function
hii (r) —hii (r) for a random-
matrix system at pp = 0.05 (ex-
tremely low porosity, H = 0.03)
and for various fluid densities,
pi. The solid line denotes cb(r)
obtained from Eq. (3.1).

0—
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ever, it leaves room for substantial improvement as our
Figs. 1—5 make clear.

At high fluid densities (exemplified by the state with
pi ——0.418 and po ——0.01) the HNC and GPT approxi-
mations are very similar, yielding g~q and gyo values that
are closer to simulation results at and near the contact
value of r = 1 than the RPY and PY values, which are
very similar to each other for this state and are too low
near contact (see Figs. 1 and 2). These trends persist for
gii(r) at a state of moderate matrix density and mod-
erate fluid density (po = 0.02, pi = 0.19), at which all
the approximations for gm(r) became rather similar, and
rather poor (see Figs. 3 and 4). At the high and mod-
erate fluid densities, the too-low contact values of the
PY and RPY results are partly oEset by their somewhat
more faithful treatment of the bowl of the first minimum
of gii and gio (see Figs. 1—4).

At lower fluid densities and moderate matrix densi-
ties (exemplified by the results shown for po ——0.02,
pi = 0.0124 and po = 0.01, pi = 0.0257) the RPY and
PY results are quite diferent from one another, with the
RPY results satisfactory and the PY results poor. For
these states of moderate matrix densitx and low fluid
density, the RPY and HNC results are nearly coincident.
The HNC result for gq~ is almost exact, except for g~~ val-
ues at and near contact that are slightly high (see Figs.
1—4).

For a system with an extremely high matrix density
(pz = 0.05 at pz = 0.0257), the GPT is relatively more
accurate than any of the other approximations studied
here, but it is not of high quantitative accuracy.

The PY results are in general not quantitatively satis-
factory for the rather large cryp/0ii ratio of 2.5 we con-
sider here. They are at their best in the moderate to
high fluid density range with moderate matrix density,
for which the PY and RPY results are nearly indistin-
guishable. A simple argument illurninates the relation
between the PY and RPY closures for the random-matrix
model. The two terms which are present in the ROZ
equation (2.5) for hii(r), but absent in the correspond-
ing equation (20) of Madden and Glandt [4], are

ROZ MG
h, ] ~

—hi] = Cb + P1Cb (3 hc~ (5 1)

where the (3 denotes a convolution. Explicit numerical
evaluation of this difFerence for a moderate-density ma-
trix formed by randomly overlapping particles shows that
the second term is much smaller than the first at low
fluid densities, while at moderate fluid densities the two
terms approximately cancel (see Fig. 6). Also, at low
Quid densities, the term cb dominates all the other terms
on the right-hand side of (2.5). This explains why the
"ideal-gas" result (3.1) gives a good approximation for
this quantity at low Quid density.

Finally we consider the model of a Quid adsorbed in a
hard-particle matri~. Distribution functions for this sys-
tera in the simple equal-diameter case are shown in Figs.
7 and 8 for high and low porosities. Overall, the RPY, as
formulated by Eqs. (3.12)—(3.14) for nonpenetrable ma-
trices, proves to be the best approximation among those
we considered. The PY approximation for gii(r) is ade-
quate at low to moderate fluid and matrix densities (the

3—
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~ GCMC

p, =0.6
p = 0.1

1

HNC
RPY
PY

~ GCMC

2

Ql

p = 0.3
p) = 0.3

FIG. 7. Fluid-Buid distribution function for the quenched
hard-sphere matrix system. In this model o ~q ——ohio = (Too ——

1 and pe = 0.6, pi = 0.1 (upper figure) and po = 0.3, pi = 0.3
(lower figure). Notation as in Fig. 1.

HNC
RPY
PY

~ GCMC

p =06
p = 0.1

1

HNC———RPY
PY

e GCMC

p = 0.3
p =03

1

I

FIG. 8. Fluid-matrix distribution function for the
quenched hard-sphere matrix system. Densities, geometric
parameters, and notation as in Fig. 7.
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latter exemplified by our pp = pl = 0.3 state), but for
our high matrix-density state (pp

——0.6, pl ——0.1) it is
not quantitatively accurate. The PY gl0(r) results are
too low near contact, r = 1, where they underestimate
glp(r) considerably. The RPY results substantially cor-
rect these deficiencies. In particular, they give higher
g(r) values near contact, but still not high enough to
match the simulation results at contact. The HNC re-
sults for gll(r) and glp(r) are in general not as good as
the RPY results, except for the gpl(r) result at pp = 0.6,
pl ——0.1, which is our best result for glp(r) at this high
matrix-density state.
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APPENDIX: COMPONENTS OF THE JACOBIAN
MATRIX FOR THE ROZ EQUATIONS

For simplicity we define

dI' p(k, )
dC„(k, )

(Al)

and thus the only required elements of the Jacobian can
be computed from the following expressions:
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Clo (k + Hoo Po) Pl
1012 2)(k-C» pl+ Cb pl)

2 Clo Po (k + Hoo Po)
2)

(k —Cl 1 pl + Cb pl)
Cll k' pl + 3 Cb k pl + 2 Clppo pl (k + Hop pp)

1111=
3 )
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(k —Cll pl + Cb pl)
2 [Cb k + Clo po (k + Hpp pp) j pl1211— 3

(k Cll pl + Cb pl)

(A2)

Cll k pl Cb k pl 2 Clppo pl(k + Hoppo)
+1212— —1

(k —Cll pl + Cb pl)

inserted in Eq. (Al) and this in Eq. (4.20). Note that in PY-type closures, the fact that dCb/dI'b = 0 means that
all elements J1212.bt = bye and all the remaining Jacobian terms in which the replica interaction is involved simply
vanish. This implies that the NR strategy has to be applied only to the functions with subscripts 10 and 11 since
these are completely independent of I'b and Cb and will remain fixed through the iteration procedure.
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