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Bright-dark solitary-wave solutions of a multidimensional nonlinear Schrodinger equation
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An intrafield symbiotic form of the bright and the dark solitons, termed a symbion, is found in the
framework of the Hartree approximation for a multidimensional nonlinear Schrodinger equation. Alge-
braically, the symbion can be expressed by the product of the two fields; its eigenvalue and stationary
field distribution are determined analytically in a self-consistent fashion. The error due to the approxi-
mation is analyzed.

PACS number(s): 42.50.Rh, 02.60.Lj, 42.60.Jf, 42.6S.Jx

As is well known, the canonical (1+1)-dimensional
nonlinear Schrodinger equation (NLSE) has two kinds of
soliton solutions: bright and dark solitons [1—3]. The
former can exist for the case that ~d,~„&&0, while the
latter can exist for ~d,~„&& 0, where ~d, and ~„,are, respec-
tively, the dispersion and the cubic nonlinear coeKcients.
For the (2+ 1)-dimensional NLSE, in addition to the two
terms, efFects due to the diFraction (tcdt) are incorporated
as an additional term. Thus, depending on the sign com-
bination of the three terms, there exist three cases: case
(1) tcdttcd, &0,tcdttc»&0; case (2) tcdttcd, &0, tcdttt»&0; and
case (3) tcdttcd, &0. Bright and dark stationary fields can
be supported in cases (1) and (2), respectively [4]. Here,
for the (2+ 1) dimension the term "bright" or "dark" is
used in space and time. For the last case [case (3)) the
following questions arise: Does the case provide any sta-
tionary form of solitary waves'? If so, how is it expressed
algebraically'? In this Brief Report we derive a solitary-
wave solution for the case using a Hartree approximation
of the multidimensional NLSE. Initially, this approach
was applied to many-electron systems in quantum
mechanics [5]. In recent years, it has been found so use-
ful for obtaining stationary modes in optics [6—8] and
mesoscopic quantum mechanics [9,10]. The particular
solution we derive is a symbiotic form of the bright and
the dark solitons; along one transverse dimension (x) the
field profile has a bright form that is expressed by the
hyperbolic-secant function, while along another trans-
verse dimension (t) it has a dark (black) form that is ex-
pressed by the hyperbolic-tangent function. Generaliza-
tion is made to the D-dimensional symbiotic form of a
(D+1)-dimensional NLSE (D=3,4, . . . ). We find that
for arbitrary dimension D a bright-dark symbion can be
derived as a self-consistent solution of the D-dimensional
Hartree approximation. To estimate the accuracy of the
approximation, error analysis is performed through
direct substitution of the self-consistent solution into the
relevant NLSE.

We first consider a (2+1)-dimensional NLSE that be-
longs to case (3):

and x and t are the two transverse axes (e.g. , x and t
represent, respectively, space and time), all of which are
scaled appropriately (ttdt= —,', ttd, = —

—,', tt»=1).
As an ansatz of a stationary solution of Eq. (1) we set

q(z; x, t ) =f(x )g (t )exp(ipz ), (2)

,'[(d.'f)g fd,'g]+(—Ifl'Igl'——p)fg =o . (3)

Multiplying this by g* and integrating the product from
t = —~ to ~, we obtain an integrodifferential equation

with

,'d.'f +(yf If I'+ ,'of p)f—=0,—— (4)

where f (bright) and g (dark) are shape functions for the
x and t axes, respectively [f(0)WO, lim~

~

„f(x)=0,
g(0) =0, and lim~,

~

d, g(t ) =0], and p is the eigenvalue,
which should be real. Below we shall examine whether
the bright-dark symbion, i.e., an eigensolution, which
meets all the requirements on the asymptotic behavior of
the functions and on the eigenvalue, is obtainable analyti-
cally as a stationary solution of Eq. (1). Since no analyti-
cal method for obtaining the exact solution of the sym-
bion is available, we must use an approximate approach.
Among some candidates we find that the Hartree approx-
imation (the self-consistent-field approximation) [5] is ap-
plicable to the present problem. This method was initial-
ly developed by Hartree as a solution method for many-
electron problems that were encountered in quantum
mechanics of atoms. Subsequently, it was refined by
Fock and Slater to what we call the Hartree-Fock-Slater
approximation in solid-state physics [11]. In recent
years, this approach has been found so useful for obtain-
ing stationary modes in optics [6—8] as well as wave func-
tions of an electron in low-dimensional mesoscopic sys-
tems such as quantum wires [9] and boxes [10].

To determine the three unknowns (P,f,g) using the
Hartree procedure, first we substitute Eq. (2) into Eq. (1):

iq, + —,'(B„q—t), q)+lql q=0, J Ig I'dt, (5b)

where q is the complex amplitude that represents an en-
velope of a relevant wave field, z is the longitudinal axis,

where the asterisk denotes complex conjugate.
Similarly, multiplying Eq. (3) by f* and integrating the
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product from x = —~ to ~, we obtain

—
—,'d, g+(y Igl —

—,'5 —P)g=0,

(7a)

(7b)

(8a)

with the eigenvalue

p= —,'(yt +&g ),
and

g (t ) = tanh(Qys t ),
with the eigenvalue

(8b)

(9a)

p —
y 15

Here, to render the solution of Eq. (2) self-consistent,
Eqs. (8b) and (9b) must be coincident.

Substitution of Eqs. (8a) and (9a) into Eqs. (7) and (5),
respectively, and doing the integrations yield

(9b)

y~=1, 5~=0, (10a)

y, =- f If I'dx f If I'«,
&, = I Id fl d j Ifl'd

Because Eqs. (4) and (6) are the canonical one-
dimensional NLSE's, they allow, respectively, the bright
and the dark soliton solutions [1—3]:

f(x ) =sech( Qy&x ),

should be elucidated. Below we estimate the error E that
arises due to the approximation by directly substituting
the solution into the left-hand side of Eq. (3). After sim-

p e algebra it can be reduced to a compact form

E(x, t)=f(—' —f')g(1 — ') (12)

(13)

where y is an additional transverse dimension. Only re-
cently, numerical integrations of the simila t'i ar equation to
t is ave been performed to investigate spatiotemporal
dynamics of a self-focusing ultrashort pulse in a normally
dispersive medium [12,13].

Assum'ssuming the ansatz of a stationary solution of E . (13)
in the form

u ion o q.

the magnitude of which is shown in Fig. 1(b). The max-
imum of IEI is obtainable analytically; we find that
maxIE I

=0.128 at (x, t ) =(0,+0.807). If the solution we
haveave derived were exact, one would find that E(x t =0

~ ~

7

over the entire region. Otherwise, the error comes from
the separation-of-variable ansatz of Eq. (2) and the subse-
quent averaging algebra of Eqs. (4) and (6). Similar dis-
cussion will be applicable to Eq. (16) that follows.

In what follows we shall extend the approach present-
ed above to higher-dimensional NLSE's. Besides the
(2+ 1)-dimensional NLSE given by Eq. (1), such a physi-
cal system as described by the (3+1)-dimensional NLSE
has recently been addressed [12,13]:

iq, + —,'(B„q+t) q
—B,q)+ Iql q=0,

—2 g —1

g 3 ~ g (lob)
q(z; x,y, t ) =f(x )g(y)h (t )exp(ipz ), (14)

From Eqs. 8b), (9b), and (10) we finally obtain a self-
consistent eigensolution:

after the same procedure as taken in the (2+ 1) dimen-
sion, we finally arrive at the self-consistent solution

f(x ) =sechx, g (t ) =tanh(Q —', t ),
with

—1

2

(1 la)

(1 lb)

f(x ) =sech( Q —'x )

g(x ) =sech(Q —', y ),
h(t) =tanh( —', t),

(15a)

(15b)

(15c)
The result of Eq. (11a) with Eq. (2) indicates that the in-
tensity profile of the total field Iql exhibits a symbiotic
orm of the bright (f) and the dark (g) solitons. A

bird' s-eye view of the intensity of the symbion,
I q (x, t ) I

= (fg ), is plotted in Fig. 1(a).
Because the self-consistent solution, Eq. (11), has been

derived through the approximation, the inclusion of error

—2 (15d)

11
A comparison of these results with those present d

' E .
( ) shows that the confinement of the field gets weaker
( arger variance of the field profile and smaller eigenvalue
wit increasing the number of transverse dimensions.
The local error that is involved is written as

1. 0 0. 13 Q(x, y, t )=fgh [ s —2(f2+g~+ h )+(fgh ) ] (16)
(b)

We find analytically that max
I
E

I

=0. 153 at
(x, t)=(0 0 +,y, =(,0, 0.857), which is slightly larger than that
in the (2+ 1)-dimensional case.

In general, for the (D + 1)-dimensional NLSE

iq, + —,'(t)„' +t)' +. . . +t)'„—a')q+ Iql'q =0 (17)

FIG. 1. Bird' s-Bird' s-eye plots of (a) the intensity (fg) [Eq. (1 la);
Eqs. (18b) and (18c) with D =2] and (b) the error distribution
I& x, t)l [Eq. (12)] of the two-dimensional (D=2) bright-dark
symbion. maxlEI =0.128 at (x, t)=(0, +0.807). The frame is
chosen to be lx I 10, I

t
I
~ 10.

we find that a D-dimensional symbion is possible; its
eigensolution is given by

q(z;xi, x2, . . . , xD i, t )

=f i x, )fz(X2) .fD, (xD, )fD(t)exp(ipz),
(18a)
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f (x )=sech[( —', )' ' xJ]

for j=1,2, . . . , D —j. ,

f (t ) =tanh[( —')' " t ]

P=(—')( —') (5 —D)

(18b)

(18c)

(18d)

tq, +-,'(a'. +a'. + . . +a'. —a', )q —~q~'q=o. (19)

Comparing this with Eq. (17), one may expect to obtain a
symbion in the form of Eq. (18a), but the components be-
ing interchanged by

f (x )=tanh(a x ) for j=1,2, . . . , D —1,
fD(t ) =sech(aDt ),

(20a)

(20b)

which exhibit a dual form with Eqs. (18b) and (18c).
Here a (j= 1,2, . . . , D) represents a variance (a recipro-
cal spot size) to be determined in a self-consistent fashion,
if a self-consistent value exists. Through the analysis,
however, we have verified that no self-consistent eigenval-
ue is derivable for any dimension, indicating that Eq. (19)
has no symbiotic solution at least in the framework of the
Hartree approximation. This result is in marked contrast
with that found for Eq. (17).

Finally, the possibility of experimentally observing evi-
dence for the bright-dark symbion given in general by Eq.
(18) should be mentioned. Aside from D ~4, for D=2,
and 3, the most promising physical system to observe it

for D =2, 3,4, . . . ; for the globally defined coordinate in
real space and time, the value of D will be restricted to 2
and 3, whereas for such locally defined coordinate sys-
tems as employed in many-particle systems [5,11] or in a
phase space, no restriction will be placed on the upper
limit of D. For the symbion with arbitrary dimension,
such as those for D =2 and 3, which have been presented
above, the error due to the Hartree approximation can be
estimated as well in an analytical fashion. The results
will be detailed elsewhere.

For lack of the exact solution being available, one can-
not evaluate exactly the inhuence of the error on accura-
cy of the eigenvalue P. However, we can infer the eff'ect

through application of the Hartree method (ptt, max~E~)
to the canonical bright-field problem for which very ac-
curate variational solution (P„) is available [14]. The re-
sults are summarized as follows: (D,P„,PH, max

~
E

~ )

=(2,0. 191,0.222, 0. 111), (3,0.0424,0.0741,0.259), and
(4,0,0,0.296), which suggest that the accuracy of the Har-
tree method is reasonable. Here the point that gives
max ~E

~

has been the origin (the center of field), irrespec-
tive of the dimension.

In addition, we consider the (D+ 1)-dimensional NLSE
with negative (self-defocusing) nonlinearity:

will be the focused-laser-pulse propagation in a Kerr-law
optical medium. Requirements for the medium are the
good transparency at least in the vicinity of the center
wavelength of a laser, the fast response of the nonlineari-
ty, and the high damage threshold against radiation.
With these in mind, we would recommend the use of
high-index glass or a highly nonlinear organic material
such as 2,4-hexadyne- 1, 6-diol (PTS), and 4 (N, N-
dimethylamino)-3-acetamidonitrobenzene (DAN). As
found from Eqs. (11) and (15), the symbion is bright in
space (x,y) and dark in time (t). Practically, the strict
realization of the latter is impossible since infinite energy
is required for realizing infinite background of the hyper-
bolic tangent profile. However, this difBculty will not be
crucial because through numerical simulations it was
found that the dark soliton can be maintained even in a
finite background provided that the width of the back-
ground pulse is large enough to ignore the effect of
dispersion [15,16]. Another issue we should mention
here is the stability problem of the symbion, which may
be anticipated particularly for a higher dimension. This
problem is beyond the scope of this paper, and will be
elucidated elsewhere.

Recently, bright-dark solitary-wave pairs were report-
ed for the case of nonlinear interaction of two optical
waves, which result from the cross-phase modulation (the
intermode coupling) [17—21) or the stimulated Raman
scattering and loss [22]. In these configurations, two op-
tical fields at different polarizations, modes, or wave-
lengths are incident simultaneously at the nonlinear
medium, indicating that the interfield coupling is neces-
sary to observe the pairs. Evidently, the situation is
essentially different from the symbion we have found here
where only a single optical field propagates through the
nonlinear medium.

In conclusion, we have obtained an intrafield symbiotic
form of the bright and the dark solitons using a Hartree
approximation for a multidimensional NLSE. The error
due to the approximation has been analyzed. The results
presented herein may have relevance in diverse areas of
science where wave evolution is described by the multidi-
mensional NLSE that includes both space and time. Fi-
nally, we would address that the present report is open
ended. One of several interesting open theoretical ques-
tions is whether the symbion is stable during propaga-
tion. More detailed theoretical and experimental investi-
gations should be under way and will be reported else-
where.
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