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Sequence-structure relationships in proteins and copolymers
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We model proteins as copolymer chains of H (hydrophobic) and P (polar) monomers configured as
self-avoiding Aights on three-dimensional simple-cubic lattices. The HH interaction is favorable. The
folding problem is to find the "native" conformation(s) (lowest free energy) for an HP sequence. Using
geometric proofs for self-avoiding lattice chains, we develop equations relating a monomer sequence to
its native structures. These constraint relations can be used for two purposes: (1) to compute a tight
lower bound on the free energy of the native state for HP sequences of any length, which is useful for
testing conformational search strategies, and (2) to develop a search strategy. In its present implementa-
tion, the search strategy finds native states for HP lattice chains up to 36 monomers in length, which is a
speedup of 5 —15 orders of magnitude over existing brute-force exhaustive-search methods.

PACS number(s): 87.10.+e

I. INTRODUCTION

The protein-folding problem is the question of how a
linear polymer chain, composed of a specific sequence of
amino acids, encodes the unique three dimensional struc-
ture to which it folds. The relationship between the
amino-acid sequence, on the one hand, and the "native"
conformation (i.e., of lowest free energy) of a protein
chain, on the other hand, has been explored using simple
lattice models [1—4]. In the HP madel [3,5 —7], the 20
different amino acids are assumed to fall into two classes:
hydrophobic (H) or polar (P). Chains are configured as
self-avoiding walks on two-dimensional square lattices or
three-dimensional cubic lattices. HH contacts are favor-
able, and are assumed to be the dominant interaction [8],
so under strong folding conditions the native conforma-
tions are those that have the greatest number of HH con-
tacts. For chains that are sufficiently short, the globally
optimal states have been found by brute-force
exhaustive-computer enumeration [5-7]. The HP model
has the following proteinlike features. When the HH
sticking energy is small, the chains have an ensemble of
open conformations (the "denatured state"), but when
sticking is strong, chains with certain sequences of H and
P monomers collapse, through a relatively sharp transi-
tion [5,9], to a small ensemble of compact states (often
only one or two) [5,6], with cores of H monomers,
comprised of about the same distribution of helices and
sheets as in the known proteins [10,11). HP lattice pro-
teins also resemble real proteins in some mutational
[3,7, 12] and kinetic [13,14] properties.

A virtue of this simple model is that its partition func-
tion can be enumerated exactly, but a major problem is
that the global optima cannot be found for longer chains
on three-dimensional lattices because the computer time
for brute-force enumeration is prohibitive and increases
exponentially with chain length [6]. To search for native
conformations of longer chains in the HP lattice model,
O*toole and Panagiotopoulos have developed efficient
Monte Carlo search procedures [9], and Unger and Mou-

lt have developed a genetic algorithm [15].
One approach to studying three-dimensional chains

through exact enumeration involves the use of a some-
what different model. The "perturbed homopolymer"
model [1,2] assumes all monomers (H and P) are
sufficiently strongly self-attractive that native states are
guaranteed to be among those that are maximally com-
pact. Energetic differences between H and P monomers
are taken to be a small perturbation relative to the strong
background attraction of all monomers for each other.
The 27-monomer-chain cube has been studied in this
model [1,2]. Exhaustive enumeration is computationally
prohibitive for longer chains in three dimensions in either
the HP or perturbed homopolymer models.

Here we explore a different strategy to find native
states for longer chains on three-dimensional lattices in
the HP model. We analyze the geometric packing con-
straints for models of chains, using the method of discrete
geometry [16,17]. We then develop an equation relating
an amino-acid sequence to certain features of its compact
native confirmations. The search for native states is for-
mulated in terms of a search for conformations that have
a core of H monomers of minimal surface area. This con-
strained optimization is treated at three different levels of
increasingly detailed accounting for the chain connectivi-
ty and sequence. At each level, we can predict the gen-
eral characteristics of the H cores and compute upper
bounds on the maximum number of HH contact achiev-
able by a given sequence. Such bounds can be used to
learn how successful are sampling strategies, such as
Monte Carlo, simulated annealing, genetic algorithms,
i.e., how closely they come to finding globally optimal
conformations. The constraint relations are also useful in
guiding a search to find native conformations. A search
program is described.

II. THE MODEX. AND DEFINITIONS

First, we define some terms. We consider copolymer
chains, each consisting of a specific sequence of H and P
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monomers. Let L be the total number of monomers in
the chain, and nH be the number of H-type monomers.
Within a sequence, a run of monomers of a single type is
called a segment. For example, the sequence PHHHP
contains an H segment of length 3, and HPPPPPPH con-
tains a P segment of length 6. A P singlet is a P segment
of length 1, i.e., the P in . . .HPH. . . . A chain is
configured as a self-avoiding flight on a lattice. The coor-
dination number, z, is the number of nearest neighbors of
a site. Therefore a lattice site or a monomer has z sides.
For the three-dimensional simple cubic lattices con-
sidered here, z =6. Sites not occupied by monomers are
occupied by solvent molecules. Covalent links are re-
ferred to here as bonds. A residue (i.e., monomer) makes
a contact with another residue if the two monomers are
neighbors on the lattice but are not covalently linked (see
Fig. I). A contact between two H monomers has a favor-
able free energy, —c, c & 0, and the contact free energy
for all other types of contacts is 0. Conformations are na-
tive if they have the lowest free energy among all the pos-
sible conformations, in a strong folding solvent (i.e., as
e~ ~). Thus native conformations have the maximum
possible number of HH contacts for the given sequence.
A sequence may have one or more native structures.

Frame
~ ~t4 ~

4 ~ ~

FIG. 1. HP sequence and a native conformation. H mono-
mers are dark; P monomers are white. The order of residues in
the chain is indicated by numbers. A dark solid line between
residues indicates a bond; a light dashed line a contact. For ex-
ample, there is an HH contact between H6 and H19. The pro-
jection areas of H monomers in the H core in x, y, and z dimen-
sions (alternatively on y-z, x-z, and x-y planes) are shown as the
filled circles or ovals on the sides of the conformation and un-
derneath it. The projection directions are shown as dashed
lines. For x dimension, the directions for all the projections of
the H residues are shown. For y and z dimensions, only the
directions for the center projections are shown. The frame of
the H core is indicated by a rectangular solid of thick shaded
lines, which has a dimension of 3 X3 X 3. The H core has three
layers along the z axis. From the top down, the first layer con-
tains H1, H3, and H20; the second H4, H6, H17, H19, H22,
and H23; and the third H7, H9, H12, H13, H14, H24, and
H25. The projection areas in the x dimension are 2, 3, and 3.
Projection areas in the y dimension are 2, 3, and 3. The projec-
tion area of the H core onto the xy plane is 7.

III. THE FOLDING EQUATION: A RELATIONSHIP
BETWEEN SEQUENCE AND STRUCTURE

In this section we develop an equation relating the se-

quence and the native conformations of an HP sequence,
for any lattice. This equation describes the conservation
of sides of H monomers. The top panel of Table I is an
accounting of all the sides of H monomers of a given se-

quence, the total number of which is znH. Here bH~ and

b~p are the numbers of HH and HP bonds. h„, is the
number of chain ends that are H residues: i.e., h„, =0,
1, or 2. The bottom panel of Table I enumerates sides of
H monomers in various contacts and bonds in a given
chain conformation. They also sum to znH. Here t»,
tHp and tH so»ent are the numbers of HH, HP, and H-
solvent contacts, respectively. Equating the sequence
contributions from the top panel to the conformational
contributions from the bottom panel of Table I gives

2bHH +bHp +h t + (z —2 )nH: 2rHH +2bHH +bHp

Hp 0-solvent '

Let G be the number of H segments in a chain. Since
the end of an H segment is either a bond between an H
monomer and a P monomer or is the end of the chain, the
total number of ends of H segments is bIIp+h„, . Since
each H segment has two ends, we have

G =(bHp+h„, )/2 .

For example, in the sequence PHHPHHHPPH, bI p =5,
h„, =1, and G =3.

We define the H core(s) of a conformation as a collec-
tion of H monomers connected by contacts or covalent
bonds. The surface area of the H core, S, equals the num-
ber of sides of H monomers that neither contact nor bond
to other H monomers. Such sides either adjoin P mono-
mers (through contacts or covalent bonds) or they adjoin
solvent sites. Hence S:—bHp+ tHp+ tH j t. Thus the
surface of the H core involves all exposed sides, i.e., that
are either bonded to P monomers or just contacting P's
or solvent.

A conformation can have one or more H cores. Using
the definitions of G and S, Eq. (I) becomes

(z 2)nH—
t +—=G+HH 2

We refer to Eq. (2) as the folding equation. It has the
useful property that the right-hand side depends only on
the sequence while the left-hand side depends on the con-
formation. Hence the right-hand side is a constant, for a
given sequence. In the HP model, the folding problem is
that of finding the conformation of maximum tH~. But if
the right side is constant for a given sequence, then max-
imization of t~H is equivalent to minimization of S.
Hence Eq. (2) shows that the folding problem can be re-
duced to the problem of finding the conformations that
have the smallest H core surface area S, designated S;„,
for a given sequence. Since the surface area is a global
property, and since mathematical and computational
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TABLE I. The sides of H residues in the sequence and in a conformation.

H residue sides in the sequence

Sides due to covalent bonds between H-H
Sides due to covalent bonds between H-P
Nonbonded sides of nonterminal H residue
Nonbonded sides of terminal H residues

2bH

bHI
(z —2) X(nH —h„, )

(z —1)Xh„,

H residue sides in a conformation

Sides due to H-H covalent bonds and H-H contacts
Sides due to H-P covalent bonds and H-P contacts
Sides due to H-solvent contacts

2bHH +2tHH

ba +tIII
~H-solvent

tools are more readily available for surface-area-
minimization problems, this change of venue offers ad-
vantages for finding native structures.

IV. SURFACE AREAS OF H CORES

S=2(s„+s +s, ), (3)

where s„,s, and s, are the projected area of H's in the x,
y, and z dimensions, i.e., onto the yz, xz, and xy planes,
respectively. The projected area is computed as follows.
If at position (O,y„z, ) one or more H's occur in a
column along the x axis, then it contributes 1 unit to s;
if there is no H at (O,y „z,) in a column along the x axis;
then it contributes 0 to s„. The quantity s„ is the sum of
such contributions over all positions (O,y, z), on the yz
plane. The factor of 2 in the equation above arises be-
cause solids have 2 surfaces normal to each of the x, y,
and z axes. For examples, see Figs. 1 and 2.

More generally, if an H core has H caUities, i.e., sites
where P residues or solvent are sandwiched between H
residues, then S will instead by given by

We first describe a few properties of H cores. If an H
core is a simple solid, with no indentations or cavities
(i.e., with no internal sites that contain solvent or P
monomers, to be defined more rigorously below), then its
surface area will equal the sum of its orthogonally pro-
jected areas:

minimal rectangular solid that completely contains the H
core the frame (see Fig. 1). A frame is a useful feature of
a conformation. It can be determined from knowledge of
the HP sequence and serves as a constraint for pruning
the search tree.

On a cubic lattice, an H core can be decomposed into a
stack of p/anar layers of H monomers along some coordi-
nate direction, as in the stacking of slices of bread; see
Fig. 3. Each layer has the thickness (normal to the
"plane" ) of one lattice site. Layers may have different
shapes. Each layer is characterized by a cross-sectional
area, which is the surface area normal to the direction of
the stacking. Also each layer has a lateral surface area
[18], which is the surface area in the four directions per-
pendicular to the direction of stacking. Examples are
shown in Fig. 3.

We define the body of an H core to be the maximal rec-
tangular solid that contains H residues but contains no P
monomers or solvent. Usually, the remaining H mono-
mers (that are not contained within the body of an H
core) form groups of layers which are appendages upon
the H-core body. That is, in the direction of their layer
stacking, the projection of these layers is completely
blocked by the H-core body, so their only contribution to
the surface area of the H core will be their lateral surface
areas. We call these barnacle layers [e.g. , layers 1, 2, 6,
and 7 in the x direction in Fig. 3(b)].

V. SEQUENCE-STRUCTURE RELATIONSHIPS
S=2(s +s +s, )+Q, (4)

where Q is the surface area of the H cavities, i.e., the
number of sides of H monomers enclosing the cavity; see
Fig. 2(b1) and 2(b2). Note that Q is the excess surface
contributed by buried P residues (or solvent), i.e., relative
to an H core that has no buried P residues.

The positions (sites) in an H core conformation can be
classified by their numbers of neighbors. For example,
corner, edge, face, or interior sites have 3, 4, 5, and 6
neighbors, respectively. The location of a P monomer in
an H core determines its energy cost (i.e., its loss of HH
contacts). If a P residue is surrounded by H residues at
an edge position, then Q =2 because the P is sandwiched
by two H residues (along the edge direction) and shares
two sides with H residues (regardless of whether the H
residues bond or contact the P residue). At a face posi-
tion, Q =4, because a P residue is surrounded by four H
residues. At an interior position, Q =6. We call the

A. First approximation: The disjoint segment model

To investigate conformations with minimal H-core sur-
face area for a given HP sequence, we begin with a sim-
plest model in which chain connectivity among the H
segments is neglected. Since disconnected H segments
have greater freedom to configure within a volume than
fully connected chains, the disjoint segment model will
give a lower bound for the surface area of an H core that
could be achieved by an HP sequence.

It is shown in the Appendix that in order for uncon-
nected H segments to configure to have minimal surface
area, there can only be one H core and it cannot have any
H cavities. It is also shown in the Appendix that for the
disjoint segment model, every H core of minimal surface
area can be reconfigured to have an H-core body with a
single barnacle layer without changing its frame dimen-
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sions. Therefore, for a given sequence o., the problem of
finding the lower bound for the minimal H-core surface
area and of finding the associated frame dimensions can
be formulated as follows. Let S'(o. ) represent the surface
area of an H core that contains disjoint segments. The
superscript 1 refers to the first approximation, the dis-
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FIG. 3. Illustration of dividing an H core into layers. The H
core contains H residues only; it is not a conformation of the
HP chain. Here the H core is represented by the collection of
unit cells occupied by individual residues. However, the boun-
daries between individual H residues are not drawn. (a) defines
measures of a layer. Because of the unit thickness, the lateral
surface area equals the length of the perimeter. (b) shows the
division of an H core into a main body and four groups of bar-
nacle layers. Projection areas in two directions are shown. (c)
shows division into layers along the x direction. The layers then
each have projections in z and y dimensions. It is clear that the
sum of their lateral surface areas is the same as the lateral sur-
face area of the H core.

FIG. 2. This group of figures illustrates how projection
works in cases with or without cavities. To simplify the prob-
lem, we have used two-dimensional (2D) shapes (a1) and (a2)
and 2D projections of 3D shapes (c1) and (c2). In these figures,
each shape given in solid lines is a "H core" in 2D. The boun-
daries between individual H residues are omitted. In (a1) and
(a2), the projections of the H core in two dimensions are shown
as dotted lines, which form a rectangular "frame. " There is no
cavity in the H core. As a result, the H core has the same per-
imeter as the rectangular frame that tightly encloses it. That is,
the projection length of the H core to the two dimensions is ex-
actly half of its perimeter. Let p be the parameter of an H core,
I + l =p/2. Applying the same argument, we can show that in
3D, the projection area is exactly half of the surface area of an
object, when no cavities exist. (b1) and (b2) give examples of H
cores with cavities. Their corresponding projections in 2D are
shown respectively in (c1) and (c2). Cavities are marked by
shaded area. In 2D, cavities add extra length to the total perim-
eter of non-H contacts, as indicated by the q s. Cavities include
indentations (c1) or holes (c2). The added perimeter (added sur-
face area in three dimensions) is not the sum of all lengths en-
closing the cavity, but of only the two sides of H residues that
sandwich it.

FIG. 4. This figure shows a layout of the H core under the
assumption of unconnected H segments. Note that there is a
single barnacle layer, indicated by the length being 1.
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joint segment model. Let I, w, h be the length, width, and
height, of a frame; see Fig. 4. We denote the frame di-
mensions with brackets: (l, w, h ). Assume the single
barnacle layer is attached to the H-core body along the
axis labeled with the length /. Let wb and hb be the width
and height, respectively, of the barnacle layer in the two
directions perpendicular to the I axis. Find the dimen-
sions I, w, h, wb, hb which minimize

S'(o. ) =2[(l —1)(w +h)+wh +wb+hb ] (5)

subject to the constraints

lwh ~n~,
wb +hb —w+h

2(wb+hb ) =P (ub ),
where

u& =n~ —(1 —1)wh .

(6)

(9)

In Eq. (5), the first two terms of the right-hand side
give the surface area of the H-core body while wb and hb
are areas of the barnacle layer (since they are linear di-
mensions multiplied by the thickness, which is 1}. The
constraint relations arise from the following considera-
tions. Equation (6) accounts for the requirement that all
H segments must appear in either the H-core body or the
barnacle layer of the H core, i.e., inside the frame. Equa-
tion (7) enforces the definition that the perimeter of the
barnacle layer is smaller than the perimeter of any layer
in the H-core body; Eqs. (8) and (9) specify the area and
volume of the barnacle layer. In Eq. (8), P (N) is the
minimal perimeter around iV residues on a square lattice
[191

P (N) =2(a + [N/a1 ), where a = [&N 1 (10)

lo=
I &na1

wo= I&na~ o1

ho= Ina~lowol

(12)

(13)

The minimum value of S'(o. ) of Eq. (5), denoted
S' (cr ), can be readily found by the Kuhn-Tucker multi-
plier method using integer mathematical programming
[20]. Since disjoint segments are less constrained than
fully connected chains, any configuration of H monomers
that can be achieved by a fully connected chain can be
achieved in the disjoint model. Therefore, the surface
area obtained from the disjoint segment model is a lower
bound on the quantity we seek, namely, S;„;i.e.,

S' (cr) ~S;„.
More than one frame can usually be found from this

minimization process. For example, if nII =21, then the
minimal surface in the disjoint segment model, S' =50, is
achieved either by frame ( 3, 3, 3 ) or by ( 4, 3,2 ) [both
have 2( wb +h b ) = 8] [21].

It can be shown (proof omitted) that one frame that is
always a solution is that which is closest in shape to a
cube [22]. Its dimensions are

Substituting Eqs. (11)—(13) into Eq. (5) gives an ex-
pression for the minimal surface area in the disjoint seg-
ment model:

S' =2[(lo —1)(wo+ho)+ woho+ wb+hb ], (14)

where wb and hb are found using Eqs. (8) and (9).
Hence for a sequence with n~ H residues, Eqs.

(11)—(13) give the dimensions of a frame according to
the disjoint segment model, and Eq. (14) gives the
minimal surface area of an H core that could be achieved
upon folding the sequence.

B. Second approximation: Including I' singlets

Hequiv =n~+np
1

(15)

HeqUI+ is the number of monomers that are "H
equivalents, " i.e., H monomers plus P's in P singlets,
which are all required, in model 2, to be within the H
core.

As an example, when nII =8, according to Eqs.
(11)—(13), the frame is (2, 2, 2) and the minimal H core
surface area is S' =24. However, if we have one P sing-
let, then H, „;„=9)n~, and the frame dimensions must
be at least 3,2, 2). By enumerating all possible com-
binations of arrangements for this example, it can be
shown that the minimal surface area of any such se-

1. H equivalents

Model 1 finds minimal-surface-area H cores based on
neglecting chain connectivity and sequence information.
That approximation predicts the shapes of the H cores
and gives an upper bound on the number of HH contacts.
But real chains are more constrained, by bond connectivi-
ty, and therefore may not be able to achieve so compact
an H core or so many HH contacts. In order to predict
the shapes of H-cores more accurately and to give a
tighter upper bound, we now consider an improvement
that takes into account one aspect of chain connectivity
and sequence. In model 2, we consider the costs of bury-
ing P monomers that occur because of P singlets (i.e., P
in. . .HPH. . .). Examples of P singlets are residues 2, 5,
8, 18, and 21 in Fig. 1.

P singlets in a sequence will usually lead to frames that
are larger than the size of the original frame of minimal
H-core surface area, for the following reason. Since an K
core, by definition, contains all monomers of the H type,
then the two H monomers that Hank a P in a P singlet
must be within the H core. Moreover, since the frame of
an H core is defined to be a rectangular solid, then it is
geometrically impossible for the P in a P singlet to reside
outside the frame since the two fIanking H monomers
must be contained within it [23]. Therefore, to introduce
consideration of P singlets into the optimization in Eq.
(5}, we must now change Eq. (6) to recognize that the
frame volume (lwh ) must not only exceed the number of
H residues, but instead must exceed the sum of the num-
ber of H residues plus the number of P singlets. If the
number of P singlets is np, then, when computing the

1

frame size using Eqs. (5) and (6), we should now replace
n~ with
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quence is at least S;„=28. Thus the surface area of the
minimal H core for a sequence with eight H's and one P
singlet is the same as if there were nine H residues.

2. Polar edges

Model 2, which accounts for P singlets, leads to poten-
tially greater H core surface area than model 1. The
amount of surface area increase from model 1 to 2 de-
pends on where the P singlets are placed. If a P singlet is
buried in the core, it is energetically costly because it con-
tributes six sides of an H cavity to the surface area [see
Eq. (4)]. Lower-cost placements of P singlets are either at
corners (residues 18, 21, 2, 8, Fig. 1), or aligned with oth-
er P singlets that are at corners of the H core (residue 5,
Fig. 1); those configurations introduce no cavities. One
configuration in which P singlets add minimal surface
area is a line of edge positions occupied by P singlets
and/or solvent molecules (but no H monomers; e.g. , the
line of monomers 2, 5, 8 in Fig. 1). In this case, the sur-
face area is smaller than that which is calculated from
Eq. (15). We call this a polar edge. To take P singlets and
polar edges into account, we optimize a new objective
function. Here, we will only give the formulation for se-
quences in which nH ~27 and np ~ [nH/3J ~9 [24]. We

1

note that this is a fairly general class of sequences since,
when the ratio of the number of H to P monomers is in
the range 0.5 —1, the value of HeqU&p 27+9=36 typical-
ly corresponds to 70 ~L ~ 50.

Let S (o ) be the surface area of an H core in model 2.
Let nI, be the number of P singlets in sequence o.. To

1

find the minimal surface area, we now minimize

S~(cr) =2[(l —1)(w +h)+wh+ wb+hb ]—bs, (16)

with dimensions as defined in Fig. 5, and subject to the

hb

FIG. 5. An H-core body and barnacle, indicating placements
of H monomers (dark) and P monomers (light). The barnacle
layer has five H equivalents: two are H residues, three indicate
possible P singlets. The line of P's indicated by 2 shows a polar
edge.

constraints

nH+nI, ~lwh,
1

w~h,

b —hb

h ~hb,

2(wb+hb)=P (vb),

where

vb =nH+np —(l —1)wh,

if vb —2np then 2(wb+hb) —P~(vb —np )
1 1

else 2eb+2[(np np—)/h J,

(17)

(18)

(19)

(20)

(21)

(22)

(23)

where

eh=
nz

1

Ub

and if w )2 then eb ~2 else eb ~ 1,

(24)

np:vb hb( wb eb ) and 0 np np (25)

S' (cr) ~S (o }~S;„,

These equations have the following bases (also see
[24]). Equation (16) is identical to Eq. (5), but with a
term As subtracted to account for the reduction in area
due to polar edges. Constraint (17) enforces that all H
monomers and P singlets must be within the frame. In
the remaining equations, [x J is the fkor function [19]. vb

[Eq. (22)] is the number of H equivalents (i.e., H residues
plus P singlets} in the barnacle layer. wb and hb are the
width and height of the barnacle layer in the dimensions
parallel to the width w and height h of the frame, respec-
tively. They are determined by the minimal perimeter for
vb [Eqs. (19)—(21)]. The minimum perimeter of the bar-
nacle layer is determined by Eqs. (8) and (9) in model 1

[Eq. (21)]. eb is the number of polar edges in the barnacle
layer; and nI, is the number of P singlets in the barnacle

1

layer. The term [vb /wb J in Eq. (24) is close to and usual-

ly equals hb. There are two kinds of cases of hs. The
"then" part in Eq. (23) is for cases in which the barnacle
layer is sufficient to accommodate the P singlets. In the
"else" part, the two terms account for the area reductions
from polar edges in the barnacle layer and the H-core
body. When np =0, bs =0, and 2(wb+hb ) in Eq. (21) is

the same as 2(wb+h„) in Eq. (5); hence S reduces to S'
of Eq. (5). When the number of P singlets, np )0, b,s is

1

usually greater than zero.
Since any configuration that can be assumed by a se-

quence in model 2 can be assumed by the disjoint seg-
ment model, model 2 provides a tighter lower bound for
the minimal surface area of the H core, S;„,than the
disjoint segment model, i.e.,
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and is therefore a more accurate estimate of the best H
core for a given HP sequence.

As an example, for the sequence in Fig. 1, we calculate
S (o ). In this case, we have H, „;„'=21,and the number
of P singlets is n~ =5. Therefore, there is a frame in

which I =3, w =3, h =3, and the volume of the barnacle
layer is

Ub
—H~q~I„LUA [H~q~, „/Wll J

—3

Given this value of vb, a minimum lateral surface area
can only be achieved if hb is 1 or 2; we arbitrarily choose
hb =1. Then mb =3. Thus the number of polar edges is

eb =2 and the number of P singlets in the barnacle layer
is nz =2. This leaves three more P singlets, which make

1

an edge of length 3. Thus As=2X1+2X2=6. From
Eq. (16), we get S (rr) =44. In this case, this happens to
equal S (cr), the minimum possible surface area obtain-
able within model 2. This lower bound from model 2 is
close to the true minimal surface area (found through the
constraint-based search explained later) for this sequence,
which is S;„=46.

In general, for the same number of H equivalents, the
more P singlets there are in a sequence, the more polar
edges are possible, and the greater will be the reduction
of surface area, As, provided the H core is sufficiently
compact. It can be shown (proof omitted) that because of
the tendency to form "polar edges" certain sequence pat-
terns assume amphipathic-helix-like [(25)] configurational
patterns. For example, the sequence of H1 to H9 shown
in Fig. 1 most favorably adopts the configurational pat-
tern shown in Fig. 1 [26].

C. Third approximation:
0 segments must reach into the core

/(
I I

)R

FIG. 6. Illustration of core depth. Here only the H core is
shown. The shortest paths from a buried position R to the sur-
face are to A and to B. To reach position R without burying
any I' monomers requires some string of H monomers in the se-
quence equal to or longer than

~
AR

~
+ ~BR ~.

p I'. (26)

The size and shape of an H core that can be achieved

H in any H segment, one direction along the sequence to
the nearest P is shorter than the other and 6= 1. Table II
illustrates these definitions, in which the tether length of
residue H1 is calculated.

It is straightforward to show that for an H core
without a cavity, an H residue having a tether length p
can occupy a position of core depth r only when

In model 3, we incorporate an additional constraint
that the sequence imposes on the possible native struc-
tures. To achieve an optimal compact core, an HP se-
quence must have H segments long enough to penetrate
to the center of the core then return to the surface (see
Fig. 6); otherwise I' monomers will be buried, which in-
creases the surface area. For example, a long (L )54) se-
quence. . .HPPHHPPHHPPHHPPHHP. . . cannot make
a compact (cubelike [27]) core, without introducing H
cavities, if there is no H segment longer than two mono-
mers. To account for this effect, we define two quantities
here. (i) The core depth of a site is the minimal distance
(Manhattan distance, in lattice steps) of a path that starts
from a position on the surface, passes through the site,
and ends at another surface site (see Fig. 7). (ii) The teth
er length, p, of an H residue is defined in terms of the dis-
tance, d, between the residue and the nearest end of its H
segment [28]:

p=2d +5,
5=0 if d =(A, —1)/2, where A, is the length of the H seg-
ment; 5=1, otherwise. The quantity 6 defines a sequence
symmetry: When an H residue is in the middle of an K
segment that has an odd number of H's, then neither
direction has a shorter distance and 5=0; for any other

1f i ill'
&I P

Mil"-i il I

i/i, i~i iiEi i)i

FIG. 7. The depths of the positions in a middle layer for a
(4,4,4) H core. Note that since this H core has layers of the
same size on both sides, the positions marked by 0 are edge po-
sitions. Those marked by 1 are face positions. Those by 2 inte-
rior positions. Typically, a corner or edge position has the
depth of 0, since the position has at least two distinct sides to
reach the surface. The depth of a face position is 1, because it
has only one side to reach the surface directly and need to use
the side of its neighboring residue as the other side for reaching
the surface. Each of the interior positions in the figure has
depth 2, since two residues are required to get to the nearest
surface sides.
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TABLE II. Examples of tether lengths.

Segment
pattern

PH1P
PH1HP
PHH1HP
PH1HHP
PHH1HHP

Minimum distance
to the ends

d=0
d=0
d=1
d=0
d=1

6=0
6=1
6=0
6=1
6=1

Residue
tether length

p=0
p —1

p —2
p=1
p —3

Segment
length

A, =1
A, =2
A, =3
A, =3
A, =4

depends on the distribution of lengths of H segments.
The avoidance of cavities in an H core requires that the
following relation must hold for each depth r:

pmax

P=f

max

(27)

where p „is the maximum tether length of H segments
in the given sequence, and r „ is the maximum core
depth. N is the number of H residues in the sequence
that have tether length p and n; is the number of posi-
tions at depth i. The left-hand side accounts for the num-
ber of H residues that can fill positions at depth r. The
right-hand side accounts for the number of core positions
that are at depth greater than or equal to r. This inequal-
ity is the result of simply applying inequality (26) to all
depths of the H-core positions. It holds because, for each
depth r, only those H residues that have tether lengths
equal to or greater than r [29] can occupy that depth and
deeper positions.

To find the minimal H core surface area for model 3,S,we introduce inequality (27) as an added constraint to
Eq. (16). In practice, we use the inequality (27) to filter
the solutions obtained after optimizing Eq. (16). For ex-
ample, if we have a sequence with H=24, X =0 for
p~ 2 (i.e., there are no H residues of tether length 2 or
higher, implying no H segment of length 3 or greater),
and if we had found from minimizing Eq. (16) that the
frames of minimal surface area included ( 3,3, 3 ) and
(4,2, 3 ), then constraint equation (27) would eliminate
the frame ( 3, 3, 3 ) since it contains a position of depth 2
which cannot be accommodated at low-energy cost by
this sequence. The example shows that H monomers
with long tether lengths are often rare resources. When
there are too few long H segments, the H core and the
conformation will adopt a Hat shape instead of a cubelike
compact one. Very long H segments are rare in real pro-
teins; this could be the basis for domains and sandwich-
like shapes in the proteins that have them [30].

So far we have considered only cases of a single H core
with no H cavities. The cases of multiple H cores and
cavities can be treated by reducing them to the former.
For example, for a particular HP sequence, to see if bury-
ing a P singlet can achieve a smaller H core surface area,
a P singlet can be treated as if it were an H insofar as the
two H segments now become one longer H segment (the
length equals one plus the sum of the two H-segment
lengths). An optimal core can now be sought using the
same methods as above. There are two opposing tenden-
cies. On the one hand, the P seen as H is disadvanta-
geous insofar as it creates an H cavity, which tends to in-

crease the surface area. On the other hand, the P seen as
H is advantageous insofar as it provides a longer tether
length, which may allow the chain to assemble a more
compact (cubelike) H core. When will it be advantageous
to bury a P7 Suppose o. is the original sequence we at-
tempt to fold, and suppose it has an actual minimal H-
core surface area S;„(o). Now suppose cr, is a modified
sequence constructed by taking a P as if it were an H.
The minimal estimated surface area for o, is S;„(o., )
and a buried P residue will have cavity area Q. Then the
native state will not have a cavity area of Q, if there is no
o.

&
for which o. ,

S;„(o,)+Q ~S;„(o.) .

The sum on the left-hand side is the lower bound of the
surface area of an H core with cavity area Q for the given
sequence o when a particular P residue acts as an H and
is buried in the H core [31]. Inequality (28) is often good
enough to determine if we need to search for native con-
formations with H cavities [32] or whether we need to
construct a different sequence and try again. For exam-
ple, in general if the sequence has many long H segments,
then burying P residues only adds surface area and does
not make the H core more compact.

Multiple H cores can also be treated, but on the three-
dimensional cubic lattice for chain lengths L & 5 =125 a
single H core is almost always preferred, so we do not
consider those cases further here.

VI. THE SEARCH PROGRAM

Based on the foregoing sequence-structure relation-
ships, we have developed a program for fast exhaustive
search [33,34] of native conformations. The program

FIG. 8. A native conformation of L 5 in Table III.
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L1

L3

L4

L5

TABLE III. Example sequences.

Sequence and Conformation

HPPPPHHHHPPHPHPHHHPHPPHHPPH
RFDDB ULLF UBBRRDLLDFFRBBBRF
HPPPHHHHPHPHHPPPHPHHPHPPPHP
RFDL ULDDBR ULBLDFFUB UFURBDB
HPHHPPHHPPHHHHPPPHPPPHHHPPH
RFLLFRRDR UUBDB ULL URFDFL UBD
HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH
RFLDRBDFLB UB URRDLDLL UL URFFDBDF
PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP
RFDBDBUB UFURDBDFDF UFUB URDFDBDB UB UFU

27

31

36

Degeneracy

36691

297

25554

1114

3538

first estimates the minimal surface area, the frames for H
cores and the allowed cavity area [31]. The program
searches the conformational space by constructing a con-
formation by laying down monomers one at a time. At
the first stages of the search we "set up" the frame:
Placements of the first few H monomers will not yet
specify the frame location. But further assembly makes it
clearer where the frame boundaries must be relative to
the placed H monomers. When placing a residue, we use
the following constraints: (1) an H residue should be
placed inside the frame; (2) a P residue should be placed
close enough to the frame so that the next H residue can
make it into the frame; and (3) the cavity area Q should
not exceed the limit determined by the inequality (28).
During the search, a branch of the search tree is pruned
if any of these constraints is violated. If the search fails
to find a solution, the program will increment the esti-
mate for the minimal surface area, recompute the corre-
sponding frames, and start the next round of search. Be-
cause this estimate of the minimal surface area is a lower
bound, this approach will never miss a solution.

The requirement that H residues must lie within a
frame substantially prunes the search tree. For example,
the number of conformations of maximally compact
homopolymer chains grows only as 1.9, compared to
4. 7 for all conformations [35].

The search speed depends on the monomer sequence.
For typical sequences with H-residue:P-residue ratio
~ 50%, the speedup is about 10 . For some particular se-
quences, the speedup can reach 10 or higher. Some
chains of L =36 can be folded in 20 min running on a
Sun 4 workstation. The computer program has been vali-
dated using results for short chains, L ~ 15.

Five examples of folded HP sequences are shown in

Table III. Here, for each sequence a native conformation
is shown. A conformation is represented by a sequence of
bond directions, R, L, D, U, F, B are right, left, down, up,
forward, and backward, respectively. One native confor-
mation for the 36-residue chain L5 is shown in Fig. 8.
Table III shows the total number of native conformations
(degeneracy) for a sequence. The estimated minimal sur-
face areas (S ), actual minimal surface areas (S;„),and
the search times on a Sun 4 workstation are shown in
Table IV. The search time for brute-force search is extra-
polated from the results for shorter chains, also running
on a Sun 4 workstation.

VII. CONCLUSIONS

We study the relationship between the monomer se-
quence and native structures of HP copolymers in the
three-dimensional lattice model. We derive a folding
equation that serves to reformulate the folding problem
to that of finding conformations that have H cores of
minimal surface area. The minimal H core surface area
that is achievable by an HP sequence is estimated at three
different levels of treatment of chain connectivity and se-
quence. Model 1 neglects connectivity between H seg-
ments; model 2 is a refinement that accounts for the
placements of P singlets (P in. . .HPH. . .); and model 3
accounts for tether lengths of H segments (the ability of a
sequence of consecutive H monomers to reach into, and
return from, the center of the core). These models are
used to compute the dimensions of a rectangular solid,
the frame, within which all the H monomers must reside
in order for a conformation to be native. The frame
serves as a strong constraint for pruning the decision tree

TABLE IV. Search time for example sequences.

Sequence

L1
L2
L3
L4
L5

14
13
14
24
12

nI
1

S

38
36
38
50
16

~min

40
38
38
52
16

Search time
(brute force)

9X10 h
9X10' h
9X 10
4.5X10" h
10" h

Search time
(using constraints)

1 h, 38 min.
1 h, 14 min.
5 h, 19 min.
5 h, 18 min.
20 min.
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that seeks native structures. These constraints underly a
computer algorithm that finds native states for three-
dimensional chains up to I, =36 monomers long in its
present implementation.
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APPENDIX

P (Np)+P (Ng) &P (Nt +Ng), (Al)

where P ( ) is the function of the minimal perimeter of a
layer defined by Eq. (10).

Proof: P (N) is the minimal perimeter of any layer
containing N residues. For any integers a and b,

if ab &N then 2(a+b) &P (N) . (Al')

Any integer N can be expressed as N =p +q where p, q
are integers and q & 2p+ 1. Let

We show here that under the disjoint H-segment mod-
el, the H core of every native conformation can be
reconfigured into a body and a single barnacle layer,
without changing the size of the frame. This serves as
the basis for the optimization equations beginning with
Eq. (5). The main idea behind the proofs below is that, in
the disjoint H-segment model, H segments in two layers,
A and 8, can always be reconfigured instead into two
different layers, C and D, one of which fills the frame
efficiently, and the other of which contains the remaining
segments. Before proceeding with this proof, we first ex-
plain how we compute the surface areas of H cores. We
do it on a layer-by-layer basis. That is, if layers are
stacked along the z axis, the total projection in the x and
y dimensions is the sum of "lateral surface areas" of each
layer "slice" (see Fig. 1). Each slice has a "cross section"
(on the yz plane in Fig. 3), the perimeter of which defines
its "lateral surface area" (see Fig. 2).

As an example of reconfiguration, for the seven layers
shown in Fig. 3, the two rightmost layers can be com-
bined into a single layer. The resulting new layer will
make no contributions to surface area in the direction of
attachment because its projection is blocked by larger
layers. However, since the laterial surface of the new lay-
er is smaller than the sum of those of the original two lay-
ers, the combination results in the reduction of surface
area. The following three lemmas explore relationships
that hold for such transformations. The first lemma
states that if the residues of two layers P and Q are
reconfigured to form a single layer C, then the minimum
cross section perimeter of C will be smaller than the sum
of the perimeters of P and Q.

Lemma 1 (combining two layers with no restriction on
total uolume) Let Nt, an. d N& be the numbers of H resi-
dues (i.e., volumes) in layers P and Q, respectively. The
following relation must hold.

Xp=m +k 1V =n +l
where k, l, m, n are integers and

P (Nt, )=2 2m+ k

Similarly,

P (Ng ) =2 2n+ l

So we have

P (Nt )+P (N&)=2 2m+ +2n+k I
m n

li)2 2'+ +n+
n

Now, we separate the right-hand side as in Eq. (Al').
Since m [k/m] &k, we have

(m+ [[k/m] )m &m +k .

Similarly (since m & n)

ln+
n

~n +l.
Therefore,

p7z +n + — & m +k+n
n

Taking m+ [k/m] and m +n + Il/n], respectively,
as a and b in Eq. (Al'), we have

2 2m+ +n+ — &P (m +k+n +1)kI n

=P (Nt +.Ng) .

Thus if there is no constraint on how layers P and Q
can reconfigure into a new single layer C, then C will
have less lateral surface area. The following is the
geometric interpretation of this lemma. Suppose the lay-
ers P and Q adopt the shapes that have minimal perime-
ters. Then by attaching layer 2 to layer 8, some of the
sides on the perimeters become shared. Therefore the
new layer will always have a smaller perimeter than the
separate layers P and Q.

The result above applies when two layers can combine
without constraint. Now consider a different situation in-
volving a constraint. Suppose layers P and Q are
reconfigured to form two new layers C and D, subject to
the constraint that neither C nor D can individually
exceed a given number of H monomers. This situation
arises when layers are constrained to fit within a given
frame. Even subject to this constraint, the

0 k &2m+1, 0 l &2n+1 .

Assume m + n. From the definition of P, it can be
verified for cases of k =0, 0(k ~ I, and m & k 2m that



SEQUENCE-STRUCTURE RELATIONSHIPS IN PROTEINS AND. . . 2277

O~k &2m+1, 0(I (2n+1 .

If Xc can be expressed in the form of mm' where m
and m' are integers and m' —m is 0 or 1 (condition 3),
then

P (Hp )+P (Ng ) )P (Nc )+P (ND ) . (A2)

Condition 1 states that the volume of one of the result-
ing layers will be larger than either original layer. Condi-
tion 2 conserves volume. Layer C can be constructed by
moving residues from layer Q to layer P. Condition 3 al-
lows only transformations that cause Layer C to be a
nearly square rectangle. The proof (omitted) follows the
same reasoning as for inequality (Al).

Next, consider reconfigurations of more than two lay-
ers.

Lemma 3 (combining multip/e layers subject to a max
imum volume per layer). If the maximum volume of a
layer is A and the total volume (number of residues) V
satisfies

where X is an integer, then if there are X'& X layers in
the frame, the surface area of the H core is not minimal
for the given maximal volume A.

This lemma states that unless the number of layers has
reached the minimum, we can always reduce the surface
area by combining layers. Again, the proof (omitted) fol-
lows the same reasoning as for lemma 1. Here we give an
intuitive argument for the lemma. According to lemmas

reconfiguration may still lead to a reduced perimeter, un-
der the following conditions. Let the volumes of layers C
and D be Xc and XD.

Lemma 2 (combining two layers with restriction on the
resultant layer volumes) A. ssuming Nc Np N& (con-
dition 1) and Nc+ND =Hp+N& (condition 2). Let

&p=m +k, %g=@ +I,
where k, I, m, n are integers, and

1 and 2, to minimize the surface area of the layers, two
smaller layers can combine into a larger layer, without a
residual layer (if there are no constraints on volume per
layer), or with a residual layer (if layer sizes are con-
strained). Under these conditions the lateral surface
areas (perimeters) will not increase. As for the total sur-
face area, which also includes the area in the dimension
perpendicular to the layer, it does not increase either.
This is because the volume of any resulting layer is less
than A and the largest layer (with area A) can block the
projections of other layers and determine the projection
area in the direction perpendicular to the layers. %'e can
repeatedly reconfigure layers so that the layers have the
largest possible volumes. Each step of reconfiguration
may result in either 1 or 2 layers. If it results in two
difFerent layers, then the surface area at least will not in-
crease (lemma 2). However, since N') N, at least for one
step of the reconfiguration, two layers will combine into
one layer. According to lemma 1, at this step, the surface
area will be reduced. This shows the original X' layer ar-
rangement is not optimal.

Finally, assuming a model of disjoint H segments, we
show that the H core of a native conformation can be
reconfigured into a body with a single barnacle layer. On
a cubic lattice, a layer achieves its minimal lateral surface
area by configuring to have a rectangular cross section.
By lemma 3, if an H core has multiple layers, then we
should combine multiple small layers into a smaller num-
ber of layers, each one as large as possible, until the
remaining H residues do not completely fill the largest
layer. Taken together, these arguments imply that the
optimal configuration is a stack of rectangular layers of
the same volume and a remainder layer that contains the
rest of the H monomers. The volume of the remainder
layer will be

vb= V —A IV/Al,

where V is the total number of residues and 2 is the area
of the large rectangular layer.
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