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Moments and characteristic function of a nonstationary particle distribution after injection

H. Moshammer
Stanford Linear Accelerator Center, Stanford Uniuersity, Stanford, California 94309
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This paper studies the injection process into a storage ring and presents an analytic model for the non-
stationary particle distribution after mismatched or off-axis injection. The effects of nonlinear fields as
well as the coupling to the longitudinal motion are described by analytic expressions for the first mo-
ments of the particle distribution. The result contains two distinct approximations: first, the Hamiltoni-
an has been replaced by a Hamiltonian averaged over the phase variable; second, the characteristic func-
tion of the longitudinal distribution has been confined to the first two cumulants. Functions of moments
that remain invariant for this averaged Hamiltonian are constructed.

PACS number(s): 41.75.Fr, 41.85.Ar, 05.70.Ln, 41.85.Ja

I. INTRODUCTION

The moment description for a particle beam is
relevant, since the moments correspond to measurable
quantities. The behavior of the moments of a particle
distribution as it is transported through a Hamiltonian
system, e.g., the focusing channel of a storage ring or a
linac, has been investigated in the past by several authors.
A systematic treatment of the moments and the moment
invariants for linear Hamiltonian systems can be found in
Ref. [1]. The moment dynamics and moment invariants,
based on the Lie-Poisson structure of the Vlasov equa-
tion, are discussed in Ref. [2].

In this paper, we deal with moments in the more
specific context of the injection process. Suppose the
operator in charge of a storage ring has already mini-
mized particle losses at injection by adjusting the trans-
verse tunes (to avoid resonances). In addition, a suitable

I

closed orbit has been chosen, and the operator decides to
inject either on or off the closed orbit. Since the injection
losses have now been minimized, the effect of nonlinear
fields on the beam over a single revolution may be con-
sidered small. Nevertheless, the accumulative effect over
many turns on the particle distribution may lead to con-
siderable enlargement of beam size and, thus, may de-
grade the injection efficiency.

The above scenario suggests the use of the averaging
method, e.g., the replacement of the actual Hamiltonian
H(I, P) by a Hamiltonian H(I) averaged over the fast
evolving canonical variable [3]. The Hamilton- Jacobi
perturbation technique has already been used to describe
the nonlinear fields in the transverse plane [4,5] in the ac-
tion variable

II(I)=co„(I p I'/2), —
with

f dsP (s)K3(s)
16v m

1 3 cos[g(s') —P(s) —mv ] cos[3$(s') —3$(s) —3~v, ]+ dsP„(s)K2(s) ds'P„(s')K~(s') . +
sin(harv, ) sin(3rrv„)

(2)

where p„(s) denotes the p function [6] and g(s) denotes
the phase advance. The normalized strength of the sextu-
poles and octupoles around the ring are described by
K2(s) and K3(s), and v„ is the horizontal tune.

A Taylor expansion of the sinusoidal rf wave form
around the synchronous phase tI), leads to an averaged
Hamiltonian for the longitudinal motion [7]

8(I)=co,(I p,I /2), —
(3)

p, = —— [l+—', tan (P, )],8Rv,

where h denotes the harmonic number, e is the momen-
tum compaction factor, and 2Rsr is the circumference of
the ring. To be specific, we consider a high-energy elec-

Longitudinal

E+aR /v,

zQv, /aR

Transverse

Xp
v'p '

axp+ppp
v'

tron storage ring. The results can be adapted easily to
proton rings.

We introduce canonical variables (g, n) which are relat-
ed to the measurable transverse coordinates (x&,p&) of
the betatron motion and the longitudinal coordinates
(E,z) by
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where c denotes the relative energy deviation and z de-
scribes the longitudinal position with respect to the syn-
chronous particle. Their relation to the action-angle
variables is given by

rt=&2I cos(P), f=V2I sin(P) .

A typical initial condition for a Gaussian particle distri-
bution in phase space is illustrated in Fig. 1. The corre-
sponding distribution function in (I,P) at t =0 looks like

&b' —c'
exp [ (—b +c )[&I cos( 0 ) —QIocos( Ao) ]

(b— c)[&—I sin(O) —QIosin(Qo)] J,

(6)

FIG. 1. Injected beam e11ipsoid in phase space.

the Liouville equation

aq aP ae
aI ay

(9)

with

and c,P are given by

P;
c cos(2$) =

2Eo P
P P

CX 0'
13; 13;

2

1
c sin(2$) = a;—

&xo

where e„o denotes the injected emittance. From these
equations, we see that

b c=1/e„o . —

For c =0, the initial distribution is described in phase
space by circular contours centered around Io, Po. A pa-
rametrization of the coefficients b, c for the longitudinal
plane is given in Ref. [7]. The product of the injected en-

ergy spread times bunch length o.,oo,o takes in the longi-
tudinal plane the position of the transverse injected emit-
tance.

In the absence of damping and quantum fluctuations,
the evolution of the distribution function is governed by

I

&o=4'o —4'

Io =
—,'(2)o+go), go=arctan(go/go),

where the center of mass at injections is given by the
coordinates go, go. The coefficients b and c describe the
injected beam ellipse in the lattice of the storage ring. In
the transverse case they are composed of the Twiss pa-
rameters associated with the injection point in the storage
ring (a,P) and the Twiss parameters that describe the in-
jected beam ellipse a;, P, . From Ref. [8] we have

2

If we replace the phase 0 in Eq. (6) by

0= / — dt P=P —too(1 —p,I)t ——P,aH(I)
o BI

(10)

II. FIRST AND SECOND MOMENTS

Beam instrumentation provides us with measurements
of the first and second moments on successive revolutions
after injection. In the Stanford Linear Collider (SLC)
damping rings, turn-by-turn data acquisition from beam
position monitors and a fast-gated synchrotron light cam-
era are used to analyze the injection process [9,10].

The main results of this article are the analytic expres-
sions in closed form for the first and second moments of
the distribution function in Eq. (6) with the time evolu-
tion given by Eq. (10). In the Appendix we derive the an-
alytic expression for the first moments. ,

the distribution function in Eq. (6) will be an exact solu-
tion of the Liouville equation. The quantity mo denote
the revolution frequency times the tune. It is worth not-
ing that the time evolution is not restricted to a Gaussian
initial distribution. The only requirement is that the ini-
tial particle distribution is well approximated by a posi-
tive definite, but not necessarily smooth, function of the
phase-space variables.

In the following, we derive and discuss analytic expres-
sion for the first and second moments of the distribution
function. In Sec. III, we introduce the characteristic
function and truncate its expansion in cumulants to
second order. Coupling between betatron and synchro-
tron motion will be discussed in Sec. IV. In order to
derive analytic results, we apply the same approximation
method that has been used for the characteristic function.

Finally, in Sec. V we discuss the injection process in
the presence of damping and quantum excitation. We
will show that the analytic results for the first and second
moments presented in Sec. II are still valid when the
effect of damping is included.

(rl+ig) = f J'P&2I exp(P)dI dP

A "„/2I (b c)—v O Ip[b +c cos(2Ap)] i(capt +/+Op),
e e ' [1—z&e ']expIA& —A&z&cos 2Qo

P2( 1 2 )3/2
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with

A IoP„=b +i (ken(yet ), z„=c!P„, A,„=
pk(1 zk )

Using the definitions of A and Qo in Eq. (A3), it is straightforward to show that Eq. (11) fulfills the initial condition
(r)+i/), o="(/'2Ioexp(i/0).

Since P, ~

increases with time, the asymptotic value of the first moment tends to zero: (ri+ig), =0. In this con-
text one talks about the decoherence of the center-of-mass motion. This effect was observed and analyzed in proton
storage rings when the stored beam has been kicked by various angular deAections. Higher-order multipole fields and
their effects on the beam were studied by this method at the SPS [11],at the TEVATRON [4], at CESR [12], and re-
cently at the Indiana University Cyclotron Facility [13—15]. With c =0 and Po=rt/2, the distribution function de-
scribes the evolution of a beam which has been kicked. Equation (11) reproduces, in this special case, the result present-
ed by Merminga [4] and Meller [16].

The result for the second moments is given by

& q'+g'& =2. b +Io .
b —c

(12)

and

((i)+i() ) =2(/b cexp—[ Io[b+—c cos(200)]]e

exp [ A, z
—

A,zzzcos(20o) ]X [Az(1 —z~e ') —zze
P (1 )3/

—2iQ
0] (13)

It is straightforward to extract the single contributions ( rI ), ( g ), and ( rig) from Eq. (12) and the complex valued
Eq. (13). The proof of these expressions is similar to the proof of Eq. (11). For the second moment, we find the asymp-
totic relation

, +I, ,$2 2 (14)

which is a rather important result since it characterizes the amount of beam size enlargement after mismatched and
off-axis injection. Clearly, in the operation of a storage ring, one wants to minimize this quantity at injection. I want to
emphasize that, up to this point, the only approximation is due to the averaging over the nonlinear fields in the Hamil-
tonian. We realize that the combination of moments in Eq. (12) is invariant under the nonlinear transformation, since
the right-hand side is time independent. Upon closer inspection of this moment invariant, we formulate the following
statement.

Let %(I,Q) be a given function that describes the particle distribution at t =0 and suppose the time evolution of the
distribution function is governed by the Hamiltonian 8(I, t), such that for t )0 the evolution of the distribution func-
tion is given by %(I,P fOBBIBIdt)—Let us now. consider an arbitrary function g which depends only on the action
variable. The time evolution of the moment of this function is given by

(g(il +g )),=(g(I)),= f f d(I)%' I, P f dt dId—g
0 ar

= f fg(r)e(I, y )dI dy

such that the moment of g remains invariant.
In this context, we give the expression for a quantity which will be used later in the discussion of coupling between

longitudinal and transverse motion

(r)go) =2f fVI cos(P)cos[P co(I)t]dI dP-
=+b —c exp[ I~[b +c cos(2Qo)—]]

exp [i coot +A.
& [ 1 —z

&
cos(2QO) ] ]XRe . [1+A&[1—2z&cos(200)+z f ]+e+ '~[A&(e —z&e

PZ( 1 2
)
3/2

(15)
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FIG. 2. Center-of-mass and normalized beam size for successive turns after injection.

turns

The proof of this relation follows the same pattern as the
proof of Eq. (11).

Figure 2 illustrates the beam size enhancement and the
decoherence of the center-of-mass motion due to sextu-
pole fields. One thousand particles have been tracked in
the lattice of the SLC damping ring which contains 72
permanent sextupoles for 2000 revolutions. Figure 2
show the center-of-mass motion (x ), in millimeters and

the beam size +(x ),—(x ), /Q(x )0
—(x )o normal-

ized by the beam size at injection. The analytic solution
is based on Eqs. (11)—(13), and the amplitude dependent
tune shift was calculated according to Eq. (2).

III. CHARACTERISTIC FUNCTION
AND CUMULANTS OF THE DISTRIBUTION

FUNCTION

Besides the distribution function %'(g, g), the charac-
teristic function e(u&u„) describes completely the dy-
namics of beam distribution in phase space. The distribu-
tion function and characteristic function are mutually re-
lated by a Fourier transform [17],

e(u, , u„)=f f%(g, g, t)e " " dgdg

(
I'up/+I'll r]

) (16)

It follows immediately that the moments can be obtained
from the characteristic function by differentiation

g n +rn

I
~ n+m gn gm

e(u, u )
Q~ Qg Q =Q =0

rI

Conversely, given all moments, the characteristic func-
tion can be written as a Taylor series

(iu~) (iu„)"
e(u, , u„)= y y ',

,

" (g-~") .
n =0m =0 n fm!

(17)

For a variety of reasons, it is more convenient to describe
the characteristic function by its cumulants

(iu&) (iu„)"
e(u&, u„)=exp ~ g g " C„+ (g I)")

n =0m =0 m!n I

e(u~, u„)= exp Incur( g) + iu„( g)
—

—,'[u &C2(g )+2u&u„C2(gg)

+u„C~(v] )]] . (19)

The introduction and established approximation of the
characteristic function will be justified in the following
section, where we discuss coupling between longitudinal
and transverse motion. We will then use the same
method to obtain an approximate solution for the first
moments.

IV. COUPLING BETWEEN BETATRON
AND SYNCHROTRON MOTION

Up to this point, we considered injection transients in
only one degree of freedom. A more realistic description
of the injection process into a storage ring includes cou-
pling between the longitudinal and the transverse motion

where the first curnulants are given by

Co =0,

C, (x] )=(x, ),

C,(x]x, )=&x,x, ) —&X])&x,) .

More complicated cumulants can be found in Ref. [18].
In general, it is not possible to solve the integral in Eq.
(16). To truncate the series expansion in Eq. (17) at a cer-
tain order is dangerous since, in general, the moments
obey the relation (x ") ~ (x )". It is, however, con-
venient to set cumulants higher than a certain order to
zero [17]. The choice of the order is considerably
simplified by a theorem of Marcinkiewicz [19], which
states that the characteristic function cannot be an ex-
ponential of a polynomial of degree larger than two. Ei-
ther we truncate the series in Eq. (18) at n +m =2, or we
include all terms up to infinity. Marcinkiewicz showed
that a function at some order larger than 2 would violate
the positive definiteness of the distribution function.

We use the results in Eqs. (11)—(13) to express the cu-
mulants C„C2 and truncate the series in Eq. (18) at
n +m =2, in order to obtain an approximate expression
for the characteristic function
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x ( t) =D, 8+xti =D Q v, /aR g, +QP„g„, (20)

where we use the relation Eq. (4) for the relative energy
deviation E and the betatron amplitude x&. The canoni-
cal variables g„q„, and g„ri, are associated with the
transverse and longitudinal planes. The first and second
moments are then given by

via chromaticity and dispersion. To emphasize the
difference with respect to the canonical variables, we will
use the rather uncommon notation D for the dispersion
at the injection point and v' for the chromaticity. The
total deviation of an individual particle from the refer-
ence orbit of a machine is given by

(n„+i(„)„,= f f f f%.%,(q„+i(„)
XdI„dg„dI, dg, . (24)

We now use the result of Eq. (23) and integrate over the
transverse distribution function, which leads to the rela-
tion given by Eq. (11) times an exponential containing the
chromatmsty

(z„+g,&„=(q.+g. )„

X f fr, e
'""' "'""dI,dy,

=(ri„+i(, )„6(v,'/Ra) .

(x(t) )„,=D.+v, /aR (g, ).,+QP„(g„)„ (21)
The "envelope" function 6 ( u ) is defined to be the integral
over the longitudinal phase space

and

D 2

(x'(t)). , = (g)„„

C(u) =f fe,e
'"' "'dI,dg, = (e

'" ' ), .

Similarly, for the second moments we obtain

(25)

+2D„+P v, /aR (g,g„)„,+P (g~ )

(22)
(27)

&(g„+ g„)')„,= &(g„+ g„)'&„@(2,' /R ), (26)

&q.'+g„'&„,=&~„'+g &. ,

f co„(I„e)dt=co (1 p I )(t —tp)+ „'——vf dte

=co (1 p I, )(t tp) —v„'——Z ZQ
(23)

where c& denotes the speed of light. The center-of-mass
motion is given by integrating over the distribution func-
tions

where the angular brackets denote integration with
respect to the longitudinal and transverse distribution
functions as indicated by the subscripts. In the following,
we discuss all elements of the right-hand sides of Eqs. (21)
and (22).

Integration over the horizontal distribution function in
the first terms of Eqs. (21) and (22) leads to a factor of
one: (g, ),= (g, ), and (g, )„,= (g, ), . Integration
over the longitudinal distribution function is then given

by Eqs. (11)—(13).
The second term in Eq. (22) will only contribute to the

beam size if there is a correlation between the transverse
and longitudinal distribution functions at t =O. A disper-
sion mismatch would correlate the incoming transverse
and longitudinal distribution functions. The Fourier
transform of beam size data should then contain a peak
at the betatron frequency [20]. This signal was actually
observed in the SLC damping rings [10]. A dispersion
mismatch at injection is beyond the scope of this work
and will be neglected. In the following, we assume

We will focus on the second term in Eq. (21) and the
third term in Eq. (22). The transverse tune depends on
the amplitude of the transverse action variable and, in ad-
dition, on the relative energy deviation of the individual
particle. The phase difference after some elapsed time
(t tp) may be expr—essed by means of Hamilton's equa-
tions

—
—,'u [C2(z )

—2C2(zzp)+C~(zp)]], (28)

where the brackets denote integration over the longitudi-
nal distribution function. The "mixed" cumulant
C2(zzp ) = (zzp ) (z ) ( zp ) is given by Eqs. (1 1) and
(15).

From Eq. (13) we see that the first term on the right-
hand side of Eq. (26) goes to zero as t goes to infinity.
With Eq. (14) for the asymptotic value of Eq. (27), we ob-
tain the increase of the second moment due to filamenta-
tion,

D v,(x'(t ~~ ) )„,= aR
b, +IZQ ~

b —cZ Z

b„
+P ~

+I pb2 2
(29)

where b, c, b„and c, denote mismatch parameters in
the longitudinal and transverse phase space and I„Q, I,Q

are the action coordinates of the initial beam centroid.
This expression equals the asymptotic value of the square
of the beam size, since the first moments in Eq. (21) are
then zero. The Fourier transform of Eq. (22) contains
peaks at the synchrotron sidebands of twice the betatron
frequency 2m„+2n~, which are due to the coupling of
the longitudinal to the transverse motion via chromatici-
ty. The asymptotic Eq. (29) for the beam size shows that
there is no final beam size enhancement due to this effect.

where the expressions ( (g +i g„)2 )„and ( g2 +g )„are
given by Eqs. (12) and (13). To obtain an analytic expres-
sion for the envelope function, we proceed in strict analo-

gy to the characteristic function in the previous section.
We expand the envelope function by its cumulants C„
and truncate the series at n =2,

@(u)=exp[ iu (z—) +iu (zp )
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FIG. 3. Power spectrum of the center-of-mass motion after
mismatched and off'-axis injection.

V. DAMPING AND QUANTUM EXCITATION

Until now we have neglected the effect of synchrotron
radiation and the results apply only within a fraction of
the damping time after injection. In the presence of
damping and quantum excitation, the evolution of the
distribution function is governed by the Fokker-Planck
equation. The distribution function Eq. (6) with

This result is based on the various assumptions of our an-
alytic model of the injection process.

In Fig. 3, we show the power spectrum of the center-
of-mass motion according to the analytic model in Eq.
(21). Relevant input parameters for the analytic model
areD, v', v„, v„p„,p, ands p 0 po p I p Ip b b, .
The tunes were chosen to be v =0.285 and v, =0.012.
Synchrotron sidebands v +nv, are clearly visible in Fig.
3. A comparison between the analytic model and actual
turn-by-turn measurements, which allows, for example,
the determination of the amplitude-dependent tune shifts
p„and p„can be found in Ref. [21].

APPENDIX: EVALUATION OF THE FIRST MOMENT
OF THE DISTRIBUTION FUNCTION

The derivation of Eq. (11) is in two steps. First, we ex-
pand part of the distribution functions into a power series
of Ip and c. These terms represent the distance of the
center of mass at injection and the deviation from a circu-
lar phase-space portrait of the injected ellipse. In this
representation, the integration can be performed and
leads to a double series involving hypergeometric func-
tions. The second step consists of rejoining all the vari-
ous contributions to a single analytic expression for the
first moment. We start with the distribution function
given by Eq. (6),

b2 2

exp [ (b —+c)[&I cos(Q) —QIocos(QO)]
277

—(b c)[&I s—in(Q) —QIo sin(Q0)] }

(A1)

Q =P ~t —P, Qo= go

We keep in mind that cot =coot f (t)I depends —on the ac-
tion variable. The function f (t) equals @coot in the ab-
sence of damping. Otherwise, f (t) is given by Eq. (31).
We modify the exponent to obtain

V'b' c'—
exp [ Ib Io[b +—c cos—(2QO) ]2'

Ic cos(2Q)+2+—IIO A cos(Q —Qo) }

Q=P coot +f (—t)I —P,

f (t) =
—,'couLir(e '~' —1),

(30) with

{A2)

co~t:f(t)= ,'coopr(e '—' 1), b —b(t)=be ' '-
c 'c(r)=ce2' ' Io I(t)=Ioe ' ~- (31)

where ~ denotes the damping time. %'ith this
modification, the first and second moment of the distribu-
tion function are given by Eqs. (11)—(13). In the presence
of quantum excitation, the distribution function of the
type of Eq. (6) is no more an exact solution of the
Fokker-Planck equation. An approximate solution exists
which assumes the injected emittance to be much larger
than the equilibrium emittance [8]. In this case, the func-
tions c(t), b(t), f (t), I(t) depend on the damping time
and equilibrium emittance.

is a solution of the Fokker-Planck equation in the limit of
no quantum excitation [8]. The coefficients p, b, c, Io in
Eqs. (11)—(13) have to be replaced by

The evaluation of the first moment leads to

(ri+i g) = J f II&2Ie'~dgdI
—Io fb+c cos(2QO) j=vb —c e

X f "v'2IR (I)e dI
0

with

(A4)

1 2~
R (I)= f exp[i P ic cos(2Q)—

21~ 0

+2+IIO A cos( Q —Qo) }d P .

To evaluate this integral, we expand
exp[2+IIOA cos(Q —Qo)] in a series and change the in-

b —ctan(QO)= tan(Q ), 2 =Qb'+c'+2cb cos(2Q ) .b+c 0

{A3)
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tegration variable from P to g: (=Q Q—o= P co—t
—P —Qo, so

1
" (2~ V IIo) 1 1+y+ti, )R(I)= g e

2m „ o nf

X exp i —Ic cos 2 +200

Xcos"(g)dg . (A5)

At this point it becomes clear the integral gives a zero
contribution if n is even. Hence, we replace n by 2n +1
and use the identity [22]

1 (2n +1)!
22" +'

o k!(2n +1—k)!

Another change of the integration variable, 2(+2Qo =9,
leads to a known integral that may be expressed in terms
of Bessel functions

00 2n +1 (2g II )

o k o (2n +1 k) k
—2i (n —k + 1)QO

X t u„k+, (icI)e
2i(n —k)QO+J„ „(icI)e '} . (A7)

The integral over the action variable in Eq (A4) can be
found in [22] and leads to a power series containing hy-
pergeometric functions. To simplify the notation, we
define

n —k

to obtain

X cos(2n g
—2k /+ g)

X exp i —Ic cos 2 +2QO

2n+1 (2A QIIo) t(~~+y+&, )

21r (2n + 1 —k)!k!

Gn, k

where

(2n —k + 1)!
P"+ r(n —k+1)

XI' 2n —k +2 2n —k +3
2 ' 2

2
C

, n —k+1;

(AS)

Xcos[(2n —2k+1)g}dg .

(A6)

P=b +if (t),
and i denotes the imaginary unit. For the first moments
of the distribution, we obtain, using Eq. (A4),

&~+g) =
1/2

Q2 2

exp I Io [b +—c cos(2Qo) ]+i (coot +P) }

1)n —k+1[g QI ]2n+1
X g g [expI i (2n 2k +—l)Qo}—G"'" —expIi(2n 2k +1)Qo}—G"'"] .

k!(2n —k + 1)!

(A9)

This expression was already given in [S], but for the analysis of beam position data after injection, the expression it is
not very practical. In the process of establishing an approximation to Eq. (A9), either in powers of Io or in powers of b,
I realized that the contributions of all orders may be summed up in a closed expression. This could be achieved by
transforming the hypergeometric functions I' (a,p, y, z) into a terminating series representation where a and p are nega-
tive integers. The key to the treatment of Eq. (A9) is given by the two relations

( AQIo)"
Gn, I

o I (n —l +2)(n + l)! II1(A,z)+zI1, (A,z) }P'(1 — )' ' (A 10)

and

( AQIo)"
Gn, I

o I (n —l +1)(n +l + 1)! I I1(A,z )+zI1+,(A,z )},P'(1 —")'" (A 1 1)

where I& denotes the modified Bessel function, I E.Z+ and

c IoA
Z 7

P
'

P(1 —z')
Proof of Eq. (Alo): From the definition of G"" in Eq. (AS) and the transformation relation of hypergeometric func-

tions we obtain
1

z (n + l +1)!
pn+2l1(1 Z2)n+3/2

l —n I —n —1
, l+1;z

2
' 2

(A12)
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Because of the pole of the I function in the denominator of Eq. (A10) for n —1+2~ 0, the lower limit of the summa-
tion index n is shifted from zero to n =1 —1. Hence, at least one of the first two coefficients of the hypergeometric func-
tion in Eq. (A12) is a negative integer, and the series terininates. Using Eq. (A12), the left-hand side of Eq. (A10) be-
comes

6n, i

, (n —1+1)!(n+1)!
1 " &„(n+1+

p (1—z )
I l, (n+1)!(n —1

1

z (n
2

1)l

+ 1 )ll!

—l)(n —1+1) z
(1+1) 2

1+2

1+2k
(n —1+1)!1!

(1+k)!k!I (n —1 —2k+2) + 0 ~ ~ (A13)

The next step is to sum over n for fixed index k. For k =0 we use the power series expansion of the exponential and ob-
tain

z 1 A "(n +1+1) 1 zA, 2 1

2 1!„ i, (n —1+1)! 1!

1 k"(n +1+1)
k (1 +k) i+2k i (n 1 2k + 1 )

Similarly, we have, for the arbitrary term,
' 2k+1

Z

2

1+2k
1 zA,

k!(1+k)! 2
(A14)

Next, we add up the various contributions over the index k. Inserting the derived contributions of Eq. (A14) into Eq.
(A13) we obtain

(gQI )2n
Gn, 1

, (n 1+1)!(—n +1)!
1 1 ZA,

k!(1+k)! 2

1+2k
1

k!(1+k —1)!

1+2k —1
'

ZA,

(q+g& =

Comparing the right-hand side with the power-series representation of the modified Bessel function, gives the result
shown on the left-hand side of Eq. (A10). End ofproof ofEq. (310).

Equation (Al 1) may be shown in a similar way
Let us now go back to the original double series representation of the first moments in Eq. (A9). In order to replace

G"' ' and G"' by G" " ', we substitute for k either k =n —l +1 or k =n —l. Using the transformation relations for
hypergeometric functions, we see that 6"'" '=6"'"+'holds and we obtain for the left-hand side of Eq. (A9),

1/2
—I0 [b +c cos(200) ]+i ( co0t +P+ 00)

2

X2 g (AGIO) "+'.
n=0

Gn, n oo

1 )16nn —l,
(n + 1)!n!

exp[ —2('1&, ) exp [2tl&a)
1 (n —1+2)(n +1)! I (n —1+1){n+1+1)!

(A15)

Substituting Eqs. (A10) and (Al 1) into Eq. (A15), we obtain

Io[b+ccos(2no)] i(stot+((t+(—io)' e

X Io(zi )+zI) (zt) )+ g ( —1)'[e '[Ii(zl )+zI( )(zA )]+e '[Ii(zk )+zIl+i(zA ) J ] . .
p2( 1 2)3/2 1=1

At this point, the summation over the index l may be replaced by the generating function of the Bessel functions to give

IO [ b + c cos( 2QO ) j i ( ccc—t + tb+ nc )0 e 0 0 e

P'(1 —z')' ' {1—ze ')exp [
—Az cos(20o) ],

which is the relation we wanted to prove. Higher moments and correlation functions may be treated similarly. Never-
theless, this approach seems to be restricted to a Hamiltonian of the form H (I)=co(I pI /2) where higher-ord—er con-
tributions of I have been neglected. In order to evaluate moments of distributions, whose evolutions are governed by
Hamiltonians of a more general form, it would be of great vlaue to find a more direct and simple approach. Certainly,
it is possible to replace the summation over n by modified Bessel functions, in Eq. (A7), but again, the subsequent in-
tegration over the action variable is rather troublesome.
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