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A study is made of the single-particle dynamics of an electron-positron storage ring where the phase-
slip factor is made small in order to make the ring nearly isochronous and reduce the bunch length.
What is found is that a quasi-isochronous ring makes it possible to obtain a bunch length in the millime-
ter range, about one order of magnitude shorter than present values. In this study we have extended the
work of others on isochronous storage rings by quantitatively including higher-order terms in the longi-
tudinal equations of motion. Scaling laws are then derived relating the linear term with the next-
highest-order term. These scaling laws, which are derived from a two-dimensional Hamiltonian (one di-
mension of position and one of momentum), establish criteria for stability. These scaling laws are then
checked with full six-dimensional tracking on one particular lattice.

PACS number(s): 41.85.Gy, 29.27.Bd

I. INTRODUCTION

The exploration of the structure of matter at smaller
and smaller distances follows two paths. The first is the
construction of higher-energy accelerators, like the Su-
perconducting Super Collider (SSC), large electron-
positron (LEP) storage rings, and future linear colliders,
to allow for a direct investigation of very short distances
and more massive particles; the second is the study, usu-
ally at lower energies, of the violation of symmetry prin-
ciples, or detailed tests of the validity of the standard
model. Examples of this second approach are the study
of CP violation in E-meson or B-meson systems, and the
related proposals of K factories, 8 factories, and P fac-
tories. In these factories, the most important parameter
is the collider luminosity. To reach their goal these sys-
tems must have an ever larger luminosity, ' in the case of B
factories, the required value is greater than 10
cm s ', and values in excess of 10 cm s ' would be
desirable.

One strategy for increasing the collider luminosity is to
increase the average electron and positron beam current.
An alternative to this approach is to make the luminosity
larger by increasing the beam densities at the interaction
point [I]. This requires a reduction in the bunch length
and a strong beam transverse focusing to a P function of
the order of the bunch length. In this case the luminosity
scales like the inverse of the bunch length.

In this paper, we focus on the possibility of reducing
the bunch length in an electron-positron storage ring col-
lider by making the storage ring nearly isochronous, i.e.,
with a revolution time independent of particle energy.
This is done by reducing the linear term in the ring
phase-slip factor to nearly zero. We study the beam dy-
namics in this essentially nonlinear situation and estab-
lish the condition for stable single-particle motion.

We find that, by considering only the longitudinal de-
gree of freedom (corresponding to the direction in which

the beam is traveling), it is possible to arrive at an analyt-
ical formula which describes the size of the stable longi-
tudinal phase-space area, including the effects of non-
linear terms. The size of the stable phase-space area in an
accelerator is important because it has a direct bearing on
the lifetime of a beam of particles in a storage ring. The
larger this area is, the smaller the chance that a particle
can "visit" an unstable region of phase space and get lost
from the beam.

From this analytical formula we derive scaling laws
which determine how large the nonlinear terms can be
and still provide a suKciently large enough stable phase-
space area for a good beam lifetime. We also show how it
is possible to control the nonlinear terms in the equations
of motion with sextupoles and higher-order magnets.

Finally, our scaling laws, which are derived from a
two-dimensional Hamiltonian, are checked on a specific
accelerator lattice with six-dimensional (6D) tracking.
The accelerator lattice which we chose as an example of a
quasi-isochronous ring is the synchrotron at the Ultra-
violet Synchrotron Orbital Radiation (UVSOR) facility at
the Institute for Molecular Science in Okazaki, Japan [2].
The results of 6D tracking code give us confidence that
the scaling laws do give a good measure of the size of the
stable phase-space area for that lattice.

Reference frame

Prior to beginning a discussion of the equations of
motion of a particle in a storage ring collider, we will first
define the reference frame to be used throughout this dis-
cussion. There exists in all storage rings a closed orbit
called the ideal or reference or design orbit of the ring.
This design orbit is the orbit of the "ideal" particle for
which the machine is designed. The ideal particle has the
reference energy Eo and the proper phase with respect to
the radio-frequency cavity, and follows this design orbit.

1063-651X/93/48(3)/2149(8)/$06. 00 48 2149 1993 The American Physical Society



2150 ROBIN, FOREST, PELLEGRINI, AND AMIRY 48

ELECTRON POSITION

FIG. 1. Coordinate system.

It is convenient to use a coordinate system where a
particle's position is measured with respect to this design
orbit. The instantaneous position of a particle in the ring
can be specified in terms of (s,x,y), where s is the azimu-
thal coordinate of the particle measured along the design
orbit from some reference point, and x and y are the
respective radial and vertical distances of the particle
from the design orbit. This coordinate system is illustrat-
ed in Fig. 1.

smaller than what exists in machines presently. This
means values of the first-order phase-slip factor g, [see

Eqs. (11) and (12)] of 10 —10 . The bunch length in a
storage ring is proportional to the square root of g, [1].

1

Reducing q, by two orders of magnitude results in a
1

bunch-length reduction of one order of magnitude. Re-
ducing the phase-slip factor is the method by which the
quasi-isochronous ring accomplishes the decrease in the
bunch length. Of interest is the fact that, when we make

small, nonlinear terms which are usually neglected in
1

the equations of motion can become important. To allow
for this possibility, we assume in the equation of motion
that g is a function of the particle energy, q=g(5), where
5=(E, Eo)/—Eo is an arbitrary particle's relative energy
deviation from the reference particle. We define the
phase distance 4 as the difference between the arbitrary
particle's and the reference particle's time of arrival at
the rf cavity multiplied by 2~/To. Therefore, in one turn
the change in the phase distance is
b, +=2m(T, —To)/To). Using 5 and 4' as variables, we
can write the equations of motion for electrons in the
presence of synchrotron-radiation energy losses and a
radio-frequency system that can compensate these losses
as

4'=g(5)5, (2)

II. LONGITUDINAL EQUATIONS OF MOTION
(TWO-DIMENSIONAL THEORY)

Our discussion of quasi-isochronous storage rings will
be preceded by a short summary of the general equations
of motion for the longitudinal degree of freedom of a
storage ring, after which the differences between conven-
tional rings and quasi-isochronous rings may be more
clearly illustrated. The main difference between a con-
ventional and a quasi-isochronous storage ring lies in the
longitudinal beam dynamics; the transverse beam dynam-
ics are not strongly influenced, except for the
synchrobetatron-coupling effects. In particular, the syn-
chrotron oscillation frequency is assumed to be very
small. Defining what we mean by very small is one of the
key questions to be addressed here.

Let us first define what we mean when we say that a
storage ring is isochronous. A storage ring is isochro-
nous when the time it takes for a particle to make one re-
volution around the ring is independent of its energy.
The degree to which a storage ring approaches the iso-
chronous condition is described by the parameter g, the
phase-slip factor. The phase-slip factor is defined as the
relative difFerence of the revolution time which an arbi-
trary particle and the reference particle take to go around
the ring, divided by the arbitrary particle s relative ener-

gy deviation from the reference particle:

(T, —To)/To
(E, Eo)/Eo—

In the limit that g goes to zero, the machine is operat-
ing in an isochronous mode. When g is small, we say the
machine is operating in a "quasi-isochronous" mode.
What we mean by small is several orders of magnitude

eVO Uo5'= sin(h'0+$0) — (1+Jz5)
2nEO 2mEO

+ (fiuctuations), (3)

where Vo is the rf peak voltage, Uo is the energy radiated
per turn from the reference particle, Jz is the radiation
damping partition number [3] and with (fiuctuations) we
indicate the term arising from quantum fluctuations in
the emission of synchrotron radiation. The prime super-
script implies a derivative with respect to coot, where t is
time and co0=2vr/To is the revolution frequency of the
reference particle around the ring. The harmonic num-
ber h is the ratio of the rf frequency to the revolution fre-
quency (h =co,&/coo).

Phase slip factor

The phase-slip factor g(5), as discussed earlier, is
dependent upon two quantities: the difference in velocity
between the test particle and the ideal particle, and the
difference in path length between the test particle and the
ideal particle as they travel around the ring. The faster
the test particle moves, the farther it moves, tending to
decrease 4; however, the longer the path length, the
longer it will take to move around the ring, tending to in-
crease %. The information concerning these effects is em-
bodied in the phase-slip factor and can be rewritten as

( T To )/To kT/To gq//2~
(E, —Eo)/Eo bE/Eo bE/Eo

where 6+ is the change in 4 per turn for given AE.
The full expression for g is [4]
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where p, is the local radius of curvature of the design tra-
jectory, and P is the velocity of the particles in the labo-
ratory frame divided by the velocity of light. To simplify
this initial discussion of a quasi-isochronous ring, we will
expand q in successive orders of 5 and assume that 5 is
constant for each particle during one revolution. This is
a reasonable assumption in the absence of synchrotron
radiation and in the limit that the synchrotron oscillation
frequency v, [see Eq. (23)], is small. We do this in two

0

steps. First, x, y, x', and y' are written in terms of a
series expansion in powers of 5:

x =xp+D 5+D 5 +
0 1

Normally, the g, term is the dominant term in deter-

mining the particle s motion. For highly relativistic par-
ticles it is usually positive, but can be made nearly zero or
negative by having regions of inverted bending in the
ring, p, (0, or of negative dispersion D (0 [5).

0
As examples of typical values of the emittance, first-

order phase-slip factor, dispersion, and P„we give their
values in the smooth approximation [3]. In the smooth
approximation the emittance c., the phase-slip factor g, ,

1

the dispersion D„, and the horizontal beta function P0

are

x'=x p+D' 5+D' 5 +
0 1

y =yp

(7)

(8)

JE R
Jx

=1
Qcl 2

~x

1

&oro

(14)

(15)

where xp is the betatron amplitude of the oscillation and
D and D are the first- and second-order components

0 1

of the dispersion function. We assume for simplicity that
the dispersion is zero in the vertical (y) direction.
Second, the square root in Eq. (5) is expanded in powers
of 5. The phase-slip factor can then be written

x/o
+q, +q25+

5
(10)

g=g, +g, 5+

At this point we define the closed-orbit phase-slip fac-
tor g„which is the phase-slip factor without any
betatron-oscillation terms (i.e., x& =y& =0). In other
words, g, is the difference in revolution time that a parti-
cle with an energy offset 5 traveling on its closed orbit
takes to circulate around the ring relative to the reference
particle. For the remainder of this discussion we will dis-
cuss only g„neglecting betatron oscillations. However,
betatron oscillations will be introduced in the numerical
tracking.

The closed-orbit phase-slip factor g, can be expressed
as a power-series expansion in 5:

R
Dx0

&x

(17)

where v is the horizontal tune of the ring, R is the aver-
age radius of the ring, J is the horizontal betatron radia-
tion damping partition number, and 5, , is the relative
rms energy spread of particles in the ring.

For a ring which has a 8-m radius, an rms energy
spread of 3.5 X 10 and a horizontal tune of
3:a=7.3X10 mrad, Dx =0.89 m, g, =0.11, and

0 1

P =2.67 m having assumed JE/J =2.

III. QUASI-ISOCHRONOUS STORAGE RINGS

The value of g, can be adjusted to be zero or negative
1

by having regions of negative dispersion or inverted
bending in the ring [see Eq. (12)]. The effects of the
higher-order terms of the phase-slip factor become im-
portant when the linear phase-slip factor g, is made

1

small.
As a first step toward understanding the behavior of a

quasi-isochronous storage ring, we study the equations of
motion where the phase-slip factor is given as

g=g, +g, 5
The term g, is given by

1

Dx

ps

The q, term is given by
2

1

&oro
(12)

and ignore higher-order terms in 5.
We begin with a discussion of what is important for

good beam stability and lifetime in the ring from a
single-particle-dynamics point of view. A serious con-
sideration when designing a storage ring which has good
beam lifetime is that there should be a "large" three-
dimensional volume, the dynamic aperture, in which par-
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ticles can stably circulate around the ring, oscillating
around the reference trajectory. For a ring circulating
electrons or positrons, this volume should be at least ten
times the rms value in all three dimensions [3]. The
reason for this is that sudden changes in the momentum
of a particle can result from the emission of a photon,
and this change can shift the particle to a much different
region of phase space than it occupied previously. The
particle will then tend to damp down to the reference
particle's position because of radiation damping. The
whole region in which the particle "lives" must be stable
or the particle will be lost. Because the longitudinal
equations of motion can be rather nonlinear in a quasi-
isochronous storage ring, we had concerns about the size
of the stable longitudinal phase-space area. We have de-
rived general scaling laws which give the size of the longi-
tudinal phase space in terms of g, and q, .

1 2

In the development of these scaling laws, four approxi-
mations are made. The first approximation is that the
longitudinal and transverse motion are uncoupled. So,
when looking at longitudinal phase space, only the longi-
tudinal equations of motions (2) and (3) need to be con-
sidered. The second approximation made is that the
transverse displacement of a particle is only a function of
its energy, and can be written

x =D +D„6.
0 1

In other words, the particle's betatron oscillations are ig-
nored (i.e., q=rI, ). The third approximation is based
upon the assumption that there is no longitudinal damp-
ing in the system. The fourth approximation is that there
are no energy Auctuations due to photon emissions.

These approximations are made for several reasons.
The first reason is that treating the motion as completely
decoupled makes arriving at an analytical expression for
the size of the dynamic aperture possible. This assump-
tion of decoupled motion is reasonable, especially if the
transverse motion is relatively linear and the betatron os-
cillations are small.

The second reason is that the particles in the ring will
perform synchrotron oscillations about a stable fixed
point. This stable fixed point varies for particles with be-
tatron oscillations of different amplitudes. Particles with
a large betatron oscillation will oscillate about a point
with a larger value of 6 than particles with small betatron
oscillations. As long as the stable fixed point is not shift-
ed too much, the assumption of zero betatron amplitude
should not affect the stable phase-space area.

The third reason for making these approximations is
that longitudinal damping provides a stabilizing presence.
In our calculations, we are concerned with beam loss due
to leaving the dynamic aperture. In such a case this
would lead to rapid particle loss, usually in a tirrie much
less then a damping time. Hence we neglect damping and
stochastic fluctuation processes because they operate on a
slower time scale. This is justifiable if the dynamic aper-
ture is much larger then the beam emittances. The re-
sults which have been derived from this analysis should
serve as guidelines.

The longitudinal equations of motion [Eq. (2) and (3)]

in the absence of damping and fluctuations can be rewrit-
ten as

P'=h (i), 5+g, 5 ), (20)

eV05' = [sin(P+ $0)—sin(Po) ],
2mEO

(21)

eVO+ [cos(/+$0)+/sin($0)] .
2,~EO

(22)

From the Hamiltonian, it is now possible to distinguish
stable from the unstable regions of phase space. Now we
would like to single out two different longitudinal phase-
space regimes: the rf bucket and the a-bucket regime.

A. rf bucket

For accelerators with a large g, , q, can be ignored in
1 2

the equations of motion. The stable phase space is
bounded by a separatrix which can be seen in Fig. 2. The
trajectories are characterized by one stable and one un-
stable fixed point.

For the sake of an example, let us assume that the ring
is operating above transition, i.e., g, &O. That means

1

that the higher-energy particles have a smaller revolution
frequency than the lower-energy particles. In this case,
costa (0. The synchrotron frequency or small oscillation
frequency around the stable fixed point is

; hi), eVo~cospo~
(23)

2mEo
V

Sp

The separatrix which passes through the unstable fixed
point encloses the stable phase-space area (see Fig. 2).
The fixed point is located at P=m —2/0 and 5=0. The
maximum stable energy displacement is

FICs. 2. rf-bucket regime.

where P=h%. In this case the system can be described
by the Hamiltonian

H= —,'hg, 6 + —,'hr], 6
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2e Vo
5

vrhg, Eo
sino —cosPo

1/2

(24)

Now that the stable phase-space area is defined, it can
be compared with the rms bunch length and rms energy
spread. In this rf-bucket regime, where g, is large and

1

is small, the conditions for a good lifetime are
2

direction, and the fish whose "eye" is at (m —2$o,—i), /g2) is "swimming" in the negative-5 direction.
1

We refer to the regime in which the fish are "swim-
ming" up and down as the a-bucket regime [see Fig.
3(c)]. In the rf-bucket regime, the rf cavity determines

R (m. —2/0)
rms 2O

1
rms ~o m(

(25)

(26)

'~ ~ % 0 I f ~ 'I 0 ~ $ 0 T
I

~ $ ~

B. a bucket

What happens as we decrease q, ? When we reduce
1

the value of g, , the energy acceptance given by Eq. (24)
1

becomes larger. However, the longitudinal chromaticity
term g, , if nonzero, becomes important, and the phase-'2'
space trajectories are modified. With a nonzero value of
g, , there are now two stable fixed points and two unsta-'2'
ble ones. The stable fixed points are (/=0, 5=0) and
(P=vr 2go, 5= —g—, /g, ). The unstable fixed points

are (P=~ 2/0, 5=0—) and (/=0, 5= —g, /g, ).
There are two phase-space regimes corresponding to

whether the distance between the stable and unstable
fixed points is larger or smaller than the linear
maximum-energy displacement defined in Eq. (24), and
they are separated by the condition

E 4 I 4 ~ ~ ~ ~ R 4 ~ ~
I

I ~ ~ ~ 0 I R $
I

IC1

+C

2e Vo

why, Eo
sin/0 —cosPo

1/2

(27)

These two regimes can be seen in Figs. 3(a) and 3(c), re-
spectively, where 3(b) is the case which lies on the bound-
ary between the two regimes and occurs when Eq. (27) is
satisfied.

The first regime is the rf-bucket regime, where there
are two stable phase-space areas which lie over each oth-
er [see Fig. 3(a)]. One bucket is just that which is illus-
trated in Fig. 2, and the other is one which is directly
below it. These stable phase-space buckets are sometimes
described as "fish," where the stable fixed points
represents the eye and the unstable fixed points represents
the tail. If the machine is operated above transition, the
upper fish is "swimming" in the negative P direction,
while the lower fish is "swimming" in the positive
direction.

The effect of decreasing the ratio of g, /g, is that the
1 2

lower fish will rise toward the upper fish. At the point
where g, /g, =6, the two fish are both "sharing" the

two unstable fixed points. Each separatrix goes through
the two unstable fixed points. By decreasing the ratio
still further, the result is that the fish "exchange'* tails.
Now the fish are "swimming" up and down. The fish
whose "eye" is at (0,0) is "swimming" in the positive 5

I I

(c)

I l
I

I . I

FIG. 3. (a) rf-bucket regime. (b) Boundary between rf bucket
and a-bucket regime. (c) a-bucket regime.
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the size of the buckets, whereas in the a-bucket regime
the phase-slip factor determines the size of the buckets.

In the a-bucket regime the condition for a good life-
time is

~rms + 1 1

20 g,
(28)

9c2
(29)

For a given value g, , this gives a limit for the smallest'2'
value of g, , which the ring can support with a good life-

1

time. In order to have a smaller value of g, , we would
1

need to first reduce the value of g, . In other words, the
2

longitudinal chromaticity needs to be reduced in order to
decrease g, . For a given g, , the phase space will be

1 1

largest when g, =0. Therefore it is desirable to set g,
to zero.

The term g, acts as a change in the longitudinal or
2

synchrotron tune of a particle in the ring as a function of
its energy. The term g, is related to what we call the

2

"longitudinal chromaticity" of the ring, and it corre-
sponds to a change in the synchrotron tune with energy

q, +q, 6 +q, 5'+ . =0. (31)

In the development of these laws, we have ignored any
synchrobetatron coupling. Therefore these results need
to be verified for any given quasi-isochronous lattice with
full 6D tracking.

IV. COMPARISON
OF THE TWO-DIMENSIONAL THEORY
WITH SIX-DIMENSIONAL TRACKING

of the reference particle.
In order to independently control the chromaticity

both transversely and longitudinally without effecting the
linear lattice functions, three families of sextupoles are
needed. This third family of sextupoles is important if
the machine is going to operate at very small values of

In Eq. (30), we give an expression for the effect of a
1

sextupole on q, . One can also determine the proper field
2

strengths for all three sextupole families from the one-
turn transfer map of the ring [7].

The two-dimensional theory can be generalized to in-
clude higher-order 5 terms in the phase-slip factor. The
unstable fixed point in the e-bucket regime is found by
setting q, =0. The maximum value of 6 which is stable
is the smallest solution of Eq. (31) which is real:

The first and last two terms in the expression [Eq. (13)]
for q, are always positive. In the absence of sextupoles,

2

the first term in Eq. (13) which is a function of D' is al-
0

ways positive, and for highly relativistic particles is the
dominant term for determining g, . The second term in

2

Eq. (13) which is a function of D„can be made positive
1

or negative with sextupoles and can balance out the other
terms. Therefore the longitudinal chromaticity can be set
to zero with sextupoles (setting g, =0) in the same

manner as transverse chromaticity. The use of sextupoles
to control q, has been suggested by others in connection

2

with minimizing beam loss during transition crossing in
hadron synchrotrons [6].

We have derived an expression to determine how
effective a sextupole is at changing the value of g, . By

2

transforming the equations of motion around the 6-
dependent fixed point, the only terms contributing to the
6-dependent closed orbit come from a strictly 6-
dependent function. This is a result of the Hamiltonian
nature of the Aow. Hence in the case of a sextupole, the
second-order phase-slip factor g, must be a cubic func-

tion of the dispersion and nothing else. The change in
resulting from a thin sextupole with an integrated

2

strength of S located at a longitudinal position s(S),
where D„and D are the respective horizontal and vert-

0 3'0

ical dispersions at s (S), is

SLO
b, rI,

——— (D„' 3D„Dy' ), —

where Lo is the length of the trajectory around the ring

TABLE I. UVSOR ring parameters in normal operation and
small-g configurations. Parameters were supplied by H. Hama.

Parameters

Length of the ring (m)
Energy of the beam (MeV)
Horizontal tune
Vertical tune
Phase-slip factor, g,

1

Peak voltage of rf cavity (V)
Central frequency (MHz)
Harmonic number
Synchronous angle (rad)
(Energy loss)/(turn) (eV)
Synchrotron tune (kHz)
Synchrotron period (no. of turns)
rms energy spread (rel)
Bunch length (mm)

Normal g

52.3
600
3.16
2.62
3.5X 10

47.5 X 10
90.115
16
—0.111
5.2X10'
14.8
381
3.46 X 10
39

Small q

52.3
600
3.16
2.62
1.297 X 10-'
47.5 X 10
90.115
16
—0.111
5.2 X 10
2.849
1979
3.46 X 10-'
8

We have made a comparison of the two-dimensional
theory with six-dimensional tracking for one particular
lattice. As mentioned earlier, the storage ring which we
chose at an example of a quasi-isochronous ring is the lat-
tice of the UVSOR ring [8]. A list of parameters of the
ring in a normal and low g, operation are given in Table
I.

The lattice of the ring is a double-bend achromat of
periodicity four. There are four families of quadrupoles
and two families of sextupoles. When going from the
normal to the low-g, configuration, the four families of

1

quadrupoles were adjusted to keep the transverse tunes
constant, to keep the P functions at the end of each
period nearly constant, and to vary g, . The sextupoles

1
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were adjusted to keep the transverse chromaticities con-
stant. In the low-g, configuration, g, is 1.3 X 10 and

1 1

is 0.16. The first-order phase-slip factor in the low
2

is
3O

of the normal configuration. We used this low
1

configuration for our tracking comparison.
1

The tracking was done with an explicit symplectic in-
tegrator [9]. The integrator was derived from the full
six-dimensional Hamiltonian [10] for a particle in an
isomagnetic guide field with a thin-lens cavity. Also, this
code utilizes automatic differentiation [11] to calculate
Taylor series relative to the synchronous particle making
one revolution around the ring. From these Taylor series
or one-turn map, we can extract both linear and non-
linear properties of the map such as chromaticity, g, ,

1

g, , g, , etc. [7].
We chose the following criteria for determining wheth-

er or not a particle is outside the dynamic aperture: A
particle which ventures more than 1 m transversely from
the reference orbit is considered lost and is thus outside
of the dynamic aperture.

We used the following procedure when tracking. Par-
ticles were launched with initial transverse coordinates x
and y and an initial relative energy offset 5, but no initial
transverse momenta (p„=p =0) or initial longitudinal
offset (s=0). These particles were "pushed" around the
ring until they were either lost from the dynamic aper-
ture or survived five synchrotron oscillations (10000
turns). The particles with the largest initial values of x
and y which survived were recorded. This gives us a fair-
ly good idea of the size of the dynamic aperture.

We initially tracked particles with small betatron oscil-
lations. The results can be seen in Fig. 4. The cusp of the
"fish" is at 6=0.008, which is the value predicted by

g, Ig, . This means that the higher-order terms in q„
1 2

i.e., g, , g, , etc. , do not contribute significantly to the
3 4

bucket shape.

The results of tracking particles with large betatron os-
cillations can be seen in Fig. 5. In Fig. 5, one can see a
three-dimensional closed surface viewed from three
different angles. Particles that had initial coordinates in-
side the aperture survived and those outside were lost.
This surface gives a rough idea of how large the dynamic
aperture is. What is found is that the scaling laws give an
accurate prediction of the length of the stable phase-
space area in 6. The longitudinal aperture only begins to
shrink appreciably at very large betatron amplitudes.

We can conclude from these results that the emittance
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2156 ROBIN, FOREST, PELLEGRINI, AND AMIRY

of the ring contributed very little to determining the size
of the longitudinal phase-space area. The longitudinal
phase space in this ring is determined primarily by the

and g, terms. This gives us confidence that, for the
1 2

ring, the simple scaling law Eq. (28) agrees well with the
6D tracking and is thus a good guide to determining the
size of the stable longitudinal phase-space area for that
particular lattice.

In order to proceed to lower values of g, , it is neces-
1

sary to adjust the sextupoles in the ring to lower q, . At
2

UVSOR they were experimentally able to adjust g, by
2

varying sextupole strengths [12]. Being able to control
allowed them to operate the ring at a lower value of

2

Ici '

V. CONCLUSION

We have demonstrated that the size of the longitudinal
phase space is governed by the strengths of the higher-
order 6 terms of the phase-slip factor. We derived simple
scaling laws to give a quantitative estimate of how large
this phase-space area is. We also showed that it is possi-
ble to correct the higher-order terms in the equation of
motion with higher-order magnets, and to give an expres-
sion for the effect of a sextupole on g, . It is thus possi-

2

ble from the point of view of single-particle dynamics to

operate a ring with a small value of g, and still have a
1

sufficiently large stable longitudinal phase-space area.
Therefore, storage rings should be able to produce short
bunch lengths just by decreasing g, .

1

We have previously studied the effect of the longitudi-
nal microwave instability on the collective stability of the
beam [1]. We found that the threshold peak current
should not decrease as we lower g, . In fact, with the in-
clusion of radiation damping, the bunch should be able to
tolerate a larger peak current than when operating in a
larger-g, regime. This work was done assuming a

1

broad-band impedance and Stanford positron-electron ac-
celerator ring (SPEAR) scaling. We are in the process of
studying the effect of the vacuum impedance [13] or the
effect of coherent radiation which increases as the bunch
length decreases. We hope to report on this soon.
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