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Stochastic generation of homogeneous isotropic turbulence with well-defined spectra
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A precise and simple computational model to generate well-behaved two-dimensional turbulent Aows

is presented. The whole approach rests on the use of stochastic differential equations and is general
enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical
expressions for both the continuous and the discrete versions, together with simulation algorithms, are
derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.

PACS number(s): 02.70.—c, 47.27.Eq, 05.40.+j

I. INTRODUCTION

In many research areas of either fundamental or prac-
tical importance it is necessary to be able to compute or
model turbulent velocity fields. Both the statistics of the
turbulence and the particular turbulent structures of ac-
tual realizations of the Aow field are commonly required.

In practice, most simulations of turbulent Aow fields
use exact or approximate solutions to the equations of
motion and could be classified generically as "Navier-
Stokes solvers" [1]. Although some progress has been
made with the adaptation of spectral methods, at the
present time direct numerical simulations of fully
developed turbulence are restricted to low Reynolds
numbers. For high Reynolds numbers, where the scale
range exceeds that allowed by computer capacity, some
scales must be discarded, and their inhuence upon the re-
tained ones must be modeled. This is essentially the stra-
tegy of large-eddy simulations [2].

The main point we want to emphasize here is that, for
many purposes, it suffices that the generated velocity
fields retain only the most significative statistical features
of fully developed turbulence: their spectra and correla-
tion functions. Among the methods adapted to this per-
spective, we would like to briefly mention three of them.
They are respectively based on random Fourier modes,
random vortex models, and stochastic differential equa-
tions.

Simulations based on random Fourier modes were first
introduced by Kraichnan in the early 1970s [3]. Kraich-
nan considered a Lagrangian description of the turbulent
velocity field for both two-dimensional (2D) and 3D in-
compressible, stationary, homogeneous, and isotropic
Auids. He treated the velocity field as a Gaussian vari-
able modeled in terms of statistically independent ran-
dom Fourier modes. In both cases he considered energy
spectra describing widely distributed bands of excitations
of Gaussian shape with a peak centered at a well-defined
wave number. Additional modifications of this technique
to consider the helicity of the fluid [4,5] and to model the
advection of small-scale eddies by the larger ones [6] have

also been reported.
Similarly, random vortex models define the turbulent

flow as the superposition of many statistically space-
distributed incompressible vortices. For instance, 2D
frozen chaotic Aows have been generated which allow the
computation of n-point Eulerian correlation functions
having well-defined spectra [7]. A time-dependent ver-
sion of these models, where the velocity field satisfies
symmetry requirements, has been reported in which the
convection of vortices by the generated flow is taken into
account [8].

Within the methods relying on stochastic differential
equations, we could consider either the approach based
on Navier-Stokes equations with additional noise terms
[9] or the direct simulation of 3D velocity fields in the
Lagrangian frame by means of an Ornstein-Uhlenbeck
process [10]. In the latter approach, the random field ap-
pearing in the Langevin equation is generated in such a
way that its spatial covariance matrix adopts the stan-
dard Eulerian form, but no attempt to reproduce a
definite energy spectrum has been made.

Under the same perspective of using stochastic
differential equations, we introduce here a versatile ap-
proach that can be applied to a variety of energy spectra
and spatiotemporal correlation functions of well-behaved
turbulent flows. We start with an auxiliary random sca-
lar field q(r, t) whose temporal evolution is given by a
generalization of the Ornstein-Uhlenbeck equation which
incorporates spatial degrees of freedom. A trivial trans-
formation is then employed to obtain a divergence-free,
isotropic, stationary, and homogeneous stochastic 2D ve-
locity field g(r, t) whose statistical parameters are easily
identified in terms of the originally prescribed ones for
ri(r, t). A particular technique which largely facilitates
the handling of the auxiliary field consists in simulating
its dynamics in Fourier space [11]. This enables us to
directly obtain the energy spectrum function, whereas
transforming back to real-space generic expressions are
derived for the spatiotemporal correlation function and
its associated spatial and temporal correlation lengths. A
simplified version of the procedure presented here has al-
ready been used in the context of the diffusion of passive
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scalars convected by turbulent fiows [12].
Just to finish this introductory section, note that our

approach, although here totally applied within the con-
text of turbulence, is general enough to make possible a
much wider range of application. Indeed the stochastic
scalar field il(r, t) may be by itself a quantity of great in-
terest, especially in those situations where one has to deal
with spatiotemporal noise having finite correlations in
both time and space. This would be the case in problems
such as phase separation [13], interfacial growth [14], or
fiuctuational kinetics [15].

The paper is organized as follows. In Sec. II we intro-
duce the model and the relevant statistical quantities in
continuous space. Their discrete version is presented in
Sec. III, whereas the appropriate simulation algorithms
are derived in Sec. IV. Two examples of the general pro-
cedure that correspond, respectively, to the spectra origi-
nally proposed by Kraichnan [3] and by Karman-
Obukhov [16,17], are illustrated in Sec. V. Final con-
siderations are summarized in Sec. VI.

u0 =R (0,0),

t0= f ds R (O, s),
u02 0

(2.6)

10=
2 f d»R(»0) .

u02

At this point, of particular interest for us is the energy
spectrum function E(k) representing the density of con-
tributions to u 0 on the wave-number axis. In fact, anoth-
er definition of the turbulent intensity is

mass. The characteristic time of the turbulence ta gives
the temporal scale of relaxation of the velocity fluctua-
tions. Finally, the characteristic length of the turbulence
la is a convenient measure of the lineal extent through
which the local velocities are appreciably correlated.
These basic parameters are evaluated in terms of R (», s)
through the definitions

II. THE CONTINUOUS MODEL
u0= f dk E(k) . (2.7)

As stated in the Introduction, we aim at obtaining a
stochastic quantity which reproduces the most
significative features of fu11y developed turbulence.
Specifically, we are interested in the generation of zero
mean, homogeneous, isotropic, and stationary 2D veloci-
ty fields g(r, t) characterized by well-behaved energy
spectra E(k). Accordingly, the quantity which will be of
major importance for us is the two-point two-time corre-
lation tensor R'J(», s) defined by [18] (superscripts stand
for components)

R 'J(», s) = ( g'(r „t,)P(r2, t2 ) } (2.1)

where» = ~r, —rz~ and s = ~t, —t2 ~. In addition, g(r, t) is
assumed to represent an incompressible Aow
[Vg'(r, t) =0] so that [19]

BR '~(», s)
Br~

(2.2)

R 'J(», 0)= [f (») g(») ]n 'n J+g (»—)5, . (2.3)

where n ' stand for the components of the unit vector in
the r, —r2 direction. Due to the restriction (2.2) applied
to 2D flows, these radial functions are related by

g (»)=f (»)+» d (»)
Gr

(2.4)

Usually one characterizes an experimental turbulent How

by means of macroscopic quantities defined in terms of
the radial correlation

R (»,s)—:—,
' [R""(»,s)+R (», s)] . (2 5)

Three of these quantities are especially significative. The
fist one refers to the intensity of the turbulence u0,
measuring the mean energy dissipation rate per unit

Homogeneity and isotropy requirements imply that
R'~(», 0) has to be written in terms of radial functions
f (») and g (») as

Specific attention to the behavior of E (k) will be reserved
for Sec. V.

In order to incorporate all the above properties, we
start by defining the velocity field in terms of a scalar field
rl(r, t), which is assumed to be a homogeneous, isotropic,
and stationary Gaussian stochastic process, according to

g'(r, t) =(P(r, t), P(r, t) )

Bi)(r, t) Bi}(r,t)
By

'
Bx

(2.8)

f (») = — ', g (») = —C"(», 0)
C'(», 0)

r
(2.9)

where C"'(», 0)=d "C(»,0)id»". By using the standard
Fourier transform technique applied to 2D fields, we ob-
tain a simplified expression for the correlation R (»,s)
which reads [20,21]

R(», s)= f dk k J0(k»)S(k, s)
4~ 0

(2.10)

where J0(x) is the Bessel function of zeroth order and the
structure factor S(k,s) stands for the Fourier transform
of C(», s).

What we need to completely specify the stochastic ve-
locity field is the knowledge of g(r, t) and its statistical
properties. Our prescription is expressed through a 2D
stochastic Lang evin equation, which represents an
Ornstein-Uhlenbeck process with a spatial filtering
affecting the white-noise term

g(r, t) + Q [A, V ]g(r, t)—Bg(r, t)
Bt

(2.11)

By means of Eq. (2.8), the statistics of the incompressible
fiow g'(r, t) is transferred from that of g(r, t) Straightfo. r-
ward algebra shows that the properties (2.3) and (2.4) are
recovered after identifying f(») and g(») in terms of
the stationary correlation of the scalar field C(», 0)
= (q(r„t)r)(r2, t) ) as
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where g(r, t) is a Gaussian white noise of zero mean and
correlation

(g(r&, t&)g(r2, t2)) =2@5(r,—r2)5(t, —t2) . (2.12)

Equations (2.11) and (2.12) identify the three basic statist-
ical parameters of g(r, t): e stands for the intensity of the
noise whereas k and ~ respectively identify its spatial and
temporal correlation lengths. The mathematical operator
Q [A, V ] acting on g(r, t) is such that the Fourier trans-
form of Eq. (2.11) gives a function Q ( —A, k ) multiplying
the Fourier transform of the white noise in the form

2'rI„(t)=b, g exp I', (m—p+nv) g „(t) .
m, n

(3.1)

From Eq. (3.1), the discrete versions of Eqs. (2.13) and
(2.14) transform into

ed in the Introduction, the simulation of the discrete aux-
iliary field g „(t) in Fourier space largely facilitates its
manipulation. The corresponding discrete Fourier trans-
form is given by

= —q(k, t)+ Q ( —A, 'k') g(k, t)
at

(2.13) de„.(t)
q„.(t—)+Q„.g„.(t),dt (3.2)

where now g(k, t) is a zero mean 5-function-
anticorrelated noise with (g„(t( )gp (t2) ) =2~(NE)'5„p5 5(t, t,—) (3.3)

(g(k„t, )g(k, t ) ) =877 e5(k, +k )5(t, —t ) . (2.14)

The simplest example for the operator above is

Q [A, V ]=A, V, although more interesting cases will be
considered in Sec. V. From Eq. (2.13) we can obtain the
desired structure factor S(k, s) whose standard definition
is

where Q„, is a numerical factor obtained from the
Fourier transform of the operator Q [A, V ] in its discrete
version. The great advantage of this procedure is that
the Langevin equation (2.11) transforms in a set of decou-
pled ordinary differential equations which can be exactly
integrated in time to give [11]

S(k,s) = lim ( g'(k, t)g(k, t +s)),1

t~ ~ 4~2
(2.15)

rl„(t) =71„(0)exp
7

which involves the complex conjugate of g(k, t). After
analytical integration of Eq. (2.13) and averaging we ob-
tain

1+ J' d—t'exp
0

Q„,g„.(t') . (3.4)

S(k,s)= —Q ( —A, k ) exp
7

(2.16)

It is worth noting that given the spatiotemporal factori-
zation of Eq. (2.16), the correlation R (r, s) will also be
factorized. After successive substitution of Eq. (2.16) into
Eqs. (2.10), (2.6), and (2.7) we finally obtain all the statist-
ical properties of the turbulent How. In particular, we
directly get for the characteristic time tp and the energy
spectrum function the results

S„,(s) = lim (q„* (t)rt„(t +s) )~ (XA)

=—Q exp
S

(3.5)

From this expression and Eq. (3.3) one can calculate the
discrete structure factor S„,(s), which explicitly reads

tp=7

E(k)= k Q( —Ak )
4~~

(2.17)

(2.18)

The appropriate transformation of Eq. (2.8) gives, for the
discrete wave-number components of the velocity field,

whereas the correlation length turns out to be propor-
tional to A, , the specific proportionality being derived for
each particular realization of Q [A, V ].

III. THE DISCRETE EQUATIONS
IN FOURIKR SPACE

g (t) =—sin
2 IT@ (t) .

1 . 2&V
g (t) = ——sin g„(t),

(3.6)

The main steps in the generation of the stochastic ve-
locity field are the computer simulation of Eqs. (2.11) and
(2.8). Obviously this requires the appropriate discretiza-
tion of the continuous scheme introduced in Sec. II. We
have chosen as a standard grid a two-dimensional square
lattice of N XN mesh points with elementary unit spacing

Laky 5 and shifted periodic boundary conditions
[22]. Taking the limit 6—+0 and X—+m one has to re-
cover the results for the continuous model. As anticipat-

R„(s)= lim (g*(t)@(t+s)~-- 2(X~)'
+P*.(t)P.(t+s)) . (3.7)

Substituting successively Eqs. (3.6) and (3.5) into Eq. (3.7)
and transforming back to real space we finally get

In analogy with Eq. (3.5), the discrete Fourier transform
for R (r, s) will be
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1 2&R „(s)= g exp i—(m p+n v) R„(s)
(Nb, )

P g„(t +b, t) =ri„(t) exp

E 2&g exp —i( mp+n v)
2~% 6 2V

+—j'+ 'dt'exp
7 t

t' —t —b, t

T

X 2 . & 2+@ , . & 2mvX ~ sin +sin
x Q„.g„„(r') .

If we define a new random variable as [11]

(4.1)

(3 &)

2' + . p 2mv
v sin +sin

2~~~g4 " X N
(3.9)

whereas for to, Eq. (2.17) is recovered. In what refers to
the characteristic length of the turbulence, we first per-
form a least-square fit of R „(0) to the continuous result
R (r, 0) and then, following Eq. (2.6), we analytically in-
tegrate the obtained fit from zero to infinity. This pro-
cedure will be clarified in Sec. V.

In order to obtain an expression for the energy spec-
trum function, we will make use of the symmetry of
E (k). Taking into account the homogeneity and isotropy
properties, Eq. (2.7) can be formally recasted in the form

E(k)uo, d k (3.10)

which when discretized converts into [note that
k„=(p +v )'/ (2m/Nb, )).

1 EPV

2+ 2)1/2
@~V

(3.1 1)

Comparison between Eqs. (3.9) and (3.11) shows us that

from which we can identify the three basic parameters of
the turbulent flow u o, to, and lo. The result for the inten-
sity of the turbulence reads

u o =ROD(0)

t+ht
P (t) =—f dt' exp Q„g„ (r'), (4.2)

E(Nb ) 2Q„, 1 —exp
2ht 6„5 (4.3)

From Eq. (4.3) and assuming that Q„=Q „,P„(t)
can then be expressed as

1/2

P„(t)=(NA)Q„, — 1 —exp

(4.4)

where a„(t) are Gaussian anticorrelated random num-
bers such that

(a„„(t)a (t)) =5„5, (4.5)

and whose simulation scheme has been learned from the
existing literature [11]. As a result, the desired numerical
algorithm is then

g„„(i+At)=q„.(r)exp — +P„.(t) .
ht
7

(4.6)

this random quantity is Gaussian and has zero mean. Its
variance at equal times can be evaluated from Eq. (3.3) to
give

(8„.(&)p, (&) )

Q2 ( 2+ 2)l/2
2~XS'

27Tp + . p 277v
X sin +sin

1V
(3.12)

The initial condition g„„(0) is chosen to correspond to
that of the steady state (here understood in a statistical
sense). In this way we are sure to be in an isotropic and
homogeneous velocity steady state from the beginning of
the simulation. Looking at Eq. (3.5), this is accomplished
by taking

The next step in the generation of the stochastic veloci-
ty field is the specification of the numerical algorithms
which correspond to the discrete model of this section.
All the results obtained within the simulation scheme
should thus be compared with those described above.

IV. SIMULATION ALGORITHMS

Here we will develop an iterative algorithm appropri-
ate to the discrete version of Eqs. (2.13) and (2.14) which
evaluate g„at time t +Et from its known value at time t.
With these obtained values, we will calculate the statisti-
cal quantities characterizing the turbulent flow in terms
of averages involving g„,(t) Integration of E. q. (3.2) be-
tween t and t +At leads to

1/2

2)„(0)=(NA)Q„— ap (0) .
'T

(4.7)

The numerical running of these expressions (and those
appearing below) is advantageously vectorized by trans-
forming the 2D lattice to a 1D array using a single index
~=(p —1)N+v. The same procedure is applied to real
space.

Once ri„(t) is obtained we can either evaluate the sto-
chastic flow or its statistical properties. In the first case
we transform ri„(t) back to real space as

T

„(t)= g exp i (mp+nv) — g„(t) (4.8)
1 2&

(Nh) PV
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and from it we obtain the components of the stochastic
turbulence using discrete centered forms appropriate to
Eq. (2.8)

Case I: It"raichnan's spectrum

To obtain Eq. (5.1), the choice for the operator Q ap-
pearing in Eq. (2.11) is

= 1 ['9,,—1(t) 't), .+1(t)]

= 1P „(t)= [q +, „(t) rt—, „(t)],
(4.9)

Q [A, V ]= exp( —,'A, V' ),
which gives rise to

(5.3)

where shifted periodic boundary conditions are explicitly
used. In what refers to the statistical properties, the
quantities of interest are given by

Q( —A. k )= exp( —
—,'A, k ) . (5.4)

When substituting Eq. (5.4) into the general expressions
of Sec. II we get

1 2& SR „(s)= 2~4g6 g exp —i ( mp, + n v)

N
r r sR (r, s)=

&
1 —

2 exp —
z
——

8~&A, 4A, 4A,
(S.5)

27TP . 2 2' VX sin +sin
N

E(k)= k exp( —A, k )
4m~

(5.6)

and

X (ri„*,(t)rj„.(t +s) )

1
(p +v )' sin +sin27T . 27Tv

2+3'' N N

1/2

o
8 k4 o ' o 2

(5.7)

In what refers to the energy spectrum, the characteristic
wave number reads

with the following results for the three basic parameters
(4.10)

X (q„*.(t)g„.(t) ) (4.1 1) k =(—')' A,0 (5.8)

where averages are taken over realizations of the stochas-
tic fiow. The results obtained from Eqs. (4.10) and (4.11)
should be compared with Eqs. (3.8) and (3.12).

When discretizing, the fundamental expression to be sub-
stituted into Eqs. (3.8) and (3.12) comes from the discrete
version of Eq. (5.4), which translates into

V. EXAMPLES

kE(k) ~ k exp
ko

(5.1)

The second example is intended to reproduce the univer-
sal Kolmogorov's inertial subrange, characterized by the
well-known "——,

'" law [23]. To this end we select a
Karman-Obukhov spectra, whose general behavior is
[16,17]

' —(5+3n) /6

E(k) ~ k" 1+
ko

(5.2)

which for k large enough reproduces the desired inertial
subrange. For convenience we have taken n =3. The
two selected spectra (5.1) and (5.2) will be presented sepa-
rately.

Up to now we have introduced a general scheme suit-
able to generate incompressible, homogeneous, isotropic,
and stationary 2D velocity fields. What is discussed here
is the application of this general scheme to appropriate
spectral realizations of particular turbulent Aows. The
kind of spectra we are interested in belong to the class
which could be classified as being well behaved. This is
understood here in the sense that they reproduce to a
good extent the main features of experimental energy
spectra. Two examples have been chosen for E(k). The
first and simplest one is that proposed by Kraichnan [3],
which describes a widely distributed band of excitations
with a peak centered at a well-defined wave number ko

27TP 27TvQ„= exp . —
2

2 —cos —cos
Q2

(5.9)

In the following, we will present continuous, discrete,
and simulation results corresponding to Kraichnan's
spectrum. This first interest refers to the comparison be-
tween these three approaches in order to check the good-
ness of our procedure. Before going to the statistical
properties, we briefly show in Figs. 1 and 2 simulation re-
sults obtained for individual realizations of the stochastic
velocity field g'(r, t). In Fig. 1, the entire square lattice
displays the presence of Aow lines and eddies of different
size and shape subjected to the prescribed shifted period-
ic boundary conditions. The basic difference between
Figs. 1(a) and 1(b) is the mean eddy size. Actually, this
size is directly related to Io which is proportional to A,

[see Eq. (5.7)]. Accordingly, and for the sake of compar-
ison, we have plotted A, X A, squares over typical eddies.

Shown in Fig. 2 are two snapshots of a particular reali-
zation of the stochastic turbulence taken at different
times. They correspond to a piece of the square lattice
and give us an idea on how Quid moves subject to the in-
cornpressibility condition.

Referring to the statistical How properties obtained
through averages of individual realizations, the first
quantity of interest is the radial correlation R (r, s). As
the discretization only concerns spatial degrees of free-
dom, we will not present any result which implies aver-
ages at different times. Depicted in Fig. 3 is the behavior
of R (r, 0) vs r for different values of A, , evaluated in the
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continuous and simulation approaches. As shown, the
agreement between simulation and continuous results is
rewarding, especially for appropriate values (see below) of
A, /b, . We have not plotted the discrete results since, for
high enough number of realizations, simulation collapses
on the discrete scheme. Thus, hereafter, we will only
compare the continuous and discrete models. In this
respect, and given the used boundary conditions, we can
anticipate that the goodness of the discretization
will essentially depend on the quotient A, /b, relative
to the number of mesh points X. This question is
explicitly exemplified by referring to the value
lo(discrete)/lo(continuous).

Before going further, it is necessary to clarify how

lo(discrete) is obtained. As anticipated in Sec. III, we
perform a least-square fit of R „(0)in the form

R „(0)=
8m~z4fi,

2
"mn

1 — exp
4A, fi,

2
"mn

4~fit
(5.10)

4(discrete)
lo(continuous)

(5.1 1)

where the parameter to be fitted is A,fi,. Note that
r „=(m +n )'~ b.. In order to avoid finite size effects,
we have extended the fit over the interval
0 ~ I" „~NA/4. Once A,fi, is obtained, we simply have
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FIG. 1. Simulation patterns for particular realizations of the
stochastic velocity field g(r, ti corresponding to case I with
a=10.0, ~=1.0, 6=1.0, At =0.1, and 64X64 mesh points. (a)
A, =6.0 and (b) A, = 12.0. The inner squares' area is A. Xk.

FICx. 2. Snapshots of simulation patterns similar to those of
Fig. 1 taken at different times. Parameter values are @=10.0,
~=1.0, A, =4.0, 5=1.0, At =0.1, and 64X64 mesh points. (a)
t =0.2 and (b) t =0.4.
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FIG. 3. Normalized radial correlation function R(r, 0) vs r
corresponding to case I for different values of A.. Solid lines cor-
respond to Eq. (5.5) and symbols are simulation results obtained
with e= 10.0, ~= 1.0, 6= 1.0, 6t =0.1, and 64 X 64 mesh
points. (~ ) A, =1.0, (A) A, =4.0, and (0) A, =13.0. Averages
are taken over 1000 realizations.

FIG. 5. Normalized energy spectrum function E(k) vs k cor-
responding to case I for diFerent values of A, . Solid lines corre-
spond to Eq. (5.6) and symbols are simulation results obtained
with @=10.0, v =1.0, 6=1.0, At =0.1, and 64X64 mesh
points. (~} X=4.0 and (0) X=5.0. Averages are taken over
10000 realizations.

Summarized in Fig. 4 are the results obtained for Eq.
(5.11) vs A, /5 for different values of N, together with the
values obtained for the three simulation cases of Fig. 3.
As expected, they appear to be sensitive only to the value
k/b, . When A, /5=1, the discrete model is not able to
properly reproduce features involving distances or order

On the other hand, finite-size e6'ects begin to play a
role for high enough values of A, /6 compared to N. In
between these two regions, discretization appears to be
satisfactory provided that

Case II: Karman-Obukhov's spectrum

For this spectrum we start by taking

g [g2q2] —
( 1 g2P2) —7/6 (5.13)

the saxne rule is obtained, each intensity being evaluated
respectively from Eqs. (3.9) and (2.6).

Finally, the characteristic shape of Kairchnan's spec-
trum is plotted in Fig. 5 for both the continuous and
simulation approaches. Also shown is the peak centered
at the wave number ko for one of the curves.

11&—(—N .
4

(5.12)
from which we now obtain

Q( —A, k )=(1+k k ) (5.14)

When one refers to the value u o(discrete)/u o(continuous), and we derive, for R (r, s) and E (k), the results [20,21]

N

0
3-

C0
2

l
O
l/l

CO

0
16 48

R (rs)= i3/3 &
[T~p Xi/3(p) &p X4/3(p)]2' I ( —,

'
)m v.A,

5
X exp r (5.15)

E(k)= k (1+A. k )
4m~

(5.16)

uo 4& 0 r& 0 2I(])
3

(5.17)

where E,(x) is the modified Bessel function of fractional
order and p—= r/A, . The corresponding results for the
macroscopic parameters are, in this case,

FIG. 4. Relative 1ength lo(discrete)/lo(continuous) vs A, /6
corresponding to case I for different number of mesh points.
The parameter values are e= 10.0, w = 1.0, 5= 1.0, and
At =0.1. Symbols are the simulation results obtained from Fig.
3.

—
(

9 )1/2g —i
0 (5.18)

The discrete version of Eq. (5.14) to be used in the discre-
tized scheme reads

Analogously to case I, we can define a characteristic
wave number ko as the maximum of E(k). For
Karman-Obukhov's spectrum, one obtains the value
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Q„= 1+ 2 —cos
2A, 2&@
+2

2&V
cos

' —7/6

(5.19)

0.25

0.20-

4J

0.15-

LU

0.10-

0.05-

The most significative feature of this second example is
the presence of long tails in the energy spectra, as it is
shown in Fig. 6(a), where E(k) is plotted against k for
different values of A, . Consequently, in order to obtain re-
liable simulation results it will be necessary to consider a
smaller unit spacing 5 and a corresponding higher X.
Depicted in Fig. 6(b) is the log-log plot of Fig. 6(a), show-
ing a linear behavior at high wave numbers. For the sake
of comparison, an arbitrary straight line of slope —

—,
' has

been included.
%'hen going to real space, the presence of a broad iner-

tial subrange translates into a radial correlation R (r, O)
which has a peak at the origin, as it is illustrated in Fig.
7. This behavior is clearly opposite to case I, where a
short-ranged spectrum (see Fig. 5) converts into a smooth
radial correlation near the origin (see Fig. 3). Thus

1.2

1.0-
4J

I
0.8 g,

O
0.6-

0.0-

0.2-

0.0- % ~el

-0.2
0.0

I

0.5
l

1.0 1.5 2.0

FIG. 7. Normalized radial correlation function R (r, 0) vs r
corresponding to case II for difFerent values of X. Solid lines
correspond to Eq. (5.15) and symbols are simulation results ob-
tained with @=10.0, ~=1.0, 6=0.1, Et=0. 1, and 128X128
mesh points. () A, =0.2, (A) X=0.8, and (~ ) A, =2.6. Aver-
ages are taken over 1000 realizations.

Karman-Obukhov's spectrum shows a richer variety of
turbulent structures at short distances which the discreti-
zation is unable to correctly reproduce except under the
limit of vanishing A. That is why simulation results differ
significantly from their continuous counterpart at the ori-
gin (see Fig. 7) for all values of A.. Apart from that, the
comments above relative to the agreement between
discrete and simulation results would apply. The exam-
ination of a particular velocity pattern, such as that
shown in Fig. 8, points on that R (r, O) is weaker at short
distances (neighboring arrows are less ordered than in
Figs. 1 and 2). Besides, eddies are more diffuse accord-

0.00:-
0

I

kO 2 10
a ~ t ~ f W - g - - r

/ & ( l i I

f j

/

j

-5
-0.5

I

ln {ko) 0.5
1

1.5 2.5

FIG. 6. (a) Normalized energy spectrum function E(k) vs k
corresponding to case II for di6'erent values of A, . Solid lines
correspond to Eq. (5.16) and symbols are simulation results ob-
tained with a=10.0, ~=1.0, 6=0.1, At=0. 1, and 128X128
mesh points. () A, =1.0 and (R) A. =1.2. Averages are taken
over 10000 realizations. (b) Log-log plot corresponding to (a)
with an additional arbitrary straight line of slope —3.
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FIG. 8. Partial view of the simulation pattern for a particular
realization of the stochastic velocity field g'ir, t) corresponding
to case II with a=10.0, ~=1.0, X=2.8, 6=0.1, At=0. 1, and
128 X 128 mesh points. The inner square's area is A, X A. .
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FIG. 9. Relative length Io(discrete)/lo(continuous) vs A. /6
corresponding to case II for different number of mesh points.
The parameter values are e= 10.0, ~= 1.0, 4=0. 1, and
b t =0.1. Symbols are the simulation results obtained from Fig.
7.

ing to the fact that the spectrum around ko is much more
broader than in case I.

Finally, as for case I, we analyze the goodness of the
procedure by looking at the value lo(discrete)/
lo(continuous) and, analogously, we will proceed through
a least-square fit of R „(0) equivalent to that of Eq.
(5.10). The main difference is that given the discrepancies
for the radial correlation at the origin (see Fig. 7), the fit
is extended over the interval 6 ~ r „~Nh/4. Once
again, the results only depend on the value of A, /5 rela-
tive to X. They are summarized in Fig. 9. As in the
former case, we can differentiate three distinct regions,
the reliable one being bounded by

VI. CONCLUDING REMARKS

What we have presented here is a general model aimed
at obtaining homogeneous, isotropic, and stationary 2D
stochastic velocity fields which reproduce the most
significative statistical features of fully developed tur-
bulence. Accordingly, we have mainly focused on the
evaluation of the energy spectra and the spatiotemporal
correlation functions. Based on the use of stochastic
differential equations containing space-time correlated
noise, we have derived both analytical expressions in the
continuous and discrete space and their corresponding
simulation algorithms. By means of simulating the dy-
namics of the auxiliary scalar field in Fourier space, it is
shown that the discretization process is exact in time and
consequently it only concerns the transformation from
continuous to discrete space.

To illustrate the application of the general scheme, re-
sults for two relevant spectra, respectively proposed by
Kraichnan and by Karman and Obhukov, are given. In
both cases, the goodness of the computed quantities
essentially depends, for a confident enough statistics, on
the quotient A. /b, relative to the number of mesh points
X.

Finally, it is worth noting that most of the simulation
models reviewed in the Introduction have been applied in
the context of turbulent diffusion of passive scalars. We
hope that with the aid of the simple simulation procedure
here developed, a wider class of phenomena could be
studied apart from those mentioned in the Introduction.
This would be the case, for instance, when dealing with
physicochemical systems incorporating reaction,
diffusion, and convection of chemical species.
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