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The equation of state and the transport coefficients of shear viscosity, thermal conductivity, thermal
diffusion, and mutal diffusion are estimated for a binary, equimolar mixture of hard spheres having a di-
ameter ratio of 0.4 and a mass ratio of 0.03 at volumes in the range 1.7V, to 3V, (Vo=1V2N3 x,03,
where x, are the mole fractions, o, are the diameters, and N is the number of particles), complementing
and, in some cases, improving earlier low-density results through Monte Carlo, molecular-dynamics cal-
culations using the Green-Kubo formulas. Calculations are reported for 108 to 2048 particles, so that
both finite-system and, in the case of the transport coefficients, long-time tail corrections can be applied
to obtain accurate estimates of the pressure and the transport coefficients in the thermodynamic limit.
Corrections of both types are found to be increasingly important at higher densities, for which the pres-
sure is observed to become nonlinear in 1/N over the range covered. The Mansoori-Carnahan-Starling-
Leland (MCSL) equation is found to account for the pressure with considerable accuracy for V= 1.7V;
the difference between the observed (infinite-system) pressure and the MCSL prediction increases mono-
tonically with density, reaching 0.4% at ¥V'=1.7V,,. For volumes below 2V, the pressure in excess of the
MCSL prediction is found to “soften” slightly in its dependence on the density. The pressure is also
compared with the known virial series (B, and B;) and the difference is fitted to a rational polynomial
from which estimates for B, and Bs are derived. The transport coefficients are compared with the pre-
dictions of the revised Enskog theory, evaluated using the MCSL equation of state. The shear viscosity
coefficient is found to lie within about 5% of the theory over much of the range of densities, exceeding
the Enskog prediction at both high and low densities and rising sharply at the highest densities. The
thermal conductivity drops to about 94% of the Enskog value at about 2.5V, but the ratio increases at
higher densities. The thermal diffusion and mutal diffusion coefficients, relative to the Enskog values,
drop monotonically to roughly 0.75 with increasing density. The pressure estimates vary in accuracy
from 0.001% to 0.01% with increasing density. The accuracy of the estimates of the transport
coefficients similarly ranges from 0.5% to 3.8%. The magnitude of the 1/N corrections to both the pres-
sure and the transport coefficients increase with density, equaling, for example, 0.3% of the 256-particle
pressure at ¥=1.7V,. At the same density, the combined finite-system and long-time tail correction for
the mutual diffusion is 4.3% of the 256-particle result.

PACS number(s): 51.10.+y, 05.60.+w, 66.10.—x, 66.20.+d

I. INTRODUCTION

JULY 1993

The prediction of the thermophysical properties of
matter from knowledge of the microscopic interaction
potential remains the central objective of statistical
mechanics. While the exact theory can be carried quite
far in the low-density limit, the extension to liquid densi-
ties has been painstakingly difficult for the transport
properties compared to the successful treatment of the
equation of state. The latter has proceeded through both
systematic and ad hoc analytic theory combined with nu-
merical simulation via Monte Carlo and molecular dy-
namics. For the transport coefficients, however, the situ-
ation for dense fluids remains problematic. The ad hoc
generalization of the Boltzmann theory for high-density
hard spheres by Enskog [1,2] (along with recent exten-
sions) remains virtually the only analytic calculation of
transport coefficients. The systematic extension of the
Boltzmann equation to finite densities reveals divergences
in the density series [3,4] unlike the well-behaved virial
series for the pressure. While it is possible to at least par-
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tially renormalize the theory through summation of the
so-called ring events, that path has been limited by the
difficulty of the calculation to the determination of the
long-time tails of the Green-Kubo time-correlation func-
tions [5,6]. Similarly, the cutoff of the divergent integrals
which arise in the density series through mean-free-path
arguments yields at most the first few terms for the hard-
sphere fluid [7,8]. Alternatively, the application of hy-
drodynamics at the microscopic level to the evaluation of
the time-correlation functions of the Green-Kubo theory,
which yields long-time tails in agreement with the kinetic
theory [9,10] has gained importance in the theory of
transport.

The paucity of theoretical results creates a need for
hard results against which theoretical advances can be
tested. Indeed, the evaluation of transport coefficients for
simple interaction potentials is important both from the
point of view of theory and also in providing a guide to
experiment where it is important that the behavior of
idealized substances be known if one is to interpret effects
arising from the more complicated aspects of the interac-
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tion potential. While there exist many such results in the
literature for single-component fluids, there are few ex-
tant results for mixtures. The present series of papers at-
tempts to fill this niche through evaluation of both the
equation of state and the transport coefficients of binary
hard-sphere mixtures at densities in the fluid regime.

In the preceding papers [11,12] of this series, we have
compared the transport coefficients of binary hard-sphere
mixture estimated through Monte Carlo (MC),
molecular-dynamics (MD) calculations with the predic-
tions of the revised Enskog theory [13-18]. In I, for the
case of a binary, equimolar, “isotopic” mixture having a
mass ratio 0.3 and a volume of 3V,

V0=%\/§N S x,0° (1)

a=1

[in which n; is the number of components (2, in the
present case), N is the total number of particles in the sys-
tem, and x, and o, are the mole fraction and hard-
sphere diameter of species a, respectively] we found the
“thermal” transport coefficients of thermal conduction
and mutual and thermal diffusion to exceed the theoreti-
cal predictions by from 11% to 22%, even though the
shear viscosity was less than 2% high. In II, we con-
sidered a helium-xenonlike mixture having a diameter ra-
tio of 0.4 and a mass ratio of 0.03 at low densities, viz.
from 5V, to 20¥,. Deviations from the Enskog theory
were found to be negative for the thermal transport prop-
erties and positive for the shear viscosity, although not
strongly so. Over the density range treated, the devia-
tions were all less than 6%.

In the present paper we extend the study of the latter
system to higher densities by treating volumes in the
range 3V, to 1.7V,. Because this range lies well above
that for the fluid-solid phase transition for the single-
component fluid (~1.5V}), the mixture is expected to
remain stable against solidification throughout. Howev-
er, the possibility of other phase transitions, for example,
fluid phase separation, within this interval is not so easily
dismissed. A number of MC and MD calculations have
studied hard-sphere mixtures having similar diameter ra-
tios: equimolar mixtures having a diameter ratio of %
and V> 1.57V, by Smith and Lea [19], equimolar mix-
tures having a diameter ratio of 1 and V'>1.46V, by
Adler [20], an equimolar mixture with diameter ratio 0.3
and V=1.51V, by Lee and Levesque [21], mixtures hav-
ing diameter ratios of 1 and | and 1.65V, <V <1.26¥
by Fries and Hansen [22] at several low concentrations of
the larger spheres, and mixtures having diameter ratios of
1 and % and ¥V > 1.23¥,, at three values of the mole frac-
tion, including the equimolar case, by Jackson, Rowlin-
son, and van Swol [23]. Attention is also drawn to the
MC and MD studies by Kranendonk and Frenkel [24,25]
directed at eliciting the phase diagram of binary hard-
sphere mixture for diameter ratios near 1. In each of
these studies, the authors report the existence of a stable
solid phase only for volumes less than the hard-sphere
fluid-solid transition, ¥ ~ 1.5V, with no evidence for the
appearance of coexisting fluid phases. Indeed, until re-
cently, the possibility of demixing into two fluid phases

has been widely discounted on the basis of both these re-
sults and the predictions of the Percus-Yevick integral
equation [26,27]. Recently, however, Biben and Hansen
[28] have, on the basis of an improved theory, argued for
the existence of phase separation for diameter ratios
below 0.2. Moreover, Frenkel and Louis [29] have prov-
en that phase separation occurs in the absence of attrac-
tive interaction for certain lattice mixtures. Thus the ex-
act nature of the phase diagram for hard-sphere mixtures
remains conjectural, particularly for diameter ratios well
below 1.

We study, then, the equation of state with some care,
including the dependence on system size, comparing the
pressure and the mean free time with the predictions of
the Mansoori-Carnahan-Starling-Leland [30,31] (MCSL)
theory, which is widely believed to improve upon the
Percus-Yevick equation of state, whether from the
compressibility or the virial expression. Because our pri-
mary interest here concerns the transport coefficients and
these require a more thorough exploration of phase space
than the equation of state to achieve a given accuracy,
the present calculations are considerably more precise
with respect to the equation of state than those previous-
ly reported. At the highest densities studied, the statisti-
cal uncertainties in the pressure are sufficiently precise as
to reveal the nonlinearity in its dependence on the re-
ciprocal of the number of particles, with the large-N
linear dependence becoming steeper and moving to larger
N, beyond the 108-particle regime.

In our study of the transport coefficients, we compare
our results with the predictions of the revised Enskog
theory. Our calculations include long-time tail correc-
tions to the Green-Kubo expressions for the transport
properties as well as finite-system-size corrections.
Indeed, one objective of the present study is the deter-
mination of the importance of these corrections over a
broad range of densities in the face of the fact that most
of the literature on the simulation of the thermophysical
properties ignore them. Here we find small but
significant corrections of each type which increase in im-
portance with increasing density.

Some discussion of the numerical method employed is
given in Sec. II. The results for the pressure and the
mean free time are discussed in Sec. III and the values are
extrapolated to the thermodynamic limit. The latter are
compared with the MCSL theory and the virial series.
Estimates for the fourth and fifth virial coefficients are
presented. In Sec. IV, the analogous procedures and re-
sults for the transport coefficients are described. In Sec.
V we discuss the significance of our results.

II. SYSTEM AND METHODS

We consider mixtures of hard spheres, fully described
in I and II, which the reader should consult for further
details. Here we consider equimolar binary mixtures in
which the particles of species 2 have diameter 0.40; and
mass 0.03m, values similar to those for helium-xenon
mixtures. While the pressure is independent of the mass
ratio, the transport coefficients are not.

For each of six values of the volume in the interval
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[3V,,1.7V,] we have calculated the transport
coefficients, as previously described, and the equation of
state for a fixed set of five system sizes, viz. 108, 256, 500,
864, and 1372 particles; the exceptions are the volume
3V, for which the 256-particle system was not considered
and the volume 1.7V, for which a calculation for 2048
particles was added. For each N and V, the calculation
consists of a MC random walk in configuration space in
which at least 200 attempts to “move” each of N —1 par-
ticles were made in generating the ith configuration r¥
from the (i—1)th. The ith point in phase space xY is
then formed from rY and a point in momentum space p
chosen randomly and uniformly from the ‘“molecular-
dynamics” ensemble distribution function for composi-
tion N=(N1,N2,...,N,,S), volume V, energy E, and
linear momentum ﬁ,
8(Hy(p™M)—E)S(Py(pM)—M)
Z(NVEM)

Z(NVEM)= [dr® [ dps(Hy(p")—E)

X8(Py(pM)—M) ,

p(NVEM)=

b

(2)

in which Hy is the Hamiltonian, Py, is the total momen-
tum of the system, and 6(x) denotes the delta function of
the dimensionality of its argument. For the case of M=0
which we treat, the selection of momenta is made using
the Box-Muller [32] method to yield raw velocities V;
from the Maxwell-Boltzmann distribution for tempera-
ture 7 given by
1 3(N—1)

Potr ™ 28 ®

which are then translated to the center-of-mass frame of
reference and scaled to the desired energy surface to yield
the momenta

172

in which the a sums extend over species and the i sums
extend over particles. Each of the MC phase points
x¥=(r¥,p %) so selected is used as the initial phase for a
dynamical trajectory on which we compute the pressure,
the collision rate, and the transport coefficients. For the
calculations reported here, each trajectory was developed
to a time of 6000z,, where ¢y, is the Boltzmann expres-
sion for the mean free time, as given in II. For each
(V,N) pair, 50 such trajectories were generated in the
combined MC and MD calculation; the exceptions are
the V=3V, realizations for N=108, 864, and 1372
which have 30 trajectories and the V=1.7V,, N =2048
case with 27 trajectories. Because the ratio of the actual

mean free time to the Boltzmann value decreases with de-
creasing volume, the total number of collisions calculated
for given values of ¥ and N varies between the 1.8X 10’
collisions for 108 particles at 3V, and the 7.0X10® for
1372 particles at 1.7V,

In addition to the standard Metropolis algorithm to
generate the set of configurations {r"}, we also use a vari-
ant in which the final configuration from the ith MD tra-
jectory becomes the starting configuration for (i +1)th
set of MC moves. In those cases in which our 200 (or
more) MC steps seem inadequate to destroy all traces of
serial correlation, viz. at high density, this “augmented”
method appears to be advantageous. A second variant in
the Monte Carlo algorithm was employed in one case,
viz. the interchange of a larger with a smaller particle us-
ing the method of Kranendonk and Frenkel [24]. One
such interchange was attempted following the attempt to
move each of the particles once by the Metropolis
method.

The initial configuration for these calculations was (i)
for V=1.9V,, the face-centered cubic (fcc) lattice with
the two species randomly distributed over the sites or (ii)
for ¥V =1.8V,, the final configuration achieved on one of
the trajectories of the adjacent lower-density realization
having the same value of N uniformly compressed to the
smaller volume in steps dictated by the nearest pair of
particles after a series of ten MC moves per particle at
the current volume. However, for V=1.7V,, N =2048,
the initial configuration was constructed from eight ap-
propriately translated images of a configuration from the
N =256 calculation at the same reduced volume. These
techniques were invoked because for volumes less than
[2/(140.4%)]V,~1.88V, the separation of nearest-
neighbor sites of the fcc lattice is less than the diameter
of the larger particles. Because of the length of the MC
step and, particularly, the MD trajectory, we have ob-
served no significant initial transient in the observations,
irrespective of V, for the augmented MC algorithm. For
cases in which we have employed the standard algorithm,
only for high densities do we find evidence for serial
correlation of our results. For reduced volumes of 2 and
1.9, we find that values of the acceptance-to-rejection ra-
tio of MC moves are serially correlated for the first
several cycles of the calculation. Nonetheless, the trajec-
tory averages which enter the equation of state and the
transport coefficients show no correlations over the corre-
sponding trajectories. Thus, even though the augmented
algorithm would have been preferred for these values of
V as well, it seems clear that our trajectories are
sufficiently long that the correlations are limited to the
initial portion of these trajectories and the trajectory
averages show no appreciable trace thereof.

We also recognize the recent study of Ferrenberg, Lan-
dau, and Wong [33], which demonstrates the failure of
MC calculations to yield correct results for the equation
of state of the two-dimensional Ising model under various
combinations of algorithms and pseudo-random number
generators. While the present calculations are far more
extensively time averaged than they are phase-space aver-
aged, under the circumstance it seems appropriate to de-
tail our use of pseudo-random-number generators. In the
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generation of each realization of the Markov chain in
configuration space, we employ a different random-
number generator for each spatial component of the par-
ticle displacements. Another pair of generators are used
in applying the Box-Muller algorithm in obtaining the
particle velocities. Finally, a sixth generator is used to
set up the initial fcc lattice configuration in choosing ran-
domly the species label of the particle at each lattice site.
For V' =1.8V,, for which case initialization uses a
configuration achieved for a larger V, this generator is
not used. The set of generators for each particular pair
of N,V values were chosen from the 48-bit generators,
M?20, M21, and M40, described by Wood [34], with the
particular choice of generators and the portion of the 2%
(or 2*® for the M21 generator) period of each generator
used varied from state point to state point. Because the
number of random variates from any one sequence was
typically no more than 50X 1372 X 200~ 14X 10° (i.e., 50
trajectories, 1372 or fewer particles, and usually 200 at-
tempted moves per particle), we employed only a small
fraction of each of the random-number sequences.

While the pressure was calculated in our earlier work
(I and II), neither the results nor the method of its calcu-
lation were described. The pressure is obtained through
the virial, as discussed by Erpenbeck and Wood [35]; for
each trajectory we obtain an estimate

_2[E—W(1)]
P'——‘———‘—‘3V »
_ 1 <@ (3)
W)= (Tij(ty)-Af)',-(ty) s

u =

in which ¢, is the length of the trajectory (here, 6000¢),
the overbar denotes a time average, W is the virial, ¢(#) is
the number of collisions up to time ¢, the ¥ sum is over
the times t;,t,,..., of the successive collisions,
i(y),j(y) denote the pair involved in the yth collision,
0,;=r1,(t,)—T;(z,) denotes the line of centers at the time
of collision, and Ap; denotes the momentum change of
particle i on collision y. The collection of 50 values of
the pressure, one from each trajectory, yields then the
average pressure and its statistical uncertainty. The stan-
dard tests of statistical quality described in II are applied
to assure us of the absence of measurable correlations be-
tween successive trajectories and hence the reliability of
our estimate for the statistical uncertainty.

In addition to the 30 systems treated in the
[3V,,1.7V,] range of volumes, we have also extended
many of the low-density calculations reported in II by
adding calculations for system sizes not previously stud-
ied or repeating calculations reported there, but now ex-
tending these to the trajectory lengths and numbers of
trajectories used here. Indeed, most of the calculations
reported here were executed with an entirely new version
of the computer program. Development of the latter re-
vealed a discrepancy in the definition of the temperature
in terms of the energy, Eq. (3), whereby the old program
replaced the N —1 term in that definition by N, contrary
to the assertion in II. As a result, the old results need to
be corrected by a factor of [(N—1)/N]"/?, with the
value of n dependent on the particular quantity in ques-

tion: (i) for the mean free time n = — 3, (ii) for the mutual
diffusion coefficient n =1, (iii) for the shear viscosity and
the thermal diffusion coefficient n =3, and (iv) for the
thermal conductivity n =5. The values reported for the
thermodynamic limit are, of course, independent of these
corrections, provided either one or the other choice for
the B— E relation is adopted for a given density.

Finally, we correct our expression for the mean free
time [given incorrectly in Eq. (77) of I]. If we denote the
number of collisions observed on a trajectory as c(z;) (in
which ¢, is the final time 6000t for the trajectory), then
the mean free time for that trajectory is

4N
0 2C(tf) )

(6)

The average of these values over trajectories yields the
values reported below.

III. EQUATION OF STATE

The systems studied, including the extended low-
density ones, are listed in Table I, which also specifies the
nature of the MC algorithm used. The table also lists re-
sults for the compressibility factor Z=pV /NkyT and the
mean free time ¢, including the modified results for ¢
from II.

In order to obtain the equation of state in the thermo-
dynamic limit, we plot the reduced pressure
¢=pV,/NkgT, less the MCSL theory prediction, as a
function of 1/N in Fig. 1 for V' =3V,. The behavior
displayed for 2.4V, and 3V, is typical of the low-density
results in that the data are consistent with a linear extra-
polation to the infinite-system limit. At higher densities,
however, we see that the 108-particle and even the 500-
particle (at 1.7V) pressures are inconsistent with a linear
dependence in 1/N. Fitting the data on the linear por-
tion by weighted linear least squares, we extrapolate to
N = o0 to obtain the values of the compressibility factor
given in Table I. We note that the 2048-particle result
for 1.7V, suggests the displayed fit in which the 108- to
500-particle points are omitted, leading to the continued
increase of the slope of the 1/N line with density. The
calculated infinite-system pressure is plotted in the form
of Ap=¢—dMSL as a function of reduced density in Fig.
2, which also shows the mean-free-time difference
Ato=1t,—tYSt. We note that the deviations from the
theory for both ¢ and ¢, grow rapidly with density, but
remains less than 0.7% over the entire range. We also
note that the change in N dependence seen in Fig. 1
correlates with a slight ‘“softening” in the pressure
difference for ¥ below 2¥,. While the magnitude of this
change in slope of the pressure is small, it appears to be
significant. Finally, we note that the apparent change of
sign of At at low density, discussed in II, is of marginal
statistical significance in the light of the improved results
presented here.

It should not be supposed that the decrease in slope of
A¢ near V=1.8V, in Fig. 2(a) represents a softening of
the equation of state, i.e., an increase in the isothermal
compressibility. Because the figure shows a difference in
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FIG. 1. Deviation A¢ of the reduced pressure pV,/NkyT
from the MCSL prediction as a function of the number N of
particles at volumes of 3V, (triangle, point up), 2.4V, (triangle,
point down), 2V, (square), 1.9V, (diamond), 1.8V (circle), and
1.7V, (filled triangle). The lines are weighted least-square fits to
the N>500 data for 1.7V,, the N=256 data for
1.8V, =V =2V¥,, and to all values of N for ¥V =2.4¥,. Statisti-
cal uncertainties are marked at plus or minus one standard devi-
ation.

pressures, the decrease in slope only indicates a change
relative to the MCSL pressure. The value of
[8¢/3(Vy/V) ] in fact appears to increase with increas-
ing density throughout the range of densities reported
here.

It is also interesting to compare the observed pressure
with the virial series,

n

N

Z=1+ 3 B,y |, ¥

n=1

The second and third virial coefficients have been evalu-
ated exactly by Kihara [36,37] for mixtures of square-well
particles. For hard spheres, these reduce to

n
21 u 3
Bz_T > XiXiOij »
ij=1

I
— T (ijk)
B;= 3 > xxx BV,
hjk=1
5 (8)
i 6
B(3”l)_§ e,
3 - 2 3
BUY = 0;—180,0;+320; ot

24 "

in which B{’¥ is independent of permutations of the su-
perscripts. The fourth virial coefficient has been evalu-
ated explicitly only for diameter ratios of 3 and 1 [38].

The agreement of our data with the known virial
coefficients is demonstrated in Fig. 3 in which we plot
A,d=(Z—ZP )V /V,)3, in which Z!” denotes the virial
series including terms through B, as a function of densi-
ty.  Fitting the function F(V,/V)=(Z—Z)/
[B;(V,/V)?*] to various rational functions,

R AlYie
1= oy
P D,(Vo/V)
P
N,(x)=1+ 3 P,x", O)

n=1

g
D,x)=1+3 Q,x",

n=1
0.015 T T T T T ]
. (a) A
'
0.010 |- PR
'y
S
< 0005 |- _
'
A
0.000 — A
~0.005 I ! I l |
0.0 0.1 0.2 0.3 0.4 0.5 0.6
Vo /V
0.0020 , T T T i "
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0.0000 4
s 4
-0.0005 ! 1 ! ! !
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FIG. 2. Deviation of the equation of state from the MCSL
equation of state as a function of reduced density V,/V: (a) the
reduced pressure ¢ and (b) the mean free time z, relative to the
Boltzmann value #y. Statistical uncertainties are marked at
plus or minus one standard deviation.
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FIG. 3. Deviation A, ¢ of the compressibility factor from the
three-term virial series as a function of reduced density V,/V.
The curve is the [3/1] rational function fit, Eq. (9), to the data,
with coefficients given by Eq. (10). Statistical uncertainties are
marked at plus or minus one standard deviation.

we find an adequate fit when p =3 and g =1, with
P,=0.42761459 ,

P,=0.22004003 ,
(10)
P,=0.410946 30 ,

Q,=-—0.90114079 ,

with a goodness of fit y>=2.6 for five degrees of freedom.
The fit is also plotted in Fig. 3. Our estimates for the
fourth and fifth virial coefficients are derived from Egs.
(7)-(9) to be

2 VO
3N

3
(0.606+0.002) ,

TV
3N

5=

4
(0.309+0.008) ,

in which the “uncertainties” simply reflect the numerical-
ly observed variation in the B, subject to several varia-
tions in the equation of state within its standard devia-
tions.

TABLE 1. Parameters and equation-of-state results for Monte Carlo and molecular-dynamics calculations in the molecular-
dynamics ensemble. The volume V is given relative to a reference volume ¥V, Eq. (1); N is the total number of particles, MC indicates
whether the standard (s), augmented (a), and/or species-interchange (x) Monte Carlo algorithm was used, p is the pressure, kjp is the
Boltzmann constant, T is the temperature, Eq. (5), ¢, is the mean free time, and ¢, is the Boltzmann mean free time. The asterisks

mark realizations reported in II.

s oV Lo v _pv_ Lo
Vo N Mc Nk T tw Vo N Mc Nk T too

1.7 108 a 6.7975(14) 0.296 026(60) 864 s 3.468 92(25) 0.462419(38)

256 a 6.8129(10) 0.295 746(40) 1372 s 3.46836(19) 0.462 308(29)

500 a 6.798 34(56) 0.295 429(25) © 3.46738(17) 0.462 175(26)

864 a 6.796 76(45) 0.295 312(20) 3 108 s 2.60626(75) 0.558 435(15)

1372 a 6.79472(33) 0.295285(17) 500 s 2.600 60(24) 0.556 177(57)

2048 ax 6.792 74(53) 0.295 249(16) 864 s 2.60053(23) 0.555 890(47)

® 6.790 36(83) 0.295 208(30) 1372 s 2.59959(17) 0.555 740(44)

1.8 108 a 5.9314(11) 0.325221(56) w 2.59920(16) 0.555 523(38)
256 a 5.93474(82) 0.324879(51) 5 108 s 1.713 60(24) 0.724 708(180)

500 a 5.92661(53) 0.324 556(25) 500 s 1.71223(9) 0.721220(96)
864 a 5.92338(39) 0.324436(23) " 500 s 1.71253(22) 0.721094(165)

1372 a 5.92187(35) 0.324425(15) 864 s 1.71193(10) 0.720 862(63)

w 5.91883(42) 0.324310(19) . 1372 s 1.71179(8) 0.720735(64)

1.9 108 a 5.2694(12) 0.352 639(79) ® 1.71171(7) 0.720 343(52)
256 a 5.26775(76) 0.352046(57) 10 108 s 1.291 87(10) 0.861 801(240)
500 s 5.260 64(45) 0.351772(36) 500 s 1.29175(5) 0.856980(110)

864 s 5.258 68(37) 0.351612(24) 864 s 1.29176(5) 0.856 296(99)

1372 s 5.258 31(27) 0.351513(20) . 1372 s 1.29180(3) 0.856051(67)

s 5.25596(35) 0.351 398(26) o 1.29177(3) 0.855 562(64)
2 108 s 4.7535(10) 0.378169(64) 20 108 s 1.13302(5) 0.934 541(320)
256 s 4.746 31(59) 0.377 488(55) 256 a 1.13294(3) 0.929 781(170)
500 s 4.74119(41) 0.377028(37) 500 a 1.13298(3) 0.928 166(160)
864 s 4.73996(34) 0.376 875(24) . 500 s 1.13292(4) 0.928 444(176)

1372 s 4.73809(26) 0.376 818(19) 864 s 1.13298(2) 0.927477(99)

w0 4.73648(31) 0.376 657(25) 1372 s 1.13301(2) 0.927245(69)

2.4 108 s 3.47998(62) 0.464 065(96) . 1372 s 1.13301(2) 0.927416(89)
256 a 3.47313(37) 0.463082(71) 4000 s 1.13300(3) 0.926 569(123)

500 a 3.47028(34) 0.462 636(46) @ 1.13300(1) 0.926 608(55)
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IV. TRANSPORT COEFFICIENTS

The calculation of the transport coefficients has been
discussed in some detail previously (see II particularly).
The principal issues concern applying long-time and
finite-system corrections to the time-dependent Green-
Kubo transport coefficients

NY=B [l (o
L,(t;N) Vfodtpa(t,N) (12)

for generic transport coefficient L,. Indeed, for the most
part, calculations of transport coefficients reported in the
literature, whether based on the Green-Kubo formulas or
on nonequilibrium molecular dynamics, ignore correc-

TABLE II. Monte Carlo and molecular-dynamics results for the transport coefficients relative to the
values from the Enskog theory, L. '(s.;N), at the volume-dependent crossover times , =s.t, as func-
tions of the total number of particles N and the reduced volume V /¥,; a=11 for mutual diffusion.
a=u1 for thermal diffusion, @ =uu for thermal conductivity, and a =7 for shear viscosity. The aster-
isk in the ¥ column marks realizations from II. The numbers in parentheses are the standard devia-

tions in the low-order digit.

V/V, N L s;N) £ (s;N) £ s ;;N) LUs;N)
1.7 108 0.6817(61) 0.7223(140) 0.8701(80) 1.0382(87)
256 0.6952(69) 0.7167(150) 0.9136(71) 1.0840(83)
500 0.6858(72) 0.7244(170) 0.9340(80) 1.0855(110)
864 0.7099(69) 0.7490(140) 0.9455(83) 1.0973(110)
1372 0.7063(57) 0.7350(120) 0.9356(75) 1.1122(110)
2048 0.7114(69) 0.7334(190) 0.9435(110) 1.0996(130)
1.8 108 0.7573(69) 0.7800( 140) 0.8694(84) 0.9858(76)
256 0.7406(86) 0.7568(150) 0.8960(92) 1.0253(98)
500 0.7707(62) 0.8086(120) 0.9306(82) 1.0175(93)
864 0.7722(76) 0.7970(160) 0.9570(100) 1.0315(94)
1372 0.7757(78) 0.8106(140) 0.9372(79) 1.0355(97)
1.9 108 0.7701(72) 0.7767(120) 0.8654(93) 0.9722(95)
256 0.7808(63) 0.7934(110) 0.9033(93) 0.9857(100)
500 0.7812(78) 0.8034(130) 0.9140(82) 0.9906(78)
864 0.7887(71) 0.8130(110) 0.9262(73) 0.9963(83)
1372 0.7804(77) 0.7956(140) 0.9303(83) 1.0112(93)
2 108 0.7919(73) 0.7851(96) 0.8526(80) 0.9577(100)
256 0.8047(78) 0.8176(130) 0.9043(84) 0.9625(93)
500 0.7990(74) 0.8061(120) 0.9054(94) 0.9685(80)
864 0.8203(82) 0.8201(130) 0.9146(84) 0.9627(89)
1372 0.8168(68) 0.8323(110) 0.9246(77) 0.9722(78)
2.4 108 0.8658(80) 0.8536(93) 0.8660(73) 0.9289(91)
256 0.8700(79) 0.8562(87) 0.8808(71) 0.9365(80)
500 0.8665(79) 0.8611(110) 0.9099(81) 0.9320(88)
864 0.8734(75) 0.8779(100) 0.9213(83) 0.9605(98)
1372 0.8776(79) 0.8627(130) 0.9075(93) 0.9559(96)
3 108 0.8967(120) 0.8861(140) 0.8762(100) 0.9490(110)
500 0.9131(84) 0.9084(110) 0.9179(84) 0.9660(86)
864 0.9149(86) 0.9277(100) 0.9411(100) 0.9770(79)
1372 0.9021(120) 0.8983(140) 0.9122(110) 0.9731(140)
5 108 0.9407(110) 0.9387(120) 0.9276(98) 0.9598(81)
500 0.9448(90) 0.9485(100) 0.9432(82) 1.0054(73)
* 500 0.9280(90) 0.9481(150) 1.0026(160)
864 0.9432(81) 0.9511(86) 0.9507(68) 1.0079(86)
. 1372 0.9498(120) 0.9562(130) 0.9527(100) 1.0026(83)
10 108 0.9673(93) 0.9752(110) 0.9678(95) 0.9682(87)
500 0.9537(83) 0.9574(93) 0.9515(77) 1.0205(89)
864 0.9857(86) 0.9861(100) 0.9747(78) 1.0077(98)
* 1372 0.9785(87) 0.9837(100) 0.9780(89) 0.9928(79)
20 108 0.9676(90) 0.9664(110) 0.9577(98) 0.9658(93)
256 0.9974(88) 0.9888(100) 0.9831(87) 0.9979(95)
500 0.9917(93) 1.0013(110) 1.0029(100) 0.9886(66)
. 500 0.9911(130) 0.9916(140) 0.9846(120) 0.9844(88)
864 0.9899(89) 0.9872(100) 0.9876(89) 0.9903(93)
1372 0.9919(94) 0.9899(120) 0.9921(110) 0.9954(83)
1372 0.9986(90) 0.9948(120) 0.9832(120) 0.9763(91)

4000 0.9504(220) 0.9647(300) 0.9746(270) 1.0172(210)
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TABLE III. The thermal conductivity and shear viscosity as functions of reduced volume V /V,,.
The Monte Carlo and molecular-dynamics estimates, relative to the Enskog values, are £ o With a=uu
for thermal conductivity and a=7n for shear viscosity; L az (s.) is the long-time tail contribution from
the mode-coupling theory for the crossover time t,=s,t,, L, is the Enskog transport coefficient re-
duced as in Eq. (13), t,=s.t, is the acoustic wave traversal time for the largest system studied at each
volume, calculated from the Mansoori-Carnahan-Starling-Leland [30,31] equation of state. The num-
bers in parentheses are the standard deviations in the low-order digit.

V/Vy s* s L. £12s,) L. L., £12Xs,) L.,
17 57 68  09535(168) 00202 117986  1.1135(210)  0.0008  2.10274
1.8 49 62 09506(81) 00209  10.6985  10326(90) 00012  1.72650
19 49 57 09563(77) 00210  9.95251  1.0098(85)  0.0017 145193
2 48 53 0.9446(76)  0.0206  9.43865  0.9731(79) 00022  1.24553
24 46 43 09340(55) 00170 854857  0.9563(62)  0.0048  0.779636
3 43 36  0.9431(68) 00110 842701  0.9856(66)  0.0090  0.504468
5 34 28 09558(55)  0.0031 9.16589  1.0277(59) 00135  0.283077

10 24 23 09689(57) 00006  10.1739  1.0168(60)  0.0067  0.214468

20 23 22 09953(55) 00001  10.7744  0.9953(45)  0.0020  0.198633

tions of both types. Here we follow II in choosing a
crossover time ¢, for which the infinite-system limit of the
observed time-correlation function is joined with the
mode-coupling result [39,40] for the long-time tail of the
correlation function. In each case we choose t, approxi-
mately equal to the acoustic-wave traversal time t, for
the largest system treated, viz. N=1372 in the present
series of calculations and up to N =4000 for the lower
densities. The values L['!(z./to;N) of the finite-time
contributions, reduced by the Enskog value L f, are listed
in Table II for each system size and for each transport
coefficient. The values of ¢, calculated from the MCSL
equation of state for the largest system studied at each
density are given in Table III along with the values
chosen for ¢,. The fully corrected transport coefficients
for a given volume follow from a linear least-squares fit to
an expression linear in 1/N of the finite-V values of Table
II, augmented by the appropriate long-time tail correc-
tion. The same values of N are used in each fit as were
used in extrapolating the equation of state. The results
for the thermal conductivity and shear viscosity are given
in Table III and the mutual and thermal diffusion

coefficients are given in Table IV. The tables list sepa-
rately the long-time tail contribution L ([12](!0 /ty), as well
as the Enskog value of the transport coefficient L%, ex-
pressed in appropriate combinations of the mass unit m ,
the length unit o |, and the time unit Ul/\/m 1B, viz.

_ (mIB)l/ZO.%

mo m, Loy s

. (m,B)*%c?
uu m, Luu >

(13)

- _(m,ﬁ)l/zo%

ux_TLul >
. 0%

L,= L, .

ml(mIB)l/z

In each case we have confirmed the agreement between
the time-correlation function p,(¢;N) for the largest N
and the mode-coupling formula

TABLE IV. The mutual and thermal diffusion coefficients as functions of reduced volume V /V,.
The Monte Carlo and molecular-dynamics estimates, relative to the Enskog values, are £, with a=11
for mutual diffusion and a=u1 for thermal diffusion; faz (s.) is the long-time tail contribution from
the mode-coupling theory for the crossover time z, =s.#,, given in Table III, L, is the Enskog transport
coefficient reduced as in Eq. (13). The numbers in parentheses are the standard deviations in the low-

order digit.

V/Vo L 11 L ;21](Sc) Ef:l L ul L Lzl](sc) L fl
1.7 0.7207(118) 0.0113 5.12298 X107 0.7453(283) 0.0276 —3.30308Xx 1072
1.8 0.7821(73) 0.0115 5.61318X107* 0.8144(135) 0.0257 —3.65055X 1072
1.9 0.7966(69) 0.0115 6.068 61X 107# 0.8337(116) 0.0238 —3.97118X10?
2 0.8301(69) 0.0113 6.49179X 1074 0.8492(112) 0.0220 —4.26748X107?2
2.4 0.8833(52) 0.0092 7.91228X107* 0.8847(71) 0.0155 —5.25292X107?2
3 0.9199(67) 0.0061 9.45071X107% 0.9284(80) 0.0091 —6.30722X1072
5 0.9454(63) 0.0019 1.21335%x 1073 0.9560(71) 0.0024 —8.12949Xx 10?2
10 0.9747(59) 0.0004 1.43144X1073 0.9767(68) 0.0005 —9.597 84X 102

20 0.9960(49) 0.0001 1.54573%X 1073 0.9960(60) 0.0001 —1.03626X 107!
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FIG. 4. Transport coefficients relative to the Enskog values
ﬁa as functions of reduced density V,/V: a=11 for the mutual
diffusion, a=wu1 for the thermal diffusion, a=wuu for the heat
conductivity, and a=mn for the shear viscosity. The lines are
rational function fits, Eq. (15). Statistical uncertainties are
marked at plus or minus one standard deviation.

0.6

Plt)~ (14)

1372
for ¢t near ¢,. In addition, we have confirmed that the
final values reported for the infinite-system transport
coefficients are insensitive to the exact choice of ¢..

The final estimates for the transport coefficients are
shown as functions of density in Fig. 4. The data can be
fit within the statistical uncertainties by rational func-
tions in the density of degree 4 or less in the numerator
and of degree 1 or less in the denominator,

4 .
1+ 3 a/®(Vy/V)
Lo= ,:1( )
1+b(Vy/V)
with the coefficients a(®,b{® given in Table V. The
fitting functions are dlsplayed in Fig. 4.

o~

) (15)

V. DISCUSSION

The behavior of the pressure with system size reported
in Fig. 1 for high densities implies serious consequences
for the accurate determination of the equation of state

TABLE V. The coefficients a/*
the four transport coefficients:
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and the phase diagram by MC and MD calculation. The
infinite-system correction to the pressure grows with den-
sity and extrapolation to the thermodynamic limit re-
quires larger systems in order to achieve the O(1/N) re-
gime. Indeed for V <2V, we see that 108- and 256-
particle results imply a correction of the wrong sign. We
note, however, that this effect is observed here not be-
cause the nonlinearity in 1/N is so large, but because the
uncertainties are so small ( <0.005% for N =1372) that
the second-order term can be seen. Similar nonlinearities
are expected in the neighborhood of the coexistence re-
gion of a phase transition, but then on a much larger
scale. We note that effects of a similar nature have been
observed in single-component systems by Wood [41] for
hard disks, by Erpenbeck and Wood [42,43] for hard
spheres, and by Erpenbeck [44] for the (spline cutoff)
Lennard-Jones potential near the triple point.

We also have observed a decrease in the
[0Ap /0(1/V )] near 1.8V, for Ap the pressure less the
MCSL pressure. Presumably this decrease presages one
or more important phase transitions which occur at
higher density. The suggestion that one treat this region
with greater care appears particularly timely in view of
recent theoretical suggestions of fluid phase demixing by
Biben and Hansen [28] and Frenkel and Louis [29].
Clearly we have no evidence for such a phase transition
over the density range studied here.

The corrections to the finite-system finite-time trans-
port coefficients are quite a different matter than the
equation of state. Comparing the ‘“raw” values for
N =108 from Table II with the fully corrected values in
Tables III and IV, we see that these corrections grow
from a few percent at low densities to nearly 10% for L,
at 1.8¥7,. In the case of thermal transport coefficients of
mutual diffusion, thermal diffusion, and thermal conduc-
tion, we observe that the difference between the infinite-
system estimate and the N =108 value exceeds the statist-
ical uncertainty for every density. Moreover, the long-
time corrections L (s ) increase with increasing densi-
ty, becoming comparable to the standard deviation for
V=3V,. For shear viscosity, the 1/N correction is seen
to remain significant, but the long-time tail correction has
a maximum near V=5V, decreasing in importance both
at high and low density. The 1/N corrections remain of
the order of 10% of the 108-particle result over the entire
density range. At least in the present range of densities,
there is little to suggest the presence of an enhancement
to the viscosity from so-called “molasses” tails, i.e., long-
time tails in the cross and potential contributions to the

and b/® of the fitting rational polynomial, Eq. (15), for the each of
a=11 for mutual diffusion, a=u1 for thermal diffusion, a=wuu for

thermal conduction, and a =77 for shear viscosity. The goodness of each fit is indicated by x?, with v

degrees of freedom.

(a)

(a)

(a) 2

a b\ al ay al al b% v
11 —1.45921 —1.68092 0.26137 9.3 6
ul —1.02156 —1.172 65 5.1 7
uu —0.31051 0.401 77 6.5 7
nm —0.148 39 4.33141 —19.255 21.928 6.5 5
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viscosity autocorrelation function, as has been seen in
single-component fluids [45-47]. It seems likely, howev-
er, that such effects will only appear at higher densities;
calculations for V' < 1.7V, aimed at elucidating the high-
density equation of state as well as the behavior of the
transport coefficients are currently in progress.

Finally, for the interested reader, we note that the
present calculations which were performed on a variety
of computer hardware required very substantial blocks of
computer time. The 3V, calculations were run on
CRAY-YMP machines, using single-precision floating-
point arithmetic (48-bit fractional part) for both the
Monte Carlo and molecular dynamics, requiring 315 h of
CPU time. The remainder of the calculations were per-
formed on various SUN-4 SPARC workstations (includ-

ing SUN-4/300 and SparcStation 1, 1+, IPC, and 2) us-
ing double-precision floating point (53-bit fractional
part), requiring a total of 680 days of CPU time. Clearly,
very substantial computational resources are needed to
evaluate the transport coefficients to an accuracy of less
than 1%.
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