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Nonlinear ion-acoustic waves in a collisional plasma
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It is shown that Gnite-amplitude ion-acoustic waves in a collision-dominated plasma are described
by a Korteweg —de Vries —Burger equation, which has the same form, but with very diferent scaling
and parameter dependence from that describing ion-acoustic waves in a weakly collisional plasma.

PACS number{s): 52.35.Sb, 52.35.Mw, 52.35.Fp, 52.35.Tc

I. IN TROD UC TION

Processes in low-temperature plasmas which are colli-
sion dominated have been of recent interest because of
their relevance in many modern technological applica-
tions of plasmas. Because of the rapid momentun and
energy transfer between the particles, highly collisonal
plasmas have the common properties that dissipative ef-
fects are always present, and the electrons and ions can
have similar temperatures. One of the most important
problems in collisional plasmas is that of wave propaga-
tion [1—7], since the stability and nonlinear behavior of
the waves can crucially affect the property of the plasma.

A commonly occurring mode in both collisionless and
collisional plasmas is the ion-acoustic wave. In a col-
lisionless and nonisothermal plasma where the electron
temperature is much larger than the ion temperature
(T, )) T, ), these waves are driven by the electron pres-
sure and ion inertia, the coupling between the species
being achieved by the electrostatic forces. Although the
dispersion relation remains similar to that of the colli-
sionless case, the physics of the ion-acoustic waves in a
highly collisional nonisotherrnal plasma is more compli-
cated, since both electrostatic and collisional effects enter
into play. For example, collisions between the unlike par-
ticles can also couple the dynamics of the ions and the
electrons. Thus, the collisional ion-acoustic waves can
involve both plasma and neutral-Quid properties. Fur-
thermore, collision-driven resistive and dissipative insta-
bilities can occur if external free-energy sources, such as
external currents, density and velocity inhomogeneities,
etc. , are present [1—5], and the waves can become nonlin-
ear and/or turbulent.

Although there exists a large number [1,5—9] of stud-
ies on nonlinear ion-acoustic waves in collisionless and
weakly collisional plasmas, there seems to be no com-
prehensive investigation of such waves in a strongly colli-
sional plasma. In fact, a consistent (i.e. , including disper-
sion as well as dissipation) study of the linear ion-acoustic
waves in such plasmas does not seem to exist in the liter-
ature. In this paper, we consider the nonlinear prop-
agation of ion-acoustic waves in a collision-dominated
plasma, taking into account the variations of the par-
ticle densities, Quid velocities, as well as temperatures in
the wave field. It is found that the propagation is gov-
erned by the Korteweg —de Vries —Burger (KdVB) equa-

tion [6,7], similar to that for the weakly collisional plas-
mas. However, here the scaling and therefore the physics
are completely different from the collisional case, Also, in
contrast to the latter, where the nonlinearity originates
mainly from ion convection and electron pressure, here
it is dominated by the thermal forces and inter-particle
heat transfer. The KdVB equation, which in the present
case is not reducible to the KdV equation because of the
scaling, admits shocklike solutions which differ from the
usual shock waves by having a decaying oscillating tail
in the downstream region [1,5—7].

II. BASIC EQUATIONS

Unlike the case for hot, nearly collisionless plasmas,
where the electrons are in thermal equilibrium and are
governed by the Boltzmann distribution, here the full
dynamics of both the ions and electrons must be consid-
ered. Accordingly, we start with the equations for the
fluid velocities v and v, of the electrons and ions [10]:

m, n, (Bt + v, V)v, ,, = V', n, T, —V'tm—~'). .

—en, E~ + A~,

and

m, n, (cl, + v, . V)v;.s = V', n;T, —V'(vr, '.— .(2)

+en, E~ —R~,

where the subscripts or superscripts e and i denote elec-
tron and ion quantities, respectively, and l and j are
dummy spatial-direction indices. Furthermore, +e, m,
n, v, and T are the charges, masses, densities, Quid ve-
locities, and temperatures of the species, and E is the
electric field. Equations (1) and (2) are completed by
the continuity equations

Btn, , + V'. (n, v, ;) = 0,

and the energy balance equations

2n, , (Bt + v, , V)T, ; + n, ;T, ,V v, ,
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In the above equations, the terms V'nT represent the
pressure forces of the electron and ion gases, and the
stress tensors w&.

" are given by

The thermal-gradient frictional force R~ appearing in
(7) is given by

Rz ———0.71ne VTe.

Furthermore, the heat fluxes q( ") are

with the rate of strain tensors m&'-" given by

(e,i) 2+jUe i l + +LUe i'j 3~le V +e i

Furthermore, the friction force R between the electrons
and ions is

q = q„+q~ = 0.71n,T u —3.16 VT
me ve

(i)= —3.9ni ' VTi.
mi vi

Finally, the heating powers Q, ; are

(io)

R=R„+Rz, (7) Q, = —K. u —Q;, Q, =3 'n, v, (T, —T;).
mi

where R~ is associated with the force of relative friction
(for (u « v, )

R = —0.51n, m v u,

In the following, we shall solve the above equations by
expanding in powers of the electric field E.

which depends only on the relative velocity u = v
v, between the electrons and ions. Note that here the
effective collision frequency is v g v, . Let us also stress
that in the opposite limit, namely u )) v„one can obtain
the mathematically similar relation R —n, m, v, u.
However, in this case serious questions on the validity of
the hydrodynamic description arise [loj.

III. LINEAR THEORY

We shall first present the linear theory, which does
not seem to have appeared before in its complete form,
and will be needed in our nonlinear investigation later.
Assuming the Fourier-mode form exp( —iwt + ik w), we
obtain straightforwardly the first-order perturbations

(y) ~Kk &Ek 10 (1) &Ek (y)V V. V
m r~, mi~ 5+2 x 071' ' m ~~i (12)

ek Ey 6 1.71 m, 1.71 —A, 5 i ek . EA,. 10
m, KO, A q u, m, , cu; ) 5 k~ 5+2 x 0.71'

(g) . ek Eg f 1.71(1 —A, ) m, 1.71 —0.71'; l (,)
me&~i+ ( we mi ) (13)

where To is the equilibrium temperature of the plasma.
In the above, we have retained certain intermediate steps
in order to identify their origin. We have also defined

. k2v~2, I i(uA, ) 4 k2v~2,
M~= —'LM + l

l

1 —1.71
l
+ —0.73BA) 3 v,

k2v~2, m m,
Qe = ——z(d+ 316 + 3 ve ~ 3 ve~

2 ve mi mi

3
Oi = ——1&+39 +3 ve ~ 3 ve ~ Oe)

2 vi mi mi
(16)

.k v~ 5+2 x 071
Z

3 (14)
; =1+3 ' =2,

min, ,

k2v~2, . ficub, 'i~A, 5
~; ——i~ + ~

I
1 — + 0.71

O, A O,A)

( m, ) 1 m i(u
b, =l — 3 'v,

m; p Q, O; m v,

and

k2v2
+—0.96

ve

( k2v&2, 5 —2 x 0.711—2Cd 1—
3 ) (is)

k v~2, 1.71 —0.71K,)r = 1+ 0.51v, + 1.71
O.

(1 m. 1)xl + m;~;)
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where vT, , = QTp/m, , is the electron (ion) thermal ve-
locity. Thus, we have expressed all the relevant quantities
in terms of the electric field EI, .

The corresponding linear dispersion relation is easily
found to be

IV. NONLINEAR TERMS

We can conveniently express the second-order temper-
ature perturbations as

meu+ u =O.
mi

From Eq. (20) we obtain

(20)
T(2) T(2)

(24)

[1.71Tp(V v, ) —0.71Tp(V . v, )]
e

—3
m. v.T,(V v!')

n.n.~'

where

k2v2 k2v2
~ = kv, —iA —Bkv,

&e ~e

3.16 (3.9 9.6l v, m,5A=
3 (3 3) vm, '

3m; f 3.16 3.9 v, m, )5B= +
10m, ( 3 3 v;m, )

(21)

(22)

(23)

T(2) T(2)

—0.71Tp(V . vI'i)], (25)

where we have defined

(26)

T(V ())
O, L

[171Tp(V v~'~)
m; O, O, D

Equation (21) gives the frequency of the ion-acoustic
waves in a collision-dominated. plasma. We see that the
waves exhibit collision-driven damping and dispersion,
and that the contributions of the stress tensor as well
as the temperature perturbations, usually neglected, are
significant.

(27)

Then the second-order relative velocity can be conve-
niently expressed as

u(2) —v( )
e

„(~) T(')"' Vn~'l — ' Vn~'l ——V(ni'lV v~'l)
vu m2n n ' T ' iw

(v!'~ V)v, l+ V(T~ ~+T~ l)
K~i m' (28)

which we note contains mainly contributions from thermal forces and heat cruxes.
Using Eqs. (3), (12), and (13) we obtain for the Fourier component [which is proportional to exp( —isn't+ ik x)] of

u(2)

(2) ( 10
5+2 x 071)

ie2k2 10 T,kik2 1 5T ki. k2 (k12 k225

+~ ~1~2klk2 ~1~2 2 3 m ~ (~1 ~2)
(29)

where the subscripts 1 and 2 are dummy wave-number
indices, and dA dK stands for h(w —wi —cu2)b(k —ki —k2)
duqdw2dkqdk2. The Fourier component of the longi-
tudinal electric field is Ei, = k . Ei, /k, where Ei,
f E(x, t) exp(i~t —ik x)dx dt.

For the one-dimensional case, we have from (29)

terms due to the quasilinear Aux n, v —n; v; in
the expression for the second-order current density are
negligibly small comparing with u~ l given by (28).

Thus, for the (one-dimensional) electric field of the ion-
acoustic waves we get the following second-order equa-
tion:

(2) ( 10

F5+2 x 0.71)
4ie2k

x 2 EA, ,Ej„dO dK.
3m,- ~;(ugcu2kg k2

(30)

In obtaining (30) we have used the dispersion relation
(20). Thus, Eq. (30) is valid only for waves with sound-
like dispersion, as given by (21). Let us also note that

10 ) 2ie

(5+ 2 x 0.71) 5m;rD2, v2

' dO dK = 0. (31)
kkgk2

The linear dielectric permittivity eA. is given by



48 NONLINEAR ION-ACOUSTIC WAVES IN A COLLISIONAL PLASMA 2139

2'L(dp~ 'L4Jp~+
K(d(d~ K(d(d~

iu)„, ( m,
(32)

m;

where ~„,(;) = (4vrno/m, (;)) ~ is the electron (ion)
plasma frequency, and rD, = vT, /az, is the electron De-
bye length. From (31) one can easily obtain

I 2V2 I V
u) —kv, +iA '+Bkv,

&e ~e

+ 40/3 iek2 El,,EI„'dBdK = 0. 33
5 + 2 x 0.71 m;v, kik2

It is convenient to define the electrostatic potential y by
EI, ———ikyI, . Inverse Fourier transforming, one obtains

(cl, + cl. —O..+ 5a...)y+ cl. (y)' = 0,

where t, z, and P have been normalized by
3.16m, /50m; v„3.16m, v, /50m; v„and 3(5 + 2
x0.71)m;v2/40e, respectively. We also have assumed for
convenience that v m, , &( v;m;, so that, in for example
(22), 5A = 3.16/3.

Equation (34), which does not contain any dimension-
less parameters, is the KdVB equation. It has been inten-
sively studied in the literature, and has the well-known
quasistationary solution depicting a shock wave with a
spatially decaying and oscillating tail [5—7].

normalization parameters) is fixed in the present prob-
lem, as is evident from the absence of free parameters
which can be rescaled in order that the dissipation term
could be neglected as a result. Thus, the corresponding
solutions, namely, shocklike structures with oscillating
downstream tails, usually attributed to weakly collisional
plasmas [1,5—7], occur in a strongly collisional plasma as a
rule. It also follows that ion-acoustic solitons of the KdV
type cannot appear in such plasmas. Physically, this re-
sult is expected, since when collisional effects dominate,
dissipation is inevitable. The fact that thermal forces and
interparticle heat transfer dominate the nonlinear mech-
anism is also in some sense expected, since dissipation,
similar to dispersion, is particularly sensitive to the large
gradients associated with the shock wave.

In this paper, we have not included effects such as ex-
ternal currents, background inhomogeneities, impurities,
ionization, and recombination, etc. , which may be of im-
portance in a low-temperature plasma. These effects can
lead to phenomena such as linear and nonlinear insta-
bilities which may affect the formation of the stationary
states. Furthermore, in the region near the container
wall, boundary effects are expected to modify the prop-
erties of the nonlinear sound waves. For example, linear
and nonlinear surface acoustic waves [11,12], which are
important in many applications, can appear. This and
related effects are still being investigated.

V. DISCUSSION

Unlike the KdVB equation for a weakly collisional
plasma, Eq. (34) is not reducible to a simple KdV equa-
tion in any limit. This is because here the scaling (i.e. , the
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