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The metaplectic formulation of linear mode conversion is presented. We begin by discussing the con-
nection between wave operators in weakly inhomogeneous media, their symbols, and related
pseudodifferential operators. A brief summary of WKB theory and Hamiltonian ray dynamics is given.
In regions where mode conversion occurs, the WKB approximation breaks down and must be replaced
by an appropriate local approximation. This is done by expanding in a Taylor series about the degen-
erate region and keeping only the leading-order terms. At leading order a linear canonical transforma-
tion on the ray phase space can be performed which brings the system into a simpler form. This linear
canonical transformation induces a unitary transformation, called a metaplectic transformation, in the
wave function s Hilbert space. This is a generalization of the Fourier transformation. The advantage of
metaplectic techniques over Fourier techniques lies in the wider range of transformations available to
simplify the problem. We show how to construct the S matrix, relating incoming and outgoing waves,
and the Wigner tensor. We examine the Wigner function in detail with particular attention to its asymp-
totic properties.

PACS number(s): 03.40.Kf, 52.40.Db

I. INTRODUCTION AND MOTIVATION

A. Background remarks

In the present paper we discuss the application of
metaplectic techniques to the analysis of linear mode con-
version. The metaplectic approach is essentially a gen-
eralization of the Fourier transform. This approach to
linear conversion first appeared in Ref. [I]. For an excel-
lent review of metaplectic techniques and their applica-
tion to semiclassical wave mechanics we refer the reader
to Ref. [2]. Some of these topics are also covered in Refs.
[3—5]. The present paper is organized as follows: In Sec.
I B we discuss linear wave propagation in inhomogeneous
media, introducing the basic integral form of the wave
equation we will use. In Sec. I C we introduce the Weyl
symbol of an operator and its associated pseudo-
differential operator. We also briefly examine the trans-
formation properties of the pseudodifferential operator
under changes of representation.

In Sec. II we examine the phenomenon of linear con-
version using the phase-space picture. The symbol is a
function of the space-time position (x, t) the wave number
k, and frequency co. This leads naturally to the introduc-
tion, in Sec. IIA, of the wave phase space. Away from
the conversion region we assume that the WKB approxi-
mation is valid for each mode, leading to Hamilton's
equations for their respective rays, as discussed in Sec.
II B. In Sec. II C we examine the degenerate region and
develop a local approximation to the pseudodifferential
operator by expanding the Weyl symbol in a Taylor
series. In Sec. II 0 we discuss linear canonical transfor-
mations, which will be of use in simplifying the conver-
sion problem.

In Sec. III we discuss how linear canonical transforma-
tion of the ray phase space are associated with unitary
transformations in the wave Hilbert space. These unitary
transformations are the metaplectic transformations. In
Sec. III A we point out the analogy between metaplectic
operators, induced by linear canonical transformations,
and the more familiar rotation operators induced by rota-
tions in 3-space. In Sec. III B we construct the explicit
matrix elements for the metaplectic operator induced by
a given linear canonical transformation, giving an exam-
ple of their use in changing representation.

There is no new material in these first three sections,
However, many of these topics are not well covered in
the physics literature; therefore we have included a brief
discussion of them for completeness and to ensure the
clarity of the present discussion. Full details are avail-
able in the references.

The main contribution of the present work is in Sec.
IV. Here we show how metaplectic techniques can be
used to advantage in the linear conversion problem. In
Sec. IV A we discuss the choice of representation which
simplifies the problem and its relation to the boundary
conditions. Sec. IV B we present the explicit solutions to
the wave equation in the conversion region and construct
the S matrix. In Sec. IV C we evaluate the Wigner tensor
and discuss its asymptotic properties. Some of these re-
sults were discovered independently by Littlejohn and
Flynn [4]. However, we use a difFerent representation for
the wave field in the conversion region, and in addition
we consider the behavior of the Wigner function in the
conversion region in some detail. Balazs and Voros [6]
have considered the nature of the Wigner function in tun-
neling regions, a related problem.
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B. Waves in weakly inhomogeneous media

Consider linear wave propagation in a weakly inhomo-
geneous and slowly-time-varying medium. In many situ-
ations of physical interest the medium will support more
than one type of wave mode. The general form of such
wave equations is

Nf dx'D( x, x')4( x')= f dx' g D ii(x, x')g&(x')=0,
P=1

We have introduced the caret in (1.3) to denote the po-
sition and momentum operators. More precisely they are
vectors of operators. For example, in the x representa-
tion x" is multiplication by the four-vector x" while k
has components

k.= —ia.= —i(v, a, ) .

Using this notation, we can write the full set of commuta-
tion relations in the compact form

[x",k ]=i5", (1.4)

where 4' is an X-component wave function, D is an
N XN matrix kernel, and x and x' are space-time coordi-
nates [for example, x =(x, t)]. We are particularly in-
terested in finding WKB-type solutions to Eq. (1.1), i.e.,
solutions expressible as a rapid1y varying phase function
and a slowly varying amplitude.

C. The Weyl symbol and pseudodi8'erential operators

As a first step, we now introduce the 8'eyl symbol of
the wave operator. The symbol is directly related to the
dispersion relation, as we shall discuss in Sec. II. For a
complete discussion we refer the reader to Ref. [5]. The
Weyl symbol of D(x,x') is defined as

D(y, k)= f d s e ' 'D y+ —,y ——2' 2

where 5" is the four-dimensional Kronecker delta func-
tion.

We can now rewrite Eq. (1.1) in the abstract form

n(x, k)lq & =o . (1.5)

Using Eq. (1.4) and

&xlxlx'&=5(x —x'), &x klx'&=5(x —x')( —ia),

The advantage of rewriting Eq. (1.1) in this more abstract
form is that we can choose whatever representation is
most convenient to analyze the problem. For example, to
write Eq. (1.5) in the x representation, we first act from
the left with & xl and insert a complete set of states to find

fd'x'&x ln(x, k)lx'& &x'le &
—=D(x, —ia)e(x) =O .

X+X
2

S=X X (1.2) D(x, Q)= —f d o d rD(o, r)exp[io. x+~ a] .

Here, and in what follows, all integrals extend from —~
to + ~ unless otherwise stated. k is the four-vector
(k, —co) and k s=k.s —coso. Notice that the symbol is a
function of both the space-time position y and the four-
vector k. We use the Weyl definition of the symbol, as
opposed to other possible definitions [2,5,7], because the
related pseudodifferential operator (to be defined in a mo-
ment) is symmetric in the position and momentum opera-
tors. Hence, when taking semiclassical limits, the posi-
tion and momentum appear on an equal footing as
desired in the Hamiltonian formulation.

We now introduce the pseudodifferential operator asso-
ciated with the Weyl symbol. We will do this in a
manner that is independent of representation, since this
will be useful to us later. The definition is essentially that
given by Weyl [8]. First take the Fourier transform in
both x and k of the Weyl symbol:

Xl(x, k)= f d o. d ~D(o, r)exp[i(o"x+v"k)] . (1.3)

There are subtle convergence issues associated with
these objects. A discussion of these issues is beyond the
scope of this paper and we refer the interested reader to
Ref. [9] and citations therein.

D(cr, r)—: f d y d k e ' +'"'D(y, k) .
(2~)

The overbar signifies the Fourier transform. The
pseudodifferential operator 2) associated with the symbol
D(x, k) is

Suppose we now change representation via an arbitrary
unitary transformation

x'= UxU, O'= UkU

The pseudodifferential operator defined in Eq. (1.3) has
the following simple transformation rule [9]:

U2)(xk)U =2)(x', k'), (1.6)

as can be shown from the definition (1.3) using the unitar-
ity of U. We shall find this transformation property use-
ful in later sections when we examine the metaplectic
transformations, a subgroup of the unitary transforma-
tions.

II. PHASE-SPACE PICTURE
OF LINEAR MODE CONVERSION

A. The ray phase space

Suppose the Xth mode is nondegenerate in the sense
that its dispersion relation is independent of the other
N —1 modes. In such a case it is possible to carry out a
reduction, i.e., to develop separate dynamical equations
governing the single Xth mode and the other X —1

modes (see Ref. [5] for a complete discussion). In the
generic case, all N modes are nondegenerate and, by in-
duction, we can reduce Eq. (1.1) to X separate wave equa-
tions, one for each independent mode.

Degeneracy is nongeneric, hence it usually occurs only
in special regions and involves only a single pair of
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modes. In such regions the full reduction procedure can-
not be carried out and, generically, leads to a two-
component wave equation for the two modes taking part
in the conversion

f d x'D'(x, x')Z(x') =0 . (2.1)

Here D'(x, x') is a 2X2 matrix kernel and Z(x') is a
two-component wave field. In the following sections we
will be concerned only with this 2X2 problem; therefore
we will drop the prime on the reduced kernel. Following
the discussion in the preceding sections let us consider
the symbol of the reduced kernel D(x, k):

D, (x, k) ri'(x, k)

il'*(x, k) D& (x, k) (2.2)

We have written the system in the above manner because
we wish to make the following assumption: the nature of
the physics is such that the wave propagation can be
separated into the two polarizations determined by
D, Z, =0 (the a polarization) and D&Zb =0 (the b polar-
ization) and a coupling il, which is small in some suitable
sense. If the original wave dynamics is dissipationless,
then the operator is Hermitian, implying that the symbol
is also [10]. Hence D, and Db are real functions of x and
k, called dispersion functions, while il is in general com-
plex (g'* is the complex conjugate). The behavior of
solutions to Eq. (2.1) depends strongly on whether the
dispersion functions D, and Db can vanish simultaneous-
ly. In the generic case these functions are independent,
implying that the conditions D, (x, k) =0 and Db(x, k) =0
will be satisfied only in a restricted region of the phase
space, if it is satisfied at all. We assume there exists such
a region. The requirements D, =0 and Db=0 involve
two relations between eight variables, thus it specifies a
six-dimensional submanifold of the phase space, called
the mode conversion -manifold, which we denote by M6.
More precisely,

C(x, k) = A (x, k)e'"'~B(x, k),
where X is the Janus operator, defined as

8 B 8
Bx Bk Bk Bx

(2.5)

The arrows over the operators indicate in which direction
they act. In particular, if F and 6 are any two functions
on phase space we have

"dF BG BG BF
ax ak ax ak '

with I F, G ] 8 the Poisson bracket on the eight-
dimensional phase space:

aI' aG
Bk

(2.6)

We wish to use the symbol product rule (2.5) to analyze
Eq. (2.1). Following Ref. [11]we multiply Eq. (2.1) from
the right by Z (x")

d x'D x,x' Z x' Z x" =0 .

Using Eq. (2.5) we find

D(x k)e' ' W(x, k)=0 . (2.7)

In nondegenerate regions we can restrict our attention
to WKB-type solutions, in which case we assume that
W(x, k) is a slowly varying function of both x and k (it is
an envelope function). This allows us to develop an
asymptotic series in powers of the Janus operator:

Thus it is constructed in a manner analogous to that of
the symbol. An important property of symbols is that
they do not obey the same multiplication rules as their as-
sociated operators. Consider two operators A and B and
their product C'—:AB. If A (x, k), B(x,k), and C(x, k)
are their associated symbols, then it is possible to show
[11]that

M6 =—I(x, k): D, ( x, k)= 0, Db( x, k)= 0] (2.3)

We now consider separately two distinct regions of phase
space: the region far from M6, the nondegenerate region,
and the region near M6, the degenerate region.

(i/2)X
2

At first order this gives

D(x, k)W(x, k)=0 . (2.8)

B. Nondegenerate regions of phase space

1. I.oeal dispersion relations

W(x, k)= f d s e '"'Z(x+ —,'s)Z (x —
—,'s),

or in component form

W,k(x, k)=—fd s e '"'Z. i(x+ —,'s)Zi,*(x —
—,'s) .

(2.4)

The symbol is a function of both x and k. This sug-
gests that the appropriate space in which to consider the
wave dynamics is the eight-dimensional wave phase space
(x, k). The wave function Z(x) is a function only of x (in
the present x representation) and therefore is not a
phase-space quantity. We can relate it to a phase-space
object, however, via the introduction of the 8'igner tensor
[2,5,11]. The Wigner tensor of Z(x) is defined as

If the wave is dissipationless, then D is Hermitian. If the
wave is weakly dissipative, then we assume that the
leading-ordering behavior is dissipationless [11]. Taking
the Hermitian conjugate of (2.8) we get WD=O. Hence
D and W commute and they can be simultaneously diag-
onalized. The diagonal terms are then of the form

D„(x,k)W„(x,k)=0 (n =a, b) . (2.9)

Thus far from the mode-conversion region nontrivial
solutions to Eq. (2.9) can be found only in regions of the
phase space where either D, (x, k)=0 or Db(x, k)=0.
These conditions define the dispersion manifolds in the
phase space. Since D, (x, k)=0 is one relation among
eight variables its dispersion manifold is seven dimension-
al (respectively for Db=0). The condition D„=O can be
solved for the frequency co, leading to
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2. The ray equations

Let us assume that the leading order condition in Eq.
(2.7) is satisfied. The next order is DEW= {D,WIs.
Consider one of the diagonal terms

{D„,W„]s=0 (n =a, b) . (2.10)

Equation (2.10) has the form of Hamilton's equations.
We can see this more clearly if we introduce a parameter
o„, called the ray orbit parameter [5]. Equation (2.10)
can be recast as

BW„dk BW„

~x
+

d~ ~k
={D„,W„],—0.

The total derivative in o„represents the derivative fol-
lowing a ray on the surface D„=O. The ray equations are

BD„dk„BD„
Bxp do

(2.1 1)

In particular Eqs. (2.11) can be used to relate the time t to
the ray orbit parameter o.„:

which can, in general, be positive or negative. However,
in order for o.„ to give a parametrization of the entire or-
bit we must have dt/do„&0 everywhere along the ray.
In general B~„ is independent of D„, therefore the con-
dition for them to be simultaneously zero is a restriction
to a six-dimensional submanifold. In the general case it is
possible that some rays may encounter such a region.
However, this is not the case, for example, in the class of
physically important wave equations with dispersion
functions of the form D„(x,k) = co —Q„(x,k) =0
(m =1,2, . . . ). In this case dt/do„=2m' ' and
d co/d o „=0 [by Eq. (2.11)]. Thus we see that

D„(x,k) =0~co =Q„(x,k);
in other words the mode n must satisfy a local dispersion
relation. In general there may be multiple branches to
the dispersion relation.

dt/der„AO, unless we choose to=0 as an initial condi-
tion. There may, however, be physically interesting cases
where rays propagate into regions where dt/do „van-
ishes. In the present work we will assume that o.„can be
used as an orbit parameter for the entire ray.

This concludes our discussion of the nondegenerate
"outer" region of the phase space. We now turn to the
degenerate region.

C. Degenerate regions of phase space
and linear mode conversion

Taylor expansion of the Weyl symbol
about the degenerate manifold

In degenerate regions of the phase space many results
of Sec. II 8 are no longer valid. In particular (1) the
WKB approximation breaks down, (2) the wave fields are
no longer restricted to dispersion manifolds, and (3) wave
disturbances no longer propagate along well-defined ray
trajectories. It is important to recognize, however, that
the ray equations (2.11) are still well defined and will al-
low us to connect incoming and outgoing solutions. Our
goal is to construct inner solutions to Eq. (2.1) which are
valid in the region surrounding the conversion manifold
and then match them asymptotically to the incoming and
outgoing solutions away from the conversion region.
These outer solutions are constructed using ray tracing
methods as described in Sec. II B.

The dispersion functions D, and Db vanish simultane-
ously on the six-dimensional conversion manifold M6.
Consider a ray of mode a entering the conversion region
(Fig. 1). It will puncture the dispersion manifold for
mode b somewhere in M6. Call this point (xp, kp). Tay-
lor expand the Weyl symbol about the conversion point

D(x, k) =D(xp, kp)+ (x —xp)
BD

+ (k —kp)
BD

+ e ~ ~

Explicitly

D(x, k) =

BD, BD,
(x —xp)+ (k —kp)

BDb BDb
~ (x —xp)+ (k —kp)

where D, (xp, kp)=Db(xp, kp)=0, g'—=g'(xp, kp), the
derivatives are evaluated at (xp kp ), and we have neglect-
ed the higher-order terms. Before proceeding further we
simplify D by shifting the origin in phase space to
(xp, kp ) (this results in multiplication of the wave field Z
by an overall phase factor exp[ikp (x —xp)][3]),

D(x, k) =
aD. aD.
a

"+
ak

BDb BDb

a. '+ ak'
(2.12)
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Similarly

dp)= ID»qi]a=0 = IDh, pi]s=B'" .

FIG. 1. The local phase space surrounding the conversion re-
gion. Shown are the dispersion manifolds D, =O and DI, =O.
These seven-dimensional surfaces intersect transversely on the
6-dimensional subspace indicated as M6. The rays of mode a lie
in the surface D, =0, the rays of mode b lie in the surface
D& =0. Ray a punctures the surface D& =0 at a single point in

M6. This uniquely determines its counterpart, ray b.

By Darboux's theorem [13] it is always possible to find
the remaining canonical variables (q2, q3, q~,p2, p3,p4).
For completeness we show how to construct these coordi-
nates in Appendix A. Note that, since they must com-
mute with q, and p„ this implies that they are all invari-
ant along the rays:

dpk =0 (k=2, 3,4;n =a, b) .
d0 ~

We now introduce some notation that will make the
ensuing algebra simpler. Organize the canonical coordi-
nates into the following eight-dimensional vectors

The related pseudodifferential operator is

BD, BD,
a +ak

where x and k are the familiar four-vectors arranged in
column form (similarly for q and p). The vectors z' and z
are related via a linear transformation: z'=Mz, where M
is an 8 X 8 symplectic matrix, i.e., it satisfies the identity

2)(x,k)=

If we write

aD. aD. „
2), (x,k)—: x+ k,

Bx

BDb BDb
Xli, (x, k )—: x+ k,

Bx

BDb BDbx+ k

(2.13)

MJM= J (2.14)

where the tilde denotes the transpose and the matrix J is
defined as

0 1

M '= —JMJ . (2.15)

Here 0 is the 4X4 zero matrix and 1 is the 4X4 identity
matrix. From Eq. (2.14) we get det(M)=+1, therefore
M ' exists. Using J = —1 it is easy to show that

then using the commutation relations given in Sec. I and
Eq. (2.6) it is straightforward to show that

[&.»i, l= I .»]s
where the left-hand side is a relation between linear
operators and the right-hand side a relation between
phase-space functions.

Following Ref. [2] we write the matrix M in the form

A B
M=

where A, B, C, and D are 4X4 matrices. With the use
of Eq. (2.15) it can be seen that

D. Linear canonical transformations D —B

We now carry out a linear canonical transformation to
new phase-space coordinates which simplify the problem.
We consider the classical canonical transformation here
and the related operator transformation in Sec. III.

The goal is to find new coordinates such that D, (x, k)
is proportional to the new momentum p, and Di, (x, k) is

proportional to the new position q&. Following the nota-
tion in [12] we write pi = —B '~ D, and q, =B '~ D&.
Requiring I q „p, ] s

= 1 leads to B =
I D„D& ] s. (If

I D„D& ] s & 0 then B is defined with a minus sign. ) Using
Eq. (2.6) we find

d0g

AD —BC=1, AB=BA, CD=DC . (2.16a)

The symplectic matrices form a group, therefore M
also satisfies Eq. (2.10) which implies [using Eq. (2.15)]:

AD —CB=1, AC=CA, BD=DB . (2.16b)

We consider the associated operator relations in the
next section.

In the rest of the discussion we will assume that B is
nonsingular. As discussed in [2] the case detB=O is
nongeneric and is associated with caustics. The symplec-
tic condition, Eq. (2.14), implies



48 METAPLECTIC FORMULATION OF LINEAR MODE CONVERSION 2201

III. METAPLECTIC TRANSFORMATIONS The metaplectic operator maps the ket
l P ) into

l
P' ):

A. Analogy with rotation operators in quantum mechanics

In quantum mechanics one encounters the notion that
there is an association between rotations in 3-space and a
group of unitary operators in the Hilbert space, the rota-
tion operators (see, for example, [14]). Specifically, sup-
pose we perform a rotation of our spatial coordinates
from r to r'. This can be characterized by a 3 X 3 rotation
matrix R: r'=Rr. The rotation operator A acts in the
Hilbert space

or

g'(q)= J d x 8'(q, x;M)g(x) . (3.3)

A, transforms from the x representation to the q repre-
sentation. Acting from the left with (ql and inserting a
complete set of x-space eigenfunctions we get

(qlg'&= f d x&q ~(M)lx &&xlg&,

It is possible to construct the rotation operator % given
the rotation matrix R: % =%(R).

There is an analogous relationship between a linear
canonical transformation, associated with a symplectic
matrix M, and a unitary operator, JNwhich , produces a
change of representation in the Hilbert space:

M~JN, (M) .

The operator A, is called a metaplectic operator [2]. The
explicit representation of these operators is discussed in
Sec. III B.

Here N is the number of dimensions; in the present case
N=4. The metaplectic matrix element Vl(q, x;M) can be
constructed by choosing a representation (say the x rep-
resentation) and solving Eq. (3.2) which, through the use
of Eq. (3.3), becomes a partial differential equation for
Vl(q, x;M). This is worked out in complete detail in [2],
hence we merely quote the result

1
Vl(q'x M) xr ir2(2m) detB

X exp —(qB ' Aq —2q8 'x
2

B. Relationship between symplectic matrices
and metaplectic operator matrix elements +xDB 'x ) (3.4)

q= Ax+Bk, P=Cx+Dk . (3.1)

Here A, B, C, and D are real 4X4 matrices. Suppose we
also wish the eight operators Q and P to obey the canoni-
cal commutation relations

Then, using Eq. (1.4) leads to the conditions required for
A, B, C, and D. A little algebra shows that these are
precisely those given by Eqs. (2.16). The transformation
(x,k )—+(Q,P ) can also be carried out via a unitary trans-
formation. Thus we wish the metaplectic operator to
have the following properties:

JR(M)xA1, (M)=q= Ax+8k,

JK(M)kl& (M) =P =Cx+Dk .
(3.2)

To start we introduce the following sets of eigenvec-
tors: [ lx ) ] are eigenvectors of the position operator x
with eigenvalue x: x lx ) =x lx ). I lq ) ] are eigenvectors
of the position operator g with eigenvalue q: Q lq ) =q lq ).
[ l

k ) ] are eigenvectors of the momentum operator k with
eigenvalue k: klk)=klk). [lp)] are eigenvectors of
the momentum operator p with eigenvalue p:
pip & =p Ip ). Each of these four sets is complete and
can be used as a basis. Here we shall simply state the ma-
trix elements of the metaplectic operator and prove they
have the desired properties. A detailed discussion can be
found in [2] and references therein.

Suppose we wish to relate the operators x and k to a
new set of operators q and p by the linear transformation

In order to simplify notation, in Eq. (3.4) the quadratic
forms have been written as

N

qB 'x:—g q (B ') kxk,
j,k=1

etc. There is an overall sign ambiguity (+1) in Eq. (3.4)
which we have ignored since it will not concern us here.
The metaplectic operators preserve the multiplication
rules of the symplectic group. Explicitly, given two sym-
plectic matrices M, and Mz it is possible to show that

At(M, )A, (M2) =A, (M,M2) .

In the special case of M&= M, ' we have

JR '(M) =Sf,(M

Using Eqs. (3.4) and (2.16) we have

1Vl(x', q; M ') =
(2vr ) detB

X exp ——(x'B 'Dx' —2x8 'q
2

+q AB 'q) (3.5)

Thus, in summary, to transform from the x to q represen-
tations we use Eq. (3.4), and from q to x representations
Eq. (3.5).
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l. Explicit calculation showing conversion
ofoperators D, and Db to position and momentum operators

The purpose for the introduction of the metaplectic
operator is to find a change of representation which
simplifies the analysis of the mode-conversion problem.
We seek to find a representation where the operators Xl,
and Xlb are proportional to a conjugate pair of position
and momentum operators q, and p, . In this section we
will show directly that the change of representation given
by Eq. (3.5) converts the operator Ax+8k into a posi-
tion operator in the new representation and Cx +Dk into
a momentum operator. Using Eq. (3.5) we write

g(x)= f d q Vl(x, q;M ')g'(q);

explicitly

g(x)=, f d q e '~' q'p'(q),1

(2qr)
~
detB

~

'~

where we define

P(x, q) —= —,'(qB 'Dq —2qB 'x+x AB 'x )

=
—,'(qDB 'q —2xB 'q+xB ' Ax) .

The equality of the two expressions for P is due to Eqs.
(2.16). Now consider the action of the x-space momen-
tum operator i B—„on P:

i—B P= i[ ——8 'q+8 'Ax] .

Using this result we can calculate g„:

B,g(x) = 1

(2') detB '~

X f d q e 't'"q'( —iB,iI))g'(q);

this leads to

[Ax iBB—]P(x)= f d q e '~" '[Ax —iB( iB„P—)]g'(q)
(2m')'I detB

I

'~'

1 f d4q e iP(x,—q)qy~(q)
(277) ~detB~'

Thus we have the mapping [ Ax —i BB,]~/ as desired. It remains to be shown that [Cx i DB„—]~ i8:—

[Cx —iDB„]g(x)= f d q e '~' 'q'[Cx —iD( i' i'—)]g'(q)
(2m) ~detB~'

d qe '~' ' 'Cx —D —8 'q+8 'Ax 'q
(2~)'ldetB~'"

We can use Eqs. (2.16) to show that the terms linear in x can be rewritten as

[C—DB ' A]x = [CB—D A]B 'x = —8 'x .

Now using the symmetry of DB ' we can write

[Cx —iDB ]g(x)= 1
d4q e-'4( q) —B -iX+8-1Dq '

q
(277) ~detB~

1
d4q i e 't'"" -q(q).. a

(2qr)'[detB['~' &q

Integrating by parts we have, finally,

[Cx —i DB„]g(x)

1 d4 —ip(xq) i3 i( )
(2 )'ld tBI'"

As desired [Cx —iDB„]~ iBq—
2. Special example: The Fourier transform

Before returning to our discussion of the mode-
conversion problem we wish to note that the Fourier
transform is a special case of the metaplectic transform.
In particular, consider the canonical transformation:

0 1 x
—1 0 k

with A=D =0 and 8= —C= 1. In this special case Eqs.
(3.2) and (3.3) simplify to

P'(q) = fd x e 'q'"P(x),1

(2m )

f(x)=, f d x e'q p'(q) .1

(2m )

The wider range of transformations available using meta-
plectic techniques can be put to good advantage in the
mode-conversion problem, as we discuss in the next sec-
tion.
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IV. APPLICATIONS
OF METAPLECTIC TRANSFORMATIONS

TO LINEAR MODE CONVERSION

A. Choosing representations
~ 0
l

Bp )

Z. (p)

Zb(p)
=0.

while in the p representation we have

(4.4)

Consider Eq. (2.1) once again. Under a metaplectic
transformation the pseudodifferential operator 2)(x, k)
associated with the symbol D(x, k) transforms in the sim-
ple manner:

JN(M)Xl(x, k )JR (M) =2)(q,p ) .

Z
'~'Db(x, k) Zi,

=0,

We consider the transformation properties in more detail
in Appendix B. Here we shall simply state that the order
of operations is irrelevant: one can associate the symbol
with a pseudodifferential operator D(x, k)~g)(x, k ) and
then perform a metaplectic transformation Jkf(M) , to ar-
rive at 2)(q,P), or one can perform a linear classicol
canonical transformation on the symbol D(x, k) —+D(q,p)
and then associate the new symbol to an operator
D(q,p)~D(q, p). One arrives at the same result either
way, as required for the procedure to be sensible.

We expand Eq. (2.1) about the conversion point
(xo, ko) as in Eq. (2.13). Now multiply by 8 '~ (recall
8—:I D„Db ] s ) and define rI:8' q'—(xo, ko ). This
transforms Eq. (2.1) into

8 'i D, (x, k)

Because the variables q and p are canonically conjugate
their representations are connected via Fourier trans-
forms

Z(p)= Jd q e '~ ~Z(q) .1

(2'�)
(4.5)

Notice that both Eqs. (4.3) and (4.4) are first-order ordi
nary differential equations in the variables q& and p&, re-
spectively. The dependence of the wave function on the
other variables [(qz, q3, q4) in the q representation and

(pz, p&,p4) in the p representation] is related to the
boundary conditions.

B. Solutions in the conversion region

Consider Eq. (4.3). Eliminating Zb(q) we find that Z, (q)
satisfies the following ordinary differential equation:

The reader may find it helpful to refer to Fig. 2 during
the following discussion. To simplify the algebra we in-
troduce the following notation:

q=(qi q2 'q3 q4)=(ql 'q) p (pl p2 p3 p4)=(pl p) .

where

D, (x, k):—

Db(x, k) —=

The associated
'8 —i /2g)

a

BD, BD

BD BD
~x+ k.

operator relation is

(x,k)

8 ' 2)b(x k)
Z.

(4.1)

Bq, q,
(4.6)

p) =+

Notice the singularity at q&=0 where the conversion
occurs. We split the real q& axis into positive and nega-
tive halves and treat each half separately. The solution of

where'), and 2)b are defined in Eq. (2.13). As mentioned
previously (and discussed in Appendix A) it is possible to
construct a linear canonical transformation which takes
8 ' Xl, to —p, and 8 ' 2)b to q, . This is done via a
symplectic matrix M. The associated metaplectic trans-
formation, when applied to Eq. (4.1), has the following
effect:

q 1 q = +

W(M)
8 'i2) (x k) 7l

8-l'2n (x,k)

Z.
XAf. (M)At(M)

Zb qi

Z:
(4.2)

In the q representation (we drop the primes on the wave
functions for convenience) this becomes

p = - oo
1

l
Bq&

q&

Z, (q)

Zb(q)
=0 (4.3)

FIG. 2. Schematic of the conversion process in the q&-p&

plane. Away from the conversion region, mode a is confined to
the surface p& =0 and mode b is confined to the surface q& =0.
Mode a enters from q&

= —~ and leaves at q, =+ Oo. Mode b
enters from p&

= —~ and leaves at p, = + Oo.
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Eq. (4.6) is and therefore

—
~l l'~+(q)q i
'"I

Z, (q)= '
—fl I'

(q)~qi ~

—'I"I qi &0
(4.7a)

—n*~+(q)q ""'
(4.7b)

From Eq. (4.3) we see that

Zb(q) = — Z, (q),
q&

The p-space representation of Z can be found by Fourier
transforming according to Eq. (4.5). The results are (de-
tails are in Appendix C)

Z, (p)= '

p', I~l'-'r( —i ~q~'+1)
(2~)'

/p, /'I~l -'r( —i/q/'+1)
(2'�)'

( )
~lgl /2+ ( )

~IgI n— )0

( )
m. lqI /2

( )
—~pl / p &()

(4.8a)

Zb(p) = '

g*p'I"I r( —i[rl[ )

)1/2

my*/p, f

"&I r( —i /v)[')

(2'�)'

(p)e7rlql /2~(p)e lgl / p)()

( )
—~lgl /2

( ) nlqI /z &()

(4.8b)

In order to construct the S matrix we compare the in-
coming and outgoing field amplitudes, defined as

(+qi) ~qi ~~l~ 'Z~(+qi )

b(+pi }—= lpil '"' Zb(+pi) .
(4.9)

—p Z, ( —qi)

Zb( —p, )
(4.10)

Zb(+pi) P*

where

(2m')'
r(il)=exp( —

m~g~ }, g(rI)=
gr( i g )—

For this comparison to be physically meaningful the
boundary conditions must be evaluated in the same repre-
sentation. We Fourier transform Eq. (4.8b) with respect
to p (but not with respect to p, ), converting a+(p) to
a+(q). Using Eqs. (4.7)—(4.9}we finally arrive at

Z, (+q, )

« lnl')r( —lgl')= Ir( lnl')I'

[vp /'sinh(~[my)')

The S matrix

(4.11)

&(rf) =— (4.12)

can easily be shown to be unitary using Eq. (4.11). Recall
that q =g(xp, kp) in (x, k) coordinates and
g=ri(q, =O,p, =O, qp, pp) in (q,p) coordinates. Therefore
s(g) =s(qp pp).

Equations (4.7)—(4.12) completely characterize the
solutions in the mode-conversion region. Given Z(q) we
can the find Z(x) by performing a metaplectic transfor-
mation Eq. (3.5). Formally

i

Construction of Eq. (4.10) requires use of the identity
[Eq. (6.1.29) of Ref. [15]]

1Z(x)=, d q exp (qDB 'q —2xB 'q+xB 'Ax) a(q)q, 'I"I
(2') / detB '/

where a(q) =a+(q) [a (q)] for qi )0 (qi &0). We have
not pursued this path; instead we use the solutions (4.7)
to construct the Wigner tensor in the mode-conversion
region and examine its asymptotic behavior as we leave
the immediate vicinity of the conversion point.

We now consider the Wigner tensor in the conversion
region.

C. The signer tensor

l

scalar under metaplectic transformations (see Appendix
D) we can evaluate it in whatever representation is most
convenient. We choose, of course, the (q,p) representa-
tion. Here we compute the Wigner function associated
with mode a, W„. The Wigner function for mode b, W»
(and the off-diagonal cross terms W,b and Wb, ) can be
computed in similar fashion. W„ is defined in the stan-
dard fashion:

Recall that the Wigner tensor is the 2X2 matrix
defined in Eq. (2.5). Because the Wigner function is a W„(q,p)= f d s e '~'Z, (q+ —,'s)Z, (q —

—,'s), (4.13)
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where p.s is the standard four-vector inner product:
—p, s, +p s. Because of the discontinuity at q, =0 we
break the s& integral into three parts (see Fig. 3). The
value of sgn(q&+s&/2) determines whether one must use

a+ or o, in each region.
Region I.

Region I

-2lq
1

Region II

s axis

Region III

2lq I

I

Si S) S) $(
q&+ =q& — &0 q& =q&+ )0 .

This implies that

FIG. 3. A diagram showing the partition of ti'. real s& line
into the three regions defined in the text.

s s
Z, q+ —=n q+ —

q +
2

s)
(4.14) Region III: In this region we have

Notice that this result is independent of sgn(q, ).
Region II. In this region we

sgn(q, +s, /2) =sgn(q, ). This implies
have

si s)
q)+ )0, qi — &0.

The resulting wave functions are

s
a+ q+—

—
zl ql'

s)
q, + qi)0 s s s)

Z q+ —=A q+ — q&+
2 + 2

sZ q+—0
s s)

a q+ — qi+ q) &0, s sZ* q
——=a q ——

2

i lealS)

2

(4.16)

Zg

a+ q ——
ilrpl~

si
q, —

(4.1Sa)

q))0

a' q —— q&—
si
2 q) &0.

(4.15b)
I

Notice that this result is independent of sgn(q, ), as in re-
gion I.

We can now use these results to evaluate the Wigner
function W„(q,p). Consider first the incoming Wigner
function, i.e., we fix q, (0. Using Eqs. (4.14)—(4.16) we
find

ip s
(q,p)= f d se 'i"a q+ —a+ q ——f ds&e ' ' qi+

—i Ivyl2 ilvyl~
$)

q&—

+ fd se '~'a q+—
2

+ fd se '~'a q+—
2

2iq,l,p, s
q

q —— ds&e ' ' q&+
2 —2lqg I

' ' 2

'S oo Ep]$]
q —— ds&e ' ' q&+

2 2Iq&l 2

q&—

q&—

il vyl2
$(

ilail's)
(4.17)

Here the first term is the contribution from region I, the second from region II, and the third from region III. Notice
that the contributions from regions I and III are not causal: they involve both a (initial conditions) and a+ (final con-
ditions). The contribution from region II, however, involves only the initial conditions. This disturbing appearance of
mixed causal behavior is due to the nonlocal nature of the Wigner function. It is possible to show, however, that the
relevant physical quantities are causal. For example, as we shall show in a moment, W„becomes confined to the sur-

face p &
=0 asymptotically as we leave the conversion region. Away from the conversion region physical quantities asso-

ciated with mode a, like the energy or action, are therefore distributions on the surface p& =0 and we recover them from

W„by integrating across this surface [11]:

J, (q, p)—:f dp, W„(q,p) .

(Please note that the quantity called the action in [11]actually has dimensions of energy density. This can be rectified
by modifying some of the physical arguments in [11]without changing the mathematical logic of how to extract physi-
cal quantities from the Wagner tensor, which is all that concerns us here. ) Also, notice that the quantity J, (q, p) is not
invariant with respect to arbitrary linear canonical transformations, but only those involving the (q, p) subspace.

Performing an integration in p i upon Eq. (4.17) and then exchanging the order of integrations in p i and s i leads to
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—zlq, l $1
J, (q, p)= f d se ' 'a q+ —a+ q ——f ds, 2m5(s, ) q, + q1—

i Ivyl2
$1

+ d se 'P'o; q+—
2

+ f d se '~'a+ q+—

2lq, l s1
q ——f ds, 2m5(s, ) q, +

2iq) I

q
——f ds, 2m5(s, ) q, +

2lq) I

I lgl'
$1

s1
q1—

The integrations in s, can now be performed and we find

that the noncausal contributions from regions I and III
vanish since the 6 function is identically zero in regions I
and III. We are left only with the contribution from re-
gion II:

J, (q, p)=2m f d se ' 'a q+ —a* q ——

—=2mW,', '(q, p), q, (0 . (4.18a)

Here W,', ' is the Wigner function of the initial condi-
tions. Notice that J, is independent of q, . If we repeat
the calculation for q, )0 we find

s ~ sJ, (q, p)=2m fd'se '~'a+ q+ —a+ q ——:—2vrW,',+'(q, p), q, &0 . (4.18b)

W'„(q,p):—f d se '~'a q+ —a" q ——
2

The functions a+ and a can be related using the S ma-
trix, Eq. (4.12).

Let us examine the Wigner function, Eq. (4.17), in
more detail. In particular, let us consider the causal con-
tribution (call it W;, )

I

tween the limits of integration, we have Is, /2q, I
( l.

Therefore we can expand this expression as a power
series in s1.

S11—
2q1

$11+
2q1

n=0

s1
a„

2ql

$1 +o
q1

$1
2

We have explicitly evaluated only the first two terms in
the expansion. The function

1 x ilail'

1+x

is singular at x =+1 and the expansion breaks down.
However, it oscillates rapidly near +1 and, therefore, the
end points of the integration should give a negligible con-
tribution to the integral. This justifies integrating the
Taylor expansion term by term, leading to integrals of the
form

2lqq I

ds1e ' 's1 = —i1 1

&Iqll S1Xf dse '' q+
2lq, I

i IvgI2
S1

X q1— (4.19)

The s1 integrand involves the function

lgi' i Irpl
$1

q1
$1

q1+

S1
q, —

$1
q1+

2

i Ivgl
11—

2q1

$11+
2q1

$11—
2ql

$11+
2q1

ID the last step we have made use of the fact that, be-

a=2 l
BP1

sin(2p, Iq, I)
. (4.20)

lirn
Iql l~ a)

sin( 2p i q ] I )
2 =2m5(pi) .

This shows that, far from the mode-conversion region
near q1 =0, the Wigner function becomes confined to the
dispersion manifold given by p, =0. For finite q„howev-
er, the Wigner function has nonzero support away from

In summary, in this paper we have given a detailed dis-
cussion of the application of metaplectic transformations
to linear mode conversion. After introducing the neces-

Here it is important to notice that all of the terms with
nAO can be expressed as a derivative in p, . This explains
why, when we compute the action using Eqs. (4.18), there
are no contributions from the higher-order terms. Only
the n =0 term survives the integration, leading to the re-
sult quoted in Eqs. (4.18) even when q, is close to the ori-
gin. In the limit that Iq& I

tends to infinity we have
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sary background material, we have examined the solu-
tions of the wave equation in the conversion region in de-
tail. This leads to the fact that in the mode-conversion
region the Wigner function has mixed causality (i.e., it
mixes incoming and outgoing data). This is due to the
nonlocal nature of the Wigner function and not to any
particular choice of representation. This acausal
behavior does not affect the final physical result. The
Wigner function is a very complicated distribution on the
phase space and to compute physical quantities, such as
action or energy densities, one must do projections along
directions normal to the relevant dispersion surfaces.
Upon performing such projections only the causal part of
the Wigner function remains. This causal part was also
shown to become asymptotically confined to the relevant
dispersion manifolds, as expected from the prior WKB
analysis.
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[fgj&= ~. =Vf JVg.8 Bg

m n

(A2)

'q2 = 2(~2+ [~2 'q 1 j 8P 1 [~2 Pl j &q 1 )

P2 =+2(~2+ [+2 ql j &Pl [+2 Pl j &q»

Straightforward calculation shows that

[q»q2 j 8= [ql P2 j 8= [P 1 q2 j 8= [P 1 P2 j 8=o

(A3)

as desired. The constant a2 is determined by the require-
ment [q2,p2 j&= 1. The geometric meaning of definitions
(A3) can be made a little less mysterious if we introduce
the following notation: define the two-dimensional vector
z(, )

as the restriction of z to the (q, ,p, ) subspace, i.e.,

q,
z(1)=

To construct a complete set of canonical variables we use
a symplectic version of the Gram-Schmidt orthogonaliza-
tion process. We first assume that we have 2N indepen-
dent linear functions on the phase space, which we call

and 0 for m = 1,2, . . . , ¹ (Equivalently, we could
state this assumption as the existence of 2N independent
vectors. ) We choose A. , =D, and o. ,=Db. Then

q1=B '
A, p = —B ' 0.

as before. . We now construct the other coordinates by in-
duction starting with (q2,p2). Define (q2, p2 ) as follows:

APPENDIX A: CONSTRUCTION OF THK COMPLETE
SKT OF CANONICAL VARIABLES

We now introduce some notation that will make the
ensuing algebra simpler. Organize the canonical coordi-
nates into the following eight-dimensional vectors

T

XZ: k p Z
p

(A 1)

where x and k are the familiar four-vectors arranged in
column form (similarly for q and p). The linearized
dispersion functions can be written in the compact form

Define the 2 X 2 matrix J' ' as

J(2)
0 1

—1 0

Then (A3) can be written more compactly as

q2 =+2(~2+ [~2~ (1)j 8J (1))

P2 =~2(~2+ [~2& (1)j8 (1))
(2)

Taking the Poisson bracket of q2 and p2 now leads to

[q2 P2 j& 2[ [~2 ~2j 8+ [~2 (1)j8 [ (1) ~2j8j

(A4)

BD,

—1/2
BX

aD a

ak

BDb

—1/2
BX

db:—B
b

ak
L

Consider now two general linear functions on the phase
space

f(z)—:Vf z, g(z)—=Vg z .

D, (x, k)=d z, Db(x, k)=db. z

where the dot is the standard Euclidean dot product and
the vectors d, and db are defined as

T

[Z((), A, 2 j 8—
BP1

Bq1

and after a little algebra we are led to

(AS)

The Poisson bracket [, j is invariant under canonical
transformations; therefore we can evaluate the Poisson
brackets in Eqs. (A4) and (A5) in terms of the new coordi-
nates

The Poisson bracket between linear functions on the
phase-space induces an antisymmetric bilinear product
between vectors:

[q2~P2 j8 ~2I. [~2~~2j8 [~2~~2j(1)j
2=+2 [~2 ~2 j ( I )). (A6)
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where IA2, cr2}(1) is the Poisson bracket restricted to the

(q„p, ) subspace

df Bg Bg Bf
Bq) BP) Bq) BP)

and IA2, o2}(,)3 is the Poisson bracket restricted to the
perpendicular complement of the (q„p, ) subspace.

The variables (q3,p3) are given by

q3:(23(A3+ IA3 z(1 2)}8J z(, 2))
(4)

product on V is defined as the standard Euclidean dot
product

(g,z) —=o"x+r k=( z .

Let us focus for the moment on linear functions on the
phase space, i.e., functions of the form

f(z)—:a z, aEV*.
Consider the canonical transformation z —+z' =Mz. This
transforms f to f':

f (z') =a z'=a (Mz) =(Ma) z=f '(z) . (B3)

p3 =~3(o3+ I~3~z(1,2)}8J (1,2))
(4)

Here z(& z) is the restriction of z to the four-dimensional
subspace spanned by (q„p„q2,p2) and J' ' is the 4X4
antisymmetric matrix

Thus the canonical transformation z~z'=Mz on V has
the same effect as the transformation a ~a' =Ma on V*.
The transformation from a to a' is also canonical. This
can be shown by first using the fact that

M= —JM 'J

0 1
J(4)

where 0 and 1 are the 2 X 2 zero and identity matrices, re-
spectively. The constant a3 is fixed by requiring

The induction procedure should now be clear. In this
manner one can construct the complete set of canonica1
variables.

APPENDIX B: TRANSFORMATION PROPERTIES OF
SYMBOLS AND PSEUDODIFFERENTIAL OPERATORS

for syrnplectic matrices. It is now straightforward to
show [compare Eq. (2.14)]

MJM=( —JM 'J)J( —JM 'J)
= —JM 'JM 'J= —J =J,

where we have used J = —1 and the fact that M ' is also
symplectic if M is.

Now consider more general functions on the phase
space. In particular, using the above notation we see that
we can write the symbol D(x, k) as

(B4)

In the following discussion we ignore all convergence
issues as they are outside the scope of our discussion.
The interested reader is referred to the paper by
Hormander [9]. Consider the procedure discussed in Sec.
I for relating symbols to pseudodifferential operators.
We first construct the Fourier representation of the sym-
bol

D(x, k)—= f d o d re' +'"'D(cr, r) .

The pseudodifferential operator associated with D(x, k) is
defined as

2)(x,k)= f d o. d rD(o. , r)exp[i((7 x+r.k)] .

Consider the effect of a linear canonical transformation
on these relations. The algebra is simplified and the logic
clarified substantially if we introduce some new notation.
As in Appendix A we write

z'—=

and now introduce

Carrying out the canonical transformation z —+z' we find

f d8g ig z'D(g) f d8g ig (Mz)D(g)

—f d8g i(Mg).zD(g) (Bg)

Changing the integration variables to z'=Mz and using
the fact that detM =+1,we get

D(z')=+ f d g'e'~ *D(M 'g')—= f d g'e'~'*D'(g') .

Now consider the pseudodifferential operator associated
with D. Once again, we consider operators linear in z
first:

f(z)=a z .

The metaplectic transformation W(M) associated with
the linear canonical transformation M has the following
effect upon f:

W(M)f(z)~ (M)=—~(M)(a.z)~ (M)

=a.[A, (M)zest (M)]=a z' .

Now using the fact that
w/ Mw

The vector z is an element of the vector space V. The
vector g is an element of the dual space V*. The inner

we see

W(M)f(z)Jt'(M) =a z'=a (Mz)=(Ma). z .
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Thus the transformation properties of the operator f are
entirely analogous to the linear function f, as desired.
Now consider the pseudodifferential operator associated
with the symbol (B4}. Using the more compact notation
this can be written as

At(M)2)(z)At (M)= f d gD(g)e'& '

fdsgiDi(gi) ig'2

D '(4') =D(M '0'),
as with the classical transformation.

2)(z ):—f d g D( g)e '~ (B6)

The metaplectic transformation At(M) has the following
effect upon 2)(z ):

At(M)Xl(z)At (M)= f d (D(g)At(M)e'~ At (M)

f dog D(g) (At(M)g. zA( (M)

where we have used the unitarity of At to move the
operators into the exponent. This can now be written as

Z, (p)= f d q e 'i' 'tZ, (q),1

(21r)

Z„(p)=, fd qe ' 'Z„(q).1

(21r )

Consider Z, (p) first:

(C 1)

APPENDIX C: CALCULATION OF THE p-SPACE WAVE
FUNCTIONS IN THE CONVERSION REGION

It is required to evaluate the following integrals:

Z. (p) = 1

(2~)
1

(21r)

f dqie ' 'Iqi
—'lvl'f d3qe ' ' a (q)

+ f dqie
' '

q
ilnl' f—d3qe '1' a+(q)

/2
—(p)f dqi

' 'Iq) I

' " +a+(p) f dq, e ' 'q, '"'
(2~)1/2 0

Here a+(p) are the Fourier transforms of a+(q). Chang-
ing variables in the first integral from q, to —q, this be-
comes

Z, (p)=, a (p) f dq, e ' 'q,(2~)'"

I

This shows that I+( —pi )=I (pi ). Consider I (p) ) for-
p &

& 0. Ch nging variables to A, =p & q &
we have

I*(p, ) =(p )' "l ' f dX e +—'
A.

'l "l p )0 .

Now making a further change of variables in I+ (I ) to
A, =e' / t Q, =e ' / t) leads to

) f d &)&1 —
ilail

Consider the following integrals:

(C2)
)
—

pily[
—1(ei(m/2)}1

ilail

f—I 1
0

I+—(p, )—= , f "dq, e
' ' 'q,

(21r)'/2

We split the real p, axis into positive and negative halves:

te~lnl'/2pilnl' —'F ( 1IgI'+1—)

I—
(p ) p ilail 1(e —i(m—/2) )1 ilail f—

0

I (p, }—='—
p) &0.

(x) +gpiql
dq&e q, '", p& &0

(21r)'"
+~'& —

Ip& lqq &

dq 1 e

p, ' " 'I ( i
I vg I

+ 1), —

p))0.
Here I is the complex gamma function

I
15]. Using this

result, and I+(—p, ) =I (p, ), in (C2) gives

Z, (p)= '

p', l"l '1 ( i I7)I +1—)
(2 )1/2

Ip, I'l&l -'r( —
1 IqI'+1)

(2m )'

—ia (p)e " +ia+(p)e "" 2 p )0

( ) algal /2 —
( ) ~lgl / (()

Using the same analysis to evaluate Zb(p) leads to
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zb(p) = '

p 'Iql'I-(;
~ & ~

2)
[tz (p )e ~lnl'/2 ct (p )e m/vg/ /2] p )0

(2 )1/2 + & ]

q*/p, f'~n~ I ( —t /~/')
[tz (p)e '"~ ' —tz (p)e~~" /'], p &0

(2 )1/2 + 1

as stated in the text.

APPENDIX D: INVARIANCE OF THE WIGNER TENSOR UNDER CANONICAL TRANSFORMATIONS

The Wigner tensor is invariant under canonical transformations. This is not obvious from Eq. (2.4), but it helps if we
use the fact that the Wigner function of a wave function li| ) can be written as [2,16]

W(x, k)= Tr ~g)(lii~ f d o d r exp[i(x —x) o+i(k —k) r](2~)~

(We wish to thank Jim Morehead for pointing out this argument and the reference to Berry s work. ) This object is obvi-
ously invariant under unitary transformations of the Hilbert space because it is the trace of an operator. We can also
show it is invariant under classical linear canonical transformations using arguments discussed in Appendix B. What
remains is to show that this is in fact the Wigner function of li. Using properties of the trace we can rewrite the above
definition as

W(x, k) = ( ttt
~ f d o d r exp[i (x —x ) o. +i ( k k) r] ~ P—) .

(2~)

f d o d re ' +"'(tj'j~exp(ix o+ik r)~P) .
(2m )

We now make use of Glauber's theorem [17] to simplify the matrix element: if two operators A and B commute with
their commutator [ A, [ A, B]]= [B,[ A, B ]]=0, then

A +B A B —[A,B]/2

Therefore

W(x, k)= f d o d re '(" +"' " ' ')(i(~exp(ix o. )exp(ik r)~p) .
(2')

Inserting a complete set of states ~x') between the operator product allows one to do the o integral. This gives

W(x, k)= f d rd x'e "'5 x —x' ——g"(x')exp(r t) )f(x'),

which, after performing the x' integral and using exp(r B)llj(x') =g( +xr), leads to the standard expression

W(x, k)= f d re '"'P' x ——
le x+—

2 2

The generalization from the scalar wave case to the Wigner tensor is obvious.
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