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Transport coe%cients of fully ionized plasmas with a weakly coupled, completely degenerate electron
gas and classical ions with a wide range of coupling strength are expressed within the Bloch transport
equation. Using the Kohler variational principle the collision integral of the quantum Boltzmann equa-
tion is derived, which accounts for quantum effects through collective plasma oscillations. The physical
implications of the results are investigated through comparisons with other theories. For practical ap-
plications, electrical and thermal conductivities are derived in simple analytical formulas. The relation
between these two transport coefficients is expressed in an explicit form, giving a generalized
Wiedemann-Franz law, where the Lorentz ratio is a dependent function of the coupling parameter and
the degree of degeneracy of the plasma.

PACS number(s): 52.25.Fi, 72.10.Bg, 71.45.—d

I. INTRODUCTION

High-density-plasma properties have been the subject
of several studies for some time now. They usually raise
interest for such practical applications as laser-
compressed plasmas and the interiors of heavy planets
and of degenerate stars. The impact of electron degen-
eracy on transport properties has been shown to be of
great importance and can play a significant role in target
performance in laser fusion plasmas [1].

Several authors have taken into account the electron
degeneracy for the calculation of transport coefficients in
strongly coupled plasmas [2—4]. In most existing models,
the effects of interparticular correlations are often taken
into account in a qualitative manner. Electronic trans-
port of completely ionized dense hydrogen plasma has
been considered with the help of the Ziman formula [5,6]
where ionic structure factors were obtained by numerical
simulation [5] of a one-component plasma (OCP) model.

The quantum Lenard-Balescu transport equation has
been used [7] for thermal and electrical conductivities of
a plasma of highly degenerate, weakly coupled electrons
and nondegenerate, weakly coupled ions. This latter
model ended up with an unexpected significance of
electron-electron collisions. This type of collision can
augment heat resistance either by deflection of colliding
electrons or by transfer of energy from the faster to the
slower particle. These mechanisms both are ineffective in
the electron-ion collisions and have no significant effect
on electric conductivity since the electron-electron col-
lisions conserve the electric current.

Moreover, the energy exchanged in an electron-
electron collision, in a sufficiently degenerate plasma, is
small compared to the electron kinetic energy (Fermi en-
ergy), but is still typically of order k~ T. Since the distri-
bution function varies on the scale of kz T, energy redis-
tribution by electron-electron collisions becomes an im-
portant mechanism for thermal conductivity over a
significant range of high temperatures and densities.

For greater degeneracy, however, the Pauli exclusion
principle drastically restricts the phase space for the
electron-electron collisions and entirely prevents them at
absolute zero temperature (completely degenerate plas-
ma).

For a high density, strongly coupled, partially or com-
pletely degenerate plasma, where the concept of the De-
bye shielding breaks down, statistical theories containing
the Debye length as a characteristic parameter would be
physically meaningless for such a nonideal plasma.
Moreover, transport phenomena, the understanding of
which has been attempted via the model of discrete in-
teracting particles, i.e., where electrons are elastically
deflected at the surface of the Fermi sphere by the ionic
density fluctuations, do not give a rigorous account of an
essential characteristic property of such a medium: exci-
tation of collective oscillations. For that, collective
behavior effects are treated through Coulomb collisions
and separated as long-and short-range interactions and
are arbitrarily splitted in the integration process.

A number of investigations [8,9] developed transport
theories of stellar interiors, using an ordinary two-body
Boltzmann equation for electron-ion scattering with the
Born approximation for the unshielded Coulomb poten-
tial. In order to eliminate the long-range Coulomb poten-
tial divergence, the Coulomb potential has been cut off at
the mean interionic distance. These models assumed stat-
ic shielding.

Unification of both treatments of short- and long-range
Coulomb collision is a more comprehensive approach
[10] to the very-high-density plasmas, where the shielding
distance (Debye length) loses its physical meaning as an
upper impact parameter. Some authors [11,12] proposed
such a unification scheme of Coulomb collision theory in
the limit of the weak coupling but introduced artificial
splitting, in the integrations, into two separate parts.

For quantum plasmas, the Lenard-Balescu equation
has been used. In its derivation, an assumption is made
that all the many-body correlations (collective effects) in-
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corporated in the dielectric function to account for the
dynamic Coulomb shielding and both multiquasiparticle
collisions and quasiparticle interaction energy are
neglected, but it is valid only for weak coupling [7]. Den-
sity Auctuations for dense plasma can be split into two
approximately independent components associated, re-
spectively, with the collective and individual particle as-
pects of the system.

The collective component, which is present only for
wavelengths greater than the Debye length, represents or-
ganized oscillations brought about by the long-range part
of the Coulomb interactions [13]. When such an oscilla-
tion is excited, each individual particle suffers a small
perturbation of its velocity and position, arising from the
combined potential of all the other particles. The contri-
bution to the density fluctuations resulting from these
perturbations is in phase with the potential producing it,
so that in an oscillation we find a small organized wave-
like perturbation superposed on the random thermal
motion of the particle.

For the high density, partially or completely degen-
erate plasma, i.e., at low temperature, the thermal motion
no longer plays the dominant role. Instead, the cumula-
tive potential of all the particles will be considerable be-
cause the long range of the force permits a very large
number of particles to contribute to the potential at a
given point. Hence the collective aspect would be dom-
inant and particularly governs the transport phenomena.

Herein, we extend and apply the Bloch [14] transport
theory to the very-high-density plasma based on the con-
cepts similar to those used for solids and liquid metals
[15—17]. The development of such a model to be applied
to degenerate plasmas is justified since the medium may
be described as a distorted lattice. The strong interparti-
cle correlations keep the ions in positions that resemble a
lattice structure. Since the system is Quid, the average
position of the particles changes slowly with time, unlike
the real lattice that appears with still stronger correla-
tions [18].

As the plasma goes from low (I & 1) (1 is the ratio of
the Coulomb interaction energy to the thermal energy of
the ions) to high (I ) 1) ion coupling with increasing den-
sity, it undergoes a transition from a nonideal classical
plasma to a quasicrystalline plasma, with an incomplete
ordering comparable to that of a liquid [19—21]. A range
of the coupling parameter has been proposed for such a
crystalline transition by several authors [22,23] such as
178 & I & 196. In the case of complete degeneracy (T=o
K), the crystalline transition is observed in the range [24]
1.3 ~ r, ~ 1.8, where r, =a, m, e /A is the Wigner-Seitz
radius for the electron (a, ) in units of Bohr radius and
depends only on the electron density.

For the above reasons, it appears more adequate to cal-
culate the transport coefficients of very dense plasmas
from the picture of electron and ion oscillations.

In analogy to the Bloch theory, the role of the longitu-
dinal phonons, in the theory of metals, is played here by
the quanta of the plasma oscillations, plasmons and ion
sound waves, with some idealization made by an ade-
quate choice of the dispersion relations and an extrapola-
tion of the spectrum to large wave numbers. The theory
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to be presented is able to take into account, in its formu-
lation, both electron-electron and electron-ion contribu-
tions. The results are compared with previous theories
and simulations.

The domain of validity of the present model is defined
in Fig. 1 (area with dashed boundaries) where, in the
temperature-density plane, the characteristic quantities
are represented for a completely degenerate electron gas
(for the Fermi degeneracy parameter 6 & 1) with classical
ions (K;/a; & 1), K is the de Broglie wavelength for the
ions, over a wide range of coupling strength I .

II. BOLTZMANN COLLISION TERM
FOR QUANTUM PLASMAS

A. Electron-plasmon and electron —sound wave interaction

In consideration are transport coefficients of high-
density completely degenerate plasmas due to the many-
body interactions of the electron with longitudinal plas-
ma waves. The motion of electrons in a continuum of
volume Q is affected by the continuum oscillations
(many-body interactions). In ideal plasmas, the change of
motion is caused by binary collisions of the electrons with
the plasma particles. In nonideal plasmas, however, the
electrons interact with the Coulomb field of all charged
particles. Therefore, this interaction can be treated as a
scattering of the electrons by the random longitudinal
waves of the plasma continuum, which are thermally ex-
cited. As in the theory of metals [15,16], we are consider-
ing a free-electron model, applied to dense plasmas with
Z electrons per ion where the electron wave functions are
approximated by plane waves.

The electron energy E is given in terms of the wave
vector k by E =A' k /2m„so that the Fermi surface is
spherical. Let co, (q) be the eth eigenoscillation with
wave vector q of an electron wave (e plasmon) and co;(q)
and ith eigenoscillation with wave vector q of an ion
sound wave (i plasmon).

Taking into account conservation of energy and

FIG. 1. Region of validity (area with dashed boundaries) of
the present quantum model for Z= 1. I —= (Ze) /a;kz T,
ai =(3Z/4mn) O=ka T/EF, EF=(A /2m')(3m n)
r, —=a, m, e /R a, =(3/4nn)', K;=A/(m. k&T)' 2.
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momentum, i.e., fico(q)=E' E—and fiq=p' —p, where
E,p and E', p, are, respectively, the energy and momen-
tum of an electron before and after a collision with a
plasmon of energy A'co(q) and momentum fiq, we see that
an electron interacting with the plasma as a whole can
emit and absorb plasmons and ion sound waves which are
quasiparticles obeying Bose-Einstein statistics and their
distribution function is

fico(q)
exp —1

kBT

Let P(k, k ) be the transition probability per unit time
that, upon a collision of the electron with a plasmon, the
electron in a state k moves to another state k' which is
not occupied by any other electron. If f (k) is the distri-
bution function of the electron occupying state k and

f (k') the distribution function of the electron in the state
k', the number of electrons which move from state k to
state k' is (Pauli principle) P (k, k')f (k) [1—f (k') ].

Since there always exists an inverse transition of the
above forward interaction, the total rate of change in
time of f (k) due to electron-wave interactions is ob-
tained by summing over all k:

—P(k, k')f (k)[1—f (k')]J . (2)

The interaction processes are calculated by perturbation
theory.

The probability of a transition [25,26] from an initial
state k to a final state k' is

(3)

U, (r)=e, e, exp( rl5, )lr, e—, = —e, e;=Ze,
the matrix element becomes

(4)

where Ek. and Ek are the energies of the electron in the
state k' and k, respectively. IMkk, l

is the matrix element
of the transition k~k'. For the absorption of a plasmon,
IMkk, l

is proportional to N~, and for the emission of a
plasmon it is proportional to (N + 1).

With the Fourier transform of the potential U, (r), by
means of which the particles in the plasma interact, for
electron (s =e) and ion (s =i) oscillations with difFerent
frequencies co„which is described here by a Yukawa po-
tential with a shielding radius 5, [5, -n, '~, see (A6)
and (A7)],

IMkk I'= lcx; 'q'I U, (q) I',

AX
for the absorption of an oscillation,

2m, n, co, q

iii(Nq + 1)
for the emission of an oscillation .

2m, n, co, q

(6)

For plane waves normalized in a unit volume, the Fourier
transform of U, (r) is given by

4irn, eI e,;, q=lk' —kl,
5, +q

(7)

m, is the mass of the particles, n, their density, la'
I

is
the mean-square amplitude of the qth mode of an oscilla-
tion of frequency co, (q), and e is the unit vector in the
direction of propagation of the vector q.

The distribution function f (k) in (2) is not symmetric
with respect to the origin in k space, since it is "polar-
ized" by the electric field C.

Taking 8 in the x direction, 0 =($,0,0), a first-order
perturbation gives to f (k) the form

aE aE
=

B

where fo(E) is the Fermi distribution describing the
thermal equilibrium of the electron,
fo(E)=(1+exp[(E g)ikiiT]) ', g=g(—T) is the Fermi
energy [g(T=O K) =(fi /2m, )(3ir n) is the Fermi

edge], and 4 is a function of the energy E to be deter-
mined as

@=el@IV„g(E),
where U is the velocity of the electrons in the x direction.

If Eq. (2) is changed from a discrete summation over k'

to an integral and the volume Q is normalized to unity,
then the collision term becomes

jW(k', k)[N(k') —@(k)]d k', (10)
(2ir) kiiT

where the detailed microscopic balance for direct and in-
verse interactions has been used, i.e.,

W(kk ) , 'P=( k )k'f, ( o)k[ —Ifo(k)]
=P(,k 'k)f (0k)[l —fo(k')]= W(k', k) .

Analytical results can be obtained if a set of the oscilla-
tion frequencies is properly defined.

B. Dispersion relations

The plasma under consideration is a continuum of
volume 0 containing N electrons, X/Z ions, and an elec-
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tron density n =NIQ, which exhibits 3N (high-frequency
branch) and 3N/Z (low-frequency branch) characteristic
frequencies co, (q) of longitudinal oscillations (s =e, i).
The high-frequency branch corresponds to electron plas-
ma oscillations and the low-frequency branch is the ion
sound waves.

The dispersion relation co, ;=co, ;(q) for the electron
oscillations and ion sound waves are (a) extended to
strongly coupled plasmas by redefining the specific-heat
ratios ~, ; and (b) extrapolated to large wave numbers

q —n ' for which Landau damping is very small.
The oscillation frequencies are the high-frequency

branch (s =e) of the space charge waves and for n «n
[n =2(2am, k&T) Ih is the critical density] are taken
to be

co, (q)=co (1+a q )'~ (12)

where a =C /co, with C =(~,ksT/m, )'~ the speed
of sound of the electron gas, ~, =cp/c 3

and cop the
plasma frequency [co =(4rrne /m, )'~ ]. For a n ) n, de-

generate plasma, the high-frequency branch dispersion
relation is given by [27]

co, (q)=[co (1+a q )+(fiq /2m, ) ]'~2, (13)

where a =(—,')vF/co and vF=(A/m, )(3m)n'~ . is the
Fermi speed.

Here we consider that q «co /vF and co~ ))Aq /2m, .
Thus, in this region, the spectrum of the longitudinal os-
cillations is similar to that of a weakly degenerate (high
temperature) plasma, with the distinction, however, that
in the present case, the chaotic motions of the electrons
are due to Fermi energy rather than to the temperature.
In addition, Eq. (13) takes quantum effects into account.

The low-frequency branch (s =i) of the space charge
waves is due to ion sound waves which are coupled with
the electrons. Their dispersion relation for n «n is
given by

III. TRANSPORT COEFFICIENTS

A. Boltzmann equation resolution by the variational method

This method has been proposed by Kohler [28], where
the collision equation is reduced to a variational principle
which can be interpreted as a principle of maximum en-
tropy production. The variational principle is based on
the linearized Boltzmann equation for an electric field
and a temperature field. The Boltzmann equation con-
tains implicitly the equilibrium between the reduction in
entropy by external fields and the increase of entropy by
collisions. The solution of the transport equation is so
designed that the entropy production caused by the in-
teraction of electrons with plasmons and ion sound waves
will be a maximum.

The collision term [Eq. (10)], established through the
interaction model proposed, is related to the field term to
express the Boltzmann equation as follows:

Bfo—(v A) J W(k', k)[4&(k) —&b(k')]d k',
8~ k~T

(16)

where the left-hand side has an explicit form:

dfo
" BE

d( E —
g dT

8x T 8x

motion and on the amplitude of organizing oscillations
(plasmons). Normally, the thermal energy is much
greater than the organized oscillation energy, so that for
all practical purposes, frequency does not depend appre-
ciably on the amplitude of organized oscillations. The
entire effect is in the domain of the nonlinear aspects of
the problem, and therefore, can be neglected in a linear
approximation. So, the average energy appearing in the
dispersion relation should be the value existing in the ab-
sence of organizing oscillations.

co;(q) =v(q)C, q, (14)

where C, is the speed of sound in the ion gas,
C, =(x.;k~T/m, )', ~, =c Ic, =

—,', and v(q) is a correla-
tion factor which shows the influence of the electrons on
the ion oscillations [20]. Since the dispersion factor v(q)
is a bounded function varying very little with q such that
1 & v(q) &(1+Z)'~ for q E(0,q;) [Q; —(3ZI4mn)'~ ], it
can be approximated by an average value of order unity
[20].

For a completely degenerate plasma, the speed of
sound in the ion gas is no longer a function of tempera-
ture, it does depend on the Fermi speed of electrons. Ac-
cordingly for n ))n, the ion sound waves dispersion rela-
tion becomes

8 is the electrical field component in the x direction and
T the plasma temperature.

Equation (16) can be written in short as

field

++F =XcP, -

Bt c
(18)

where X is a definite position integral operator which
connects the unknown function 4 with the known field
function F. In addition, X is linear and we can write

%@=X(a4,+bC& )=2aXC&, +bX@ . 2

Let

co;(q)=(Zm, /3m;)' v~q . (15) pF =X%=—v1 1 x (20)

The damping factor of these sound waves is small in com-
parison with co, ; this permits the propagation of sound to
great distances. It should be noted in this system that the
kinetic energy will depend both on the temperature or the
Fermi energy which determines the random thermal

ufoF =X@ = —v (E —g)" gE (21)

where N, and @2 are due to the fact that the electrical
and temperature fields are independent of each other and
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related through

—eS—dg 1 dTN)+
dx T dx

(22)

no steady current is ffowing, the electrostatic field 8 will
build up to such a value that J vanishes. Hence, A, , the
effective coefficient of heat conductivity (thermal conduc-
tivity), is defined as the ratio of Q to VT for J=0 hence

Moreover, @ is one of the P trial functions which satisfy
the relation

(23)

The variational principle provides a solution of the in-
tegral equation (18) which gives to the product & 4,XC& &

its maximum value:

L22
T2 '

L
T2

(33)

(34)

(35)

(24)

Hence, the transport equation, in consideration here, is
reduced to an extremum problem. For this purpose, 4&
and 42 of Eqs. (20) and (21) can be chosen as power series
of E—g where the coefficients will be determined by the
optimization principle.

B. Transport coef5icients

In the Boltzmann theory, the electrical current and en-
ergy ffuxes are given as [29,30]

L,2

T
L I (L22 L )2L2

(36)

(37)

The kinetic coefficients are defined by Eqs. (29)—(32) as
functions of +& and 42 which will be studied shortly.

The typical electron energy of the plasma in considera-
tion here is E =g (about the Fermi energy) so the most
convenient trial function P for N, and &bz would be

J= f vq&d k,

Q= fv(E —g)yd k .
4~

(25)

(26)

4, =v„C(E)=u„g c„(E—g)",

4&2= u„B(E)= u g b„(E—g)",

(38)

(39)

In the presence of a weak electrical field and a small tem-
perature gradient, the current density J and the rate of
ffow of heat Q are given in the form

(27)

where c„and b„are parameters to be determined by the
variational method. Now that the trial functions are
defined, the two equations (20) and (21) can be solved by
an optimization procedure of the relation (23).

First, Eq. (38) in (10) would give, with the help of (23),

EQ
Q=Li2 +L22T

7'T
T2

(28)

(itt, Xg)= g c„c D„

(y, F, )= yc„N„,

(40)

(41)

with E*=E—(Vg/e). From Eqs. (8) and (22) with (25)
and (26), the kinetic coefficients of (27) and (28) are
defined as

with

(3 o

er dfoL2= 3f@ 2 u~dk,4~'

(29)

(30)

D„,=f v (E g)I'X[u (E —g)']d —k =D „,

N„= —f u (E —g)"d k ., af,

(42)

(43)

L2, = f@,(E —g) v d k,
7' dfo—

4~' BE

L22= f@2(E—g) v„d k .r~f —o
22 4 3 2 BE

(31)

(32)

The symmetry of D„ follows from the fact that
The variational principle is now

used to find the maximum of & g,Lg & with the supple-
mentary condition & f,XP &

=
& P, Fi &, i.e.,

In Eqs. (27)—(32), the transport coefficients are defined
such as for V T =0, the electrical conductivity o. is the ra-,
tio of J to E*,and the thermal coefficient%' is the ratio of
Q to VT for E*=O. The Peltier eff'ect P and the ther-
moelectric eff'ect a are defined from Eqs. (28) and (27) for
V T =0 and E*=0, respectively. It should be noted that
if a temperature gradient is present in a steady state, but

gc„c D„=gc„N„. (44)

g b D„=B„=N„+,, (45)

These calculations are carried out in the Appendix.
For the solution of the second equation [Eq. (21)] with

(39), we obtain in the saine way
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with

=I—v2 (E —g)"+'d3k .
af,

p X (46)

2

cr= pc„N„,4~
(47)

ea=, g c„B„,
4m

(48)

The more terms of the series (38) and (39) that are taken
into consideration the more laborious the method will be.
But for the plasma in consideration where E=g the
series can let us manage with p =0,1.

With these expressions, the transport coefficients can
be written in the form

P= g b N„=aT,
P

(49)

(50)4~'T „
is obtained such that the Onsager [29] relation is

verified by

c B

gb„B (51)

P

which coincides with the relation A,
—A= aP—/cr (as in

Ref. [31]).
The coefficients c„and b„are determined from the sys-

tem of equations (see the Appendix) as follows:

N =pc D„, , (52)

8„=g b D„,=N„+, , (53)

D = f J v (E —g)"W(k', k)[u„(E j) u'—(E' —g) ]d k—d k' .1

(2~)'k, T (54)

IV. RESULTS AND COMPARISONS

A. Electrical and thermal conductivities of quantum plasma

For the electrical conductivity, the Bloch approxima-
tion (p=O) is used to deduce o from Eq. (47). The
coefficients c„and N„(p, =O) are given in the Appendix
by (A18) and (A13) as functions of Dao (A8). Explicitly,

ne 37Tfl Ki

m, 4Ze m, m, 5,I5(e, )(k~T)2
(55)

where

D„ is a function of W(k, k') which contains the transi-
tion probability I' (k, k). The latter function has different
forms for the absorption and for the emission of a
plasmon [Eq. (6)]. In the case of the absorption of a
plasmon, D„=D„+ with E'=E+A'~, and k'=k+q.
For the emission transition, k' =k —q, E =E' —%co„and
D„=D„where D„ is obtained from D„by replacing q
by —q and co, by —co, . Details of the explicit calcula-
tions of these expressions are in the Appendix.

5; =(4vrn /3z) ', e, =2m%'C, /o; k~ T,
and I5 is given by (for n = 5)

E. &n e

(e' —1) [1+4~ (e/e, ) ]

(56)

(57)

The Bloch approximation (p=O), which was adequate for
the electrical conductivity, is no longer sufficient for the
thermal conductivity and other thermoelectric effects.
For that, higher order in the variational method is neces-
sary for these coefficients.

An approximation of order one (@=0,1) gives the
thermal conductivity as a function of the coefficients bp,
6 ] c ] Bp B] N &, which are given in the Appendix by
Eqs. (A20), (A21), (A19), (A16), (A17), and (A14), respec-
tively.

As a function of the degree of the electron degeneracy
0 which is defined as the ratio of thermal energy k&T
to the Fermi edge Ez [EF=g(T=O K)=(fi /
2m, )(3n n) ], the thermal conductivity of degenerate
plasmas is

A, =sr (k~/e) Tcr8
2K; me +8

9m, 9
K;m,

m,

2
2

+ TT

27
1 7 1 ++2I (e )

54 I,(.-, )

K;m,2

9 m,.
~;m, I~(e; )

36 m; I(e)
4

+e
18

6 4
+~5 7T 7T

48 96

a.;m, ~ a;m, I7(e, )+
m, 48 m,

—1
I ~m,
2

' '+e-
mi 3

1 I~(e; )

6 I5(e; )

2. 2I(.)4e + 7T 7 & +e4 7T

6 m, 36 I, (&, ) 24

K;m ~2 ~ I7(e ) 2 ~2 K, m,

m; 3 6 I5(e) 2 2 m;
(58)
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where cr and I7(e; ) are given by Eqs. (55) and (57), re-
spectively, with n= 7.

Numerical computation showed for strong degeneracy
(6 sufficiently small) that all the terms in 6 and higher
can be neglected. Similarly it has been shown that terms
with ( m, /m; ) are insignificant compared to
m l27 —,'I~(e—;)/I5(e; ), hence Eq. (58) becomes

A, =(m /9)(ks/e)'Trr
~;m, 2

2 +e.
772 3

1 I7(e;)
6 Is(c; )

(59)

Before we will discuss these results further, it should be
noted that Eqs. (55)—(59) are valid for 6 & 1. Moreover,
the electron-electron interaction contribution is being
carried out, however, by Matthiessen rule
(1/o = I/o„+ I/o„. ). We showed that cr =o„,in agree-
ment with the Pauli exclusion principle due to electron
degeneracy.

These transport coefficients are better discussed in
terms of strongly coupled plasma parameters which are
the following: The coupling parameter I is defined as

Z e

a, k~T ' (60)

where Z e /a; is the Coulomb interaction energy and a;
the Wigner-Seitz radius of the ion [a;=(3Z/4rrn)' ].
Another parameter r, is similarly defined for the elec-
trons:

r, =a,m, e /A' (61)

where a, =(3/4m. n)' is the Wigner-Seitz radius of the
electron and A' /m, e is the Bohr radius. Hence the Fer-
mi degeneracy parameter e takes the form

6=2(4/9 ) Z (r /I ) . (62)

In order to discuss these results as functions of the per-
tinent plasma parameters, the integrals in Eq. (58) can be
replaced by the series J„(e;) (n = 5,7). This can be done if
use is made of the mean value theorem [32] for integrals
to take U, (q) at its mean value since this function is
bounded in the interval (O,q, ); q, is the maximum wave
number of the oscillation of type s.

In terms of r, and I, the electrical conductivity be-
comes

(4/9m) (n «m e k )/16% Z m J (e )r

1 J7(e;)
6 J5(e;)

&)me 2
+(4/9m) ~ Z (r, /I )

Pl)

(64)
For e, « 1 or for weak coupling, J5(e; )-e; /4 and
J7(e;)-e;/6. Hence

2

(65)
3 e

0 T

Here again, the thermal conductivity is that of metals
since 1 loT=(~.

/3)(keble),

the Wiedemann-Franz law,
gives the ideal Sommerfeld number. For e,- »1, I & 1,
strong coupling, J5(e; ) =5!g, , (1/s ) = 124.43 and
J7(e;)=7!g,"=, 1/s =5082.1.

The thermal conductivity, in these extreme conditions,
behaves as

m.4 eoT .
me

18
m,.

(66)

12

10-

A, is independent of T and varies as n for high I .
Most of the existing calculation schemes, for coupled

plasmas, cannot in principle predict a correct value for
the transport coefficients for 8 ~ 1 because classical
statistics is used for the electrons. When Fermi degenera-
cy is weak (8) 1), however, several models exist and are
in good agreement with experiment [33—35].

On the other hand, the electrical and thermal conduc-
tivities of dense plasmas with strong Coulomb coupling
and with a high degree of degeneracy (for the electrons)
by Minoo, Deutsh, and Hansen (MDH) [5] and by Itoh
et al. [36], on the basis of Ziman formulas, gave fairly
good formulas for these coefficients, but often they in-
cluded heavy numerical simulation for the calculations of
structure factors.

Moreover, Lampe [7] developed a quantum model for
highly degenerate, high-temperature plasmas establishing
formulas for electrical and thermal conductivities where
dynamic shielding, in the random phase approximation,
is treated correctly. In Figs. 2 and 3, we compare the

9m~;e m,
16Z' fi J~(e, )m, r,

(63)

8-
8

6-

with e; =2~(«;m, /m;)' (I ' /r, ' ). For e, &&1, i.e.,
for small I, Js(c;)=e;/4 and hence o -r, In this.
range of nonideality, the electrical conductivity of dense
plasma is a linear function of the electron density, similar
to that of metals at low temperature. For e; »1, i.e., for
high l, J5(e, )=5!g,",(1/s )=124.43, so that

O 4-

2-

0
0.5

t

2 3

Il (&0 cm'}

g —I /p —n / /TS

A similar analysis of the thermal conductivity shows

FIG. 2. Electrical conductivity behavior as a function of the
density n of hydrogen plasma at T=10 K, curve 1, Ref. [5];
curve 2, present theory, Eq. (55); and, Ref. [7].
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FIG. 3. Thermal conductivity for the same conditions as Fig.
2 where for curve 2 the formula is given by Eq. (58); curve 1,
Ref. [5];and, Ref. [7]. The similar behavior between o. and A,

shows that the Lorentz ratio varies little with the plasma pa-
rameters in this range of density and temperature.

present results [Eqs. (55) and (59)]; with those of Lampe
[7] (weak coupling) and MHD [5] (numerical simulation)
where a very good agreement is observed for the particu-
lar range of degeneracy (0.017&8&0.1) and coupling
strength (0.4 & I & 1) for which the three models are
simultaneously valid.

Thereby, we have thus shown that the quantum collec-
tive approach is capable of describing accurately, in
analytical forms, the transport coefficients of a degen-
erate plasma over a wide range of plasma parameters.

B. Wiedemann-Franz-type law for degenerate plasmas

The relation between the electrical and thermal con-
ductivities can be written in the form

=L, (e, r) .0'T (67)

This relation is a fundamental parameter in the transport
phenomena studies. In Eq. (67), if L is constant, the rela-
tion is the Wiedemann-Franz law valid for an interacting
electron system where the interactions are elastic, i.e., the
electron suffers no loss of energy. For classical, high-
temperature, low-density plasmas (I « 1, 8))1), for
which a common relaxation time to the electrical and
thermal conductivities exists, the ratio L is a constant
and equals the Lorentz number [35] [4(ks/e) ]. For a
degenerate coupled plasma (I ~ 1 and 8& 1), most exist-
ing models, based on the Ziman formulas, give a constant
ratio L, the same as that of metals and equal to the ideal
Sommerfeld number [(vr /3)(k / s)]e. However, for this
latter type of plasma (strongly coupled plasma), Bernu
and Hansen [2] suggested that correct transport
coefficients should be related by a Lorentz ratio depend-
ing on the coupling parameter, MDH [5] found a depar-
ture of L from the ideal Sommerfeld value which has
been attributed to inelastic diffusion effects of the elec-
trons. In the present model, the Wiedemann-Franz-type
law is obtained from Eqs. (55) and (59), which gives

FIG. 4. Lorentz ratio equation (68) vs the degree of degen-
eracy (0) for a hydrogen plasma. The normalized ratio goes to
~ /3 for 0&0.1.

2

o T 3 e 1+r(8) (6g)

where

mr(8)= '
m, 6I

I,(8)
27r' Ig(8)

(69)

3.5

2.5

2

0.5

10 1oa 1oao

FIG. 5. Lorentz ratio equation (68) vs the coupling parame-
ter (I ) for a hydrogen plasma. The normalized ratio goes to
~ /3 for I ~1. From curve 1 to 4, r, =0.252, 0.117, 0.054,
0.025, respectively.

r(8) represents the eff'ects of strong coupling and degen-
eracy. Figures 4 and 5 show the behavior of Eq. (68) as a
function of the pertinent parameters 0, I, and r, . It is
clear, from these curves, that the Lorentz ratio is a heavi-
ly dependent function of the coupling parameter and the
degree of degeneracy for I »1 and 0«1. In such a
range of strong degeneracy (8« 1) and coupling (I ))1),
Lampe, [7] theory, which is valid for only very-high-
temperature plasma, provides a constant Lorentz ratio
which equals, precisely, the ideal Sommerfeld number
(m /3)(kz/e) . Only in the weak-coupling regime, of
both species, and with an intermediate degeneracy
strength of the electron gas does his theory show a depar-
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ture of the Lorentz ratio from the ideal Sommerfeld
value.

The ratio I.of the present theory, which is reduced to a
function of a single variable e, tends asymptotically to
(m /3)(k~ /e) (Figs. 4 and 5), as I becomes less than uni-

ty at different r„and when e (e-r, /I ) increases to
values greater than -0.1 at any coupling strength.

V. SUMMARY

Presented in this paper is an electron conductivity
model for dense plasmas which gives a complete set of
transport coefficients. The model is useful for describing
Coulomb systems where a common relaxation time be-
tween electrical and thermal conductivities is no longer
justified. To be consistent, these coefficients satisfy the
Onsager symmetry relation. The coefficients are reason-
ably accurate over a wide range of plasma temperature
and density and are expressed in computationally simple
forms.

For the quantitative calculations, the theory presented
does not contain the Debye length d~, which no longer
exists in the range of the extreme conditions of densities
and temperature. In this respect, our theory differs from
most of the previously existing nonideal plasma models.

Moreover, we should see that only quantum formula-
tion of the transport phenomena can show the degenera-

I

cy effects on the Lorentz ratio through the Wiedemann-
Franz law. This latter result is explicitly quantified here;
in this respect, the present theory has an advantage over
the existing theories.
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Determination of the coefficients c„and b„ is as fol-
lows. Define the trial function f for 4&, as

g=u„g c„(E—g)" . (Al)

We seek the maximum of ( P,Xg) with the supplementa-
ry condition (P,Xg) =(g, F& ), i.e.,

g c„c,D„=g c„N„, (A2)
P, Y P

where D and N„are defined in Eqs. (52) and (53) with
(45). For this purpose we add (g,Lg) to (g, +i ), mul-
tiplied by a Lagrangian parameter k, and obtain the rnax-
imum from the condition

gc„c D„,+A, gc„N„=2+c D„+AN„=O,
dc p p, v p v

(A3)

multiplying by c„and summing over p and comparing
with (A2), we obtain A, = —2, so

Bq= gb D„=N„+, . (A5)

N„= g c„D„,. (A4)

This is the system of equations which determines the
coefficients c .

The same procedure is used for the calculation of the
function +2.

The system of equations that determines the
coefficients b is

Expressions of D„are as follows. D„+ for the absorption
of a plasmon is evaluated by expressing all the variables
as functions of E and q, as well as the angle between k
and k'. The angular integrals are readily carried out.
D„ for the emission of a plasmon is obtained from D„
by replacing q by —q and co, by —ap, . With the change
of variables g= (E —g)/k~ T and @=fico, /ks T, we obtain
for the e-e interaction

2'~2ne'5,'
3@A 6p

+~ 6'p
2 2

X kBTn+ 22 ~P ~ —~+6- 1+
(X Ep

E 6'2 2
p

2
6p

kB Te+
2meA

2(gk~ T+g)

1 1 1

e "I+ j, e I+~+ 1

1
2d&d I

Ep
1+4m

~~2 ~2
e p

(A6)
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where a = 3—vF/coF, e, =eF(1+a tt, )', eF =Aco„/ksT,
and 5, =2m/Q, =2m. (18m n)

D„„is defined in Eq. (38), where
hatt

is a trial function of
the unknown P& and P2, and is used in a variational prin-
ciple to determine the integral collision term of Eq. (15).
The different parts of D„+ of—(A6) are essentially energy

I

ratios, which are integrated over convenient dimension-
less variables (g and e). The + and —signs come from
the matrix element of the transitions, where the electron
distribution may absorb (+) or emit ( —) a plasmon or a
sound wave during the interaction processes.

For the e-ion interaction,

k 2 T2~2
kB T6+

2'~2n. e 454
~g 2m CD+ i. ..„=+ (k~T)"+ + f f (k~Tg+g)e ri" q" (g+—e)" 1+

2(gk~ T +g)

1

e "+1

+E kE
1 1 1

d E' d YJ (A7)
e "*'+1 e*'—1 [1+47r e /e, ]

where C, =~;k~T/m;, 5;=(4vrn/3Z) ', e;=2vrfiC, /5;k~T. Knowing that the electrons are completely degenerate,
the limit q= g/kz T tends to —oc.

The contributions due to the e-e interactions being negligible and noting that we can generally manage with the case
p=(0, 1), we obtain

24ne4ZS4(k, T)'
3A' m;C,
2

]p D ~p e-ion e s pp

vr 2 1 z I&(e )

D&&
—

D&& ~, ;,„—= 2m, gC, + (kz T) —(k& T)— Doo,
I5(e; )

where I„(e, ) is given by Eq. (57).
Expressions of N„are as follows:

„t)fo
N = —f (E g)"F(E)dE—,

'

o BE
for integrals of Fermi type, where

U dS
F(E)=

E =const iVgE

N„ is given by the following extension near the Fermi energy [30]:
2 t dFEN„=(E —g)"F(E)~(+ (k~T) (E —g)~ +2@(E—g)" ' +p(p —1)(E—g)" F(E) +

(A8)

(A9)

(A10)

(A 1 1)

(A12)

Knowing that in degenerate plasmas

kBT
g=EF 1—

12 EF
—EF

EF =g( T=0 K), hence

2 2

NQ=F(EF)+ (k~T)
F
=F(EF)=

me

No
C0

Boo

= 1
C] =

2Ki

Ple8—
K,

3 m;

Ple +
mi 3

Np

I, Dpp8
5

(A18)

(A19)

, dF ~' (4»'

2

N~= (k~T) F(EF)= (k~T) No,
3 3

(A13)

(A14)

(A15)

bo =~ EF
me 7T2

2K, +
Pl; 3

1 I7 8
6 I5

—'-, 'e'+ e'- ' 'e'fPl 2 I
3 'm, 3 12 I5 Np

Boo
'

(A20)
Bo=N (A16)

B, =N2 . (A17)

Finally, we obtain with the resolution of the systems (A5)
and (A6)

2Ki
fg;

+

Np

Boo
0

6 I5

(A21)
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