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Counterexample to some shape equations for axisymmetric vesicles
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Three di8erent shape equations for axisymmetric vesicles have been derived from the same
spontaneous-curvature model in literature. The validity of the equations has been examined by
means of a rigorous analytical solution for axisymmetric vesicles. A counterexample is given to
show the invalidity of tvro of the equations.

PACS number(s): 87.10.+e, 82.65.—i, 68.15.+e

Recently, Hu and Ou-Yang [1] have pointed out that
three different shape equations for axisymmetric vesicles
have been derived within the &amework of the same Hel-
frich spontaneous-curvature model [2], in which the bend-
ing energy I"p is expressed as

Eg ——
2 A: cq + c2 —cp dA+ K c~c2dA,

where k, K, cq, c2, and cp are the bending rigidity,
Gaussian-curvature modulus, two principal curvatures,
and the spontaneous curvature, respectively. The shape
equation of the axisymmetric vesicles is determined by
minimizing Eg for constant volume V and total area A.
In practice, we can incorporate these constraints by La-
grange multipliers Ap and A. The shape equation is ob-
tained &om

8(Fb + AA + APV) = 0,

where b denotes the variant with respect to the shape of
the vesicle. The three different shape equations for the
axisymmetric vesicles have been reported by Deuling and
Helfrich (DH) [3], Seifert, Berndl, and Lipowsky (SBL)
[4], and Hu and Ou-Yang (HO) [1], and result from the
different interpretations of the above variation. Hu and
Ou- Yang [1] have carefully shown the reason why two of
the equations (the DH and the SBL equations) are in-
correct; these two equations were obtained from the er-
roneous calculus of variations by using a parameter (the
radius or the arc length of the vesicles). They [1] have
also given two examples, a Clifford torus [5] and a cylin-
der, to show the difference between the DH and the SBL
equations, and the HO equation, which has been derived
from the general shape equation [6],

Ap —2AH + k(2H + cp) (2H —2K —cpH)

the constraints of constant area and volume of the vesi-
cles, Ap = p —p; is the osmotic pressure difference be-
tween outer and inner media, and A is the tensile stress.
Since the two given examples in Ref. [1] are somewhat
special in their topology, some researchers in this 6.eld,
who use the DH or the SBL equations, may still think
that the three shape equations predict the same shapes
having smooth surfaces [7].

In this Brief Report we show a more general and sig-
nificant example for the demonstration of the difference
between the DH and the SBL equations, and the HO
equation as well as of the invalidity of the two equa-
tions, because the two equations are widespread in lit-
erature [3,4]. For this purpose, we give an obvious and
comprehensible counterexample to the DH and the SBL
equations by using a rigorous analytical solution of the
HO equation, which has been briefly reported to explain
the human red-blood-cell (RBC) shape [8]. Prior to this
counterexample, we briefly describe the three shape equa-
tions, the origin of the invalidity of the two equations,
and the rigorous solution to the HO equation.

In the early stage of the theoretical investigation of
an axisymmetric vesicle, efforts have been made to ex-
plain the shape of RBC's, which possess a well-known
biconcave-discoid shape under normal physiological con-
ditions. Since the axisymmetry reduces the complexity of
the shape equations, only equilibrium shapes of axisym-
metric vesicles have been extensively calculated with nu-
merical methods so far [3,4]. In general, the shape equa-
tion derived from Eq. (1) is the nonlinear fourth-order
ordinary differential equation. If we introduce the angle
@ made by the surface tangent and the plane perpendic-
ular to the axisymmetric axis (z axis) as shown in Fig. 1,
the order of the equation can be further reduced. Once
@(p) is known, we can obtain the contour z(p) by a simple
integration

+2kV H = 0, (3)
z(p) —z(0) = tang(p')dp', (4)

where H and K are the mean and the Gaussian curva-
tures, respectively, and V' is the Laplace-Beltrami oper-
ator. The Lagrange multipliers Ap and A take account of

where p is the distance from the z axis.
We note that three different equations for axisymmet-

ric vesicles have been derived from different variational
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where p is the equatorial radius of an axisymmet-
ric vesicle and I is the Lagrange function. After the
parametrization of the vesicle shape, L is determined
from Eq, (5). The minimal solutions to the axisymmetric
vesicles are given by the DH shape equation [3], which is
obtained from the Euler-Lagrange equation

pB pc
BL d OI
cj@ dp B(dg/dp)

= 0.

FIG. 1. Cross section of an axisymmetric vesicle described
by Eq. (16) for co ( 0. Only one quadrant is shown. There
is rotational symmetry around the z axis and refiection sym-
metry at the p axis.

methods on the basis of the same Helfrich spontaneous-
curvature model [2]. The three ways to obtain the shape
equations are as follows.

(i) Equation (2) is changed to an action form by using
p as a parameter,

Pc

Eg+ AA+ ApV = 27rk L! Q(p), , p! dp, (5)
o & "P )

(ii) The SBL shape equation [4] is derived in a way
similar to (i) except for the parameter in the action form,
which is the arc length of the contour 8.

(iii) The HO shape equation [1] is obtained by sim-

ply substituting the mean and the Gaussian curvatures
of an axisymmetric vesicle into the general shape equa-
tion [Eq. (3)], which describes the shape of the vesicle
at mechanical equilibrium, and which has been derived
from the first variation of I"b + AA+ LpV by using gen-
eral rules of difI'erential geometry and imposing the closed
condition of the surface of the vesicle only [6].

The DH [3], the SBL [4], and the HO [1] shape equa-
tions of g(p) are

cos
(d2@ l
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respectively. We change the parameter s to p in Eq. (8)
for the sake of comparison. Hu and Ou- Yang have shown
that these three equations are degenerate for a spherical
vesicle, while the DH equation is not identical to the SBL
and the HO equations in case of a cylindrical vesicle, and
that a Cliff'ord torus is a solution for all the equations,
but the constraints on Ap, A, and co are different [1].

Obviously, these three equations are different from
each other in general. The difference is due to the
diferent minimization procedure of the general action
[Eq. (2)]. In case of the HO approach, they have utilized
the general shape equation in Eq. (3). This equation
describes the equilibrium shape of a vesicle. The HO

I

equation can be obtained by only substituting the mean
and the Gaussian curvatures of an axisymmetric vesi-
cle. In this procedure, they first make minimization and
then the specific parametrization of the shape. On the
other hand, in the DH and the SBL approaches, they first
make the parametrization of the shape and then mini-
mization. This procedure leaves some free parameters
which, in general, depend on a shape such as p for ex-
ample. These free parameters are not correctly variated
in DH nor in SBL Hamiltonians.

We have already shown that the HO shape equation
has a rigorous analytical solution,

g = arcsin[p(a ln p + 5)], (10)
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where a and b are constants determined by the shape
equation and a vesicle size, respectively [8]. First, second,
and third difFerentiation of vP with respect to p are

p~ = exp[ b/o].

This modifies Eq. (10) to

and

d@ 1 (sin g +a
dp cos@ ( p )'

pcosg '
d2@ sin vP f sin @ +o +
dp2 coss@ ( p )

(12)

vP = arcsin[apin(p/p~)]. (16)

n = (—sin@(p) cosP, —sing(p) sing, cosg(p)), (17)

For c ( 0, the solution represents a circular biconcave
discoid, the shape of the RBC, as illustrated in Fig. 1 [8].
A more detailed analysis [9] gives the expression for the
outward normal vector on the vesicle surface defined by
Eq. (16), which is

d @ (3sin vP 1 l (sing+, +
dp i, cos g cos g) q p )

3a sin@ (sing ) a
+ +apcos'g ( p ) pz cos@ ' (13)

as reported in Ref. [8]. We introduce a new parameter

respectively. With these three expressions, we can easily
show that Eq. (10) is a rigorous solution for the HO shape
equation under the condition

where P is the rotational angle (0 & P ( 2vr). It is obvious
from the property of Eq. (16) that the normal vector,
Eq. (17), is analytically and uniquely defined everywhere
on the vesicle surface. In the geometry, such a surface is
called a smooth surface. Therefore, this solution can be
utilized for examining whether the three shape equations
give the same shapes having smooth surfaces [7], and
thereby for giving a good counterexample to the DH and
the SBL equations. It is easy to show whether the DH
and the SBL equations have the same solution as the
HO equation. Substituting Eqs. (11)—(13) and (16) into
Eqs. (7) and (8), we can rewrite Eqs. (7) and (8) as

and

Ap 2a (A 1, 1

2k p
p ——+ a (a —cp)p[ln(p/p~)] + a

]

—+ —cp ——a
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——
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k (p2 2k)

respectively. These two equations are satisfied when

G = cp = 0,
~p=A=0 (20)

It can be seen from the comparison of Eq. (14) and
Eq. (20) that the rigorous solution, Eq. (10), can si-
multaneously satisfy the three shape equations only for
cp = 0. Equation (10) is nothing but a perfect sphere
when cp = 0; let a = cp ——0 and b = 1/Rp, then
Eq. (10) becomes p = Rp sing, which represents a sphere
with radius B . The present result confirms the previous
prediction by Hu and Ou-Yang [1] that the three shape
equations are degenerate for a spherical vesicle. Hence,
we expect that the DH and the SBL shape equations can

give approximate solutions to the HO equation only for a
spherical vesicle with infinitesimal deformation. This has
been verified in Ref. [6]; the numerical results for nearly
spherical vesicles having Eth-polygon symmetry (where
1=3, 5, and 7) calculated by Deuling and Helfrich [3]
are in excellent agreement with the analytical results ob-
tained from Eq. (3). However, for vesicles whose shapes
are far from spheres, the DH and the SBL shape equa-
tions are not useful: a smooth surface, which describes
the famous RBC shape, for instance, is a rigorous solu-
tion for the HO shape equation but not for the DH and
the SBL equations. This is the most important conclu-
sion drawn from the present counterexample. We there-
fore consider that the attempts to show the three shape
equations predicting the same shapes are futile.
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