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A detailed study is reported concerning the evolution of the electron distribution function for a laser-
embedded fully ionized plasma, taking into account the inverse bremsstrahlung and the electron-electron
(e-e) collisions. Whenever possible, an effort is made to provide an analytic treatment of the problem,
which is corroborated by numerical analysis as well. An approximate, analytic self-similar distribution
function has been found for the case when e-e collisions are not negligible, and the heating equation has
been solved numerically.

PACS number(s): 52.40.—w, 52.50.Jm

I. INTRODUCTION

Laser-radiation absorption is an important issue in
laser-plasma interactions, in particular as far as plasma
heating is concerned. Among the laser-plasma-heating
mechanisms, collisional absorption via inverse brems-
strahlung has been extensively investigated for many
years [1]. In this subject an important line of investiga-
tion has been started by Langdon [2) who showed that for
an intense laser field or for a weak field in a plasma with a
large ionic charge Z, the electron distribution function
differs noticeably from a Maxwellian one and assumes the
so-called self-similar form [3] given by in/ —= —v . A gen-
eralization of these results to the case of higher laser in-
tensities has been given by Jones and Lee [4], who corro-
borated their findings with Monte Carlo calculations as
well. More recently, these results have been supported
further by numerical calculations for the case of a uni-
form plasma [5] and when a steep gradient of tempera-
ture is present [6). Moreover the numerical calculations
have shown that the electron distribution function can as-
sume a self-similar form also when the electron-electron
collisions are not negligible [5]. These results have a
direct consequence on the level of plasma heating which
may be achieved with this mechanism and, as a rule, a
reduction of the heating is predicted. Very recently Silin
and Uryupin [7] have considered the electron scattering
on ion-acoustic Auctuations of charge density as another
plasma-heating mechanism. The frequency of this col-
lisional mechanism is much higher than that of electron-
ion (or electron-electron) collisions and is a highly aniso-
tropic function of the velocity. The investigation predicts
an anomalous increase of electron heating in time inter-
vals shorter than the electron-electron (e-e) collision time,
accompanied by formation of a nonequilibrium electron
distribution function. In particular, neglecting electron-
electron collisions, a self-similar form of the distribution
function is predicted, which is analogous to that first
found by Langdon. Other very recent contributions to
the subject have been given by Ovchinnikov, Silin, and
Uryupin [8] and Chichkov, Shumsky, and Uryupin [9].

Considering the permanent interest for this subject, it
is aim of this work to provide an analytical treatment of
the electron distribution function for the case when
electron-ion and electron-electron collisions are simul-
taneously accounted for. In Sec. II we give the equation
of the evolution of the electron distribution function in
the presence of a laser field including the electron col-
lisional terms. In Sec. III we bripAy outline the Balescu's
theory [3] leading to a self-similar solution when the e-e
collisions are neglected, and introduce a more appropri-
ate normalization factor. In Sec. IV we extend the treat-
ment outlined in Sec. III to the case when the electron-
electron collisions are included. Finally in Sec. V we
present an analysis of the evolution of the electron distri-
bution function together with some comments.

II. THE EQUATION FOR THE ELECTRON
DISTRIBUTION FUNCTION

Under the condition A'co«T, (co being the laser fre-
quency and T, the electron temperature), there is an ex-
cellent agreement between classical and quantum ap-
proaches and we will use a well-known classical model
[10] to describe a homogeneous plasma with ion charge Z
in the presence of a radiation field. The equation for the
isotropic part of the electron energy distribution function
is written as

BF+P Fu
at au 3 ( ~+,',. ) Bu Bu

where u =mU /2e, v„=ZY/u is the electron-ion
collision frequency with Y= n, 4'(e l4vreom ) (m I
2e) i ink, , where 1nk is the well-known Coulomb loga-
rithm, E stands for the mean-square electric field, and the
other symbols have the conventional meaning. The func-
tions P, and Pz, which describe the electron-electron col-
lisions are given by
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P, (u)= —f c F(c)dc+ —u / f F(c)dc,
3 0 3 Q

P,(u)= f c'/'F(c)dc .

(2)

(3)

T, = —f c3/F(c)dc .
3 0

III. INVERSE BREMSSTRAHLUNG HEATING

As it has been shown by many authors [2—6], when
the electron-electron collisions may be neglected, due to
the inverse bremsstrahlung absorption process the elec-
tron distribution function can differ from a Maxwellian.
The treatment given by Langdon [2] predicts a self-
similar distribution function with the form in/-=—v

[the connection of P to F is displayed below, Eq. (9)]. The
e-e collisions do not inhuence the results if

eE2Z »Pi(B) .
3m(co +v„)

This condition may be written in a more convenient way
[2], taking into account the fact that P, ( oo )—:T, as

uo/vz- ))3/Z,
with Uz =(eT, /m)'/ the thermal velocity of the elec-
trons. In this section, following Balescu [3], we outline
an analytical treatment valid under condition (7) and
leading to the self-similar state with a more appropriate
choice of the normalization factor.

Under the condition given by Eq. (7), i.e., neglecting
the electron-electron terms, Eq. (1) becomes

Since we are not interested to the case of a high anisot-
ropy, we are justified to consider the anisotropic part of
the electron distribution function as much smaller than
the isotropic one. This assumption restricts the value of
the intensity of the applied electric field and forces the
drift velocity of the electrons in the external field ud to be
much smaller than the thermal electron velocity vz-. In
the case of a high-frequency field the role of the drift ve-
locity is played by the peak velocity of the electron oscil-
lating in the field vo=eE/me@, and the use of the two-
term expansion of the distribution function is valid when

uo is considerable smaller than uz. As far as the inverse
bremsstrahlung process is concerned this assumption re-
quires the mean energy gained by an electron in a col-
lision be much less than the thermal energy. Under this
condition the motion of the electrons over all the energy
spectrum may be described by Eq. (1).

The distribution function satisfies the normalization
condition

c'/ F(c)dc= 1 .
0

The heating of the plasma is usually described in terms
of the electron temperature T„which has a precise phys-
ical meaning only for a Maxwellian distribution. We will
characterize the heating of a non-Maxwellian plasma
with the help of an effective electron temperature defined
as

i/z ~F =2Y () F

where we have introduced the parameter
a=eE Z /3 m(co +v„)=ZT, (UO/ur ) /3=y T„with y a
dimensionless parameter. The last equalities of a are spe-
cialized to the case when co))v„. This is the case we will
consider in our calculations, where the laser frequency
will be taken in the optical range. Considering the values
of the other parameters of the problem (see, for instance,
the caption to Fig. 1), co will result greater than v„by, at
least, 4 orders of magnitude.

Following Balescu [3], we introduce a new set of vari-
ables

F(u, t)=W (r)P(c, r) . (9)

In the new variables the kinetic equation (8) is then
transformed as

2W 30+cay' =2YW-5/2c-i/2a 0 (10)
2 Bc. BE,

The above equation admits a self-similar solution if the
scaled distribution function P becomes time independent
when the relaxation process from the given initial state is
over. This means that the distribution function factorizes
into a term depending on the time and a term depending
only on the energy c, . Dropping the time derivative
BPIB~ as small, Eq. (10) has a time-independent solution
when all the coeKcients are time independent. Hence, a
self-similar solution is obtained if we impose that

W W=2YaBO,

where Bo is an arbitrary numerical factor. With such an
assumption, Eq. (9) becomes

—1/2 g 3/2y+ d4
()

dc dc
(12)

and its self-similar solution may be written as

P( c ) =$0 exp ,'Boc /—— (13)

The solution of the self-similar heating equation, Eq.
(11),gives the evolution of Was function of the time

W (r)=(W +5YaBor)

Calculating the value of the averaged kinetic energy in
terms of the distribution function (9) we get the relation

««&= —,'T, =W(r) f y(c)e dc=W(r)(c&,

showing that the function W has the physical meaning of

u =W(~)c,

where W(r) is a scaling energy that at the moment is an
arbitrary function of time. Owing to the normalization
condition (4) we introduce a new distributiori function P
as
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yof "x'"exp( —x'")dx

2/5
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From the last two expressions one finds

Bo =0.3353 .

With such a choice, the solution of the self-similar
heating equation gives the evolution of the electron tem-
perature as function of the time as

T (7)=(T +51'aBor) (14)

When electron-electron collisions are negligible the
solution of Eq. (1), after the relaxation time, becomes
close to the self-similar function (13) independently of the
form of the initial state. In Fig. 1 we give the effective
electron temperature as a function of time for Z = 1 and
10. Calculations are carried out for a value of the electric
field E =1.5X10 V/cm, a laser photon energy A'co= 1

a scaling energy proportional to the electron tempera-
ture. From the expression of the self-similar distribution
function equation (13) we see that the constant of propor-
tionality depends on the value chosen for the arbitrary
parameter Bo. Usually the value of Bo is taken equal to 5
(see Ref. [3]). We choose instead the value of this param-
eter so that the function W(r) is exactly equal to the elec-
tron temperature. This is done putting (c, ) =

—,
' in the

above equation yielding

Bo= 34o
and using the normalization condition for the self-similar
distribution (13) we get

eV, and an electron density of n, =10' cm . The bro-
ken line is referred to an initial 5-function distribution,
while the solid one to an initial Maxwellian distribution.
The duration of the relaxation time depends on both the
shape of the initial distribution function and the values
assumed by the quantity Fa. In Fig. 1 crosses on the
curves mark conventionally the separation of the evolu-
tion of the distribution function into two different physi-
cal stages. The portion of the curves to the left of the
crosses represents the stage of relaxation when the quan-
tity —', FOT, changes significantly, while the portion on
the right side represents the setting of the self-similarity
stage, where the same quantity remains constant near the
value of Bo (with a discrepancy smaller than 10%). It is
observed than when the initial distribution function is a
Maxwellian, the quantity —', Fo T, approaches Bo from
above, while when it is a 5-like function, it approaches Bo
from below.

From the reported calculations we see that there is a
time delay in the heating of the plasma when the initial
electron distribution is assumed to be a 5 function. This
is due to the existence of two opposite electron fiows: (i)
the diffusion Qow and (ii) the accelerated fiow caused by
the inverse bremsstrahlung absorption. These two Aows
compensate each other. For a 5 distribution function, Fo
is nearly equal to zero at the beginning and hence the
heating is also very small until, during the evolution, the
diffusion starts to decrease and does not prevent any
more the increasing of the thermal energy of the electron.
When the relaxation is complete the heating rate becomes
independent from the shape of the initial distribution, a
self-similar state is reached and the evolution of the elec-
tron temperature as function of the time is given by Eq.
(14). Figure 1 shows that the duration of the relaxation
time is proportional to Z ', which is a plausible result
considering the process under study and the role of ionic
component in it.

IV. INCLUSION OF ELECTRON-ELECTRON
COLLISIONS '

20

Time (10' sec)

FIG. 1. Electron temperature as function of the time for two
different values of the ion charge Z. The solid curves are for the
case of an initial Maxwellian distribution, the dashed curves for
an initial 5-function-shaped distribution (E=1.5X10 V/m,
n, =10' cm, Ac@=1 eV); crosses on the curves mark conven-
tionally the separation of the evolution of the distribution func-
tion into two different physical stages. The portion of the
curves on the left of the crosses represents the stage of relaxa-
tion when the quantity 3 Fo T changes significantly, while the

portion on the right side represents the setting of the self-
similarity stage, where the same quantity remains constant near
the value of Bo (with a discrepancy smaller than 10%%uo).

In this section we consider the case when the electron-
electron cannot be neglected. Solving numerically the ki-
netic equation (1) we have shown that also in this case,
after a relaxation time, the product T, Fo(t) becomes
nearly constant indicating the existence of an approxi-
mate self-similar solution. Figure 2 shows the value of
T, ~ Fo(t) as a function of the time for two values of the
ion charge Z; for both curves the initial distribution is as-
sumed to be a 5 function with an energy of 40 eV and the
laser parameters give a ratio uo/uz —=0.085. With such a
choice the electron-electron collisions are not negligible
in both cases. We assume now that the evolution of the
electron temperature with the time is still described by
the heating equation (14) but with a different value of the
parameter Bo which, for the present case, we denote as B.
The existence of a self-similar solution implies that the
derivative BP/Br is much smaller than the other terms in
Eq. (1). With such an assumption, applying to the kinetic
equation (1) the same transformations given in Sec. III we
get
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y BE i p+ + P2(c.)p+P, (E)
dE dE

(15)
TABLE I. Results of the numerical calculation of Eqs. (15)

and (17), giving the relation between the parameters B and y.
$0 is the maximum value of the self-similar distribution func-
tion.

P2(E)p+P, (E)
d =0,

admitting a Maxwellian distribution as a solution.
Since the parameter y =a/T, decreases with the time,

due to the heating of the electrons caused by the laser
field, we conclude saying that the distribution function in
its evolution approaches a Maxwellian one and that the
characteristic time of this process is the heating time and
not the characteristic time of the e-e collisions.

We are not able to solve exactly Eq. (15) but we can
give a fairly good approximate analytical solution to it.
Equation (15) contains the undefined parameter B that
must be found self-consistently in order that the integrals
of the self-similar functions P(E ) assume the values

P, ( ~ ) = 1 and Pz( ~ )= 1. Numerical calculations of
Eqs. (15) and (17) give the relation between B and the y

Imposing a self-similar solution we obtain the heating
equation

T T=2YeB
in the same form as Eq. (11)and the relation

B=—', 4o. (17)

The solution of Eq. (15) gives only an approximate
self-similar distribution function because its coefticients y
and B depend on time. Therefore the shape of the func-
tion tt) will also depend on time. This approach is valid if
the rate of change of the above coefficients with time is
smaller than the rate of formation of the approximate
self-similar function P. In this case the shape of the self-
similar distribution function is given only by the
coefticients y and B depending on the time and the time
dependence of the function P will be parametric.

Equation (15) is more general than Eq. (12) in that it
gives the self-similar distribution (13) in the limit of small
electron temperatures or in other words when condition
(7) is fulfilled. On the other hand, for large electron tem-
peratures (small y) Eq. (15) reduces to

100
10
1

0.5
0.2
0.1

0.08
0.05
0.2
0.01
0.00

0.3357
0.3396
0.3706
0.3955
0.4445
0.4923
0.5090
0.5449
0.6120
0.6546

0.5035
0.5093
0.5559
0.5932
0.6667
0.7384
0.7634
0.8174
0.9180
0.9819
1.0000

B=Bp+ 0.016
@+0.06

(18)

In Fig. 3 we compare the electron temperature calcu-
lated using the exact kinetic equation (1) (solid lines) with
the values obtained from Eq. (14) (circles) with B given by
Eq. (18). The dashed lines give the heating rate when the
e-e collisions are neglected. The initial state for all the
curves is taken to be Maxwellian. Assuming instead for
the initial states a 5 distribution function the time ~ in
Eq. (14) should be replaced by t —t~ where ttt is the re-
laxation time to the self-similar distribution.

Using the transformation S=1ng, Eq. (15) becomes

Pz(c, )+@BE
de P, (E)+y

In the low-energy limit E~O the solution of Eq. (19) as-
sumes the asymptotic form

2(1+y)Be i
S=Sp-

y+ 2B~3/2
5

(19)

(2O)

parameter. The results reported in Table I show that
B~Bp when y —+ ~ . The calculated values may be ap-
proximated very well by the equation

4/5

60

20
0

Time (10 sec}

Time (10 ' sec)

FIG. 2. The parameter I"o(t) T, as a function of the time for
two difterent values of the ion charge Z. For both curves the in-
itial distribution function is 6-function shaped with the energy
of 40 eV and the ratio (vo/v&) —=0.085.

FIG. 3. Electron temperatures as a function of the time for
two diFerent values of the parameter &=eE Z/2m(co +v„)
=ZT, (vo/v&) /3=@T, . Solid lines denote the numerical solu-
tion of Eq. (1); circles, calculations using Eq. (14), with B given
by Eq. (18); dashed lines, calculations neglecting e-e collision,
Eq. (14).
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FIG. 4. Comparison of the electron distribution function as
given by the analytical formula equation (22) (solid line) and the
numerical solution of Eq. (1) (circles); y =0.4, Z = 10,
E =1.5X10 V/cm, t =10 sec, T, =55.2 eV, 8 =0.406. For
completeness, also plotted are the pelf-similar solution, Eq. (13)
(dashed line), and the Maxwellian one (dots).

Energy (eV)

FIG. 5. Electron distribution function vs the energy for
different times and values of B [Eq. (17)]. The double vertical
dashed lines represent the initial 5-function distribution; the
dashed curve is the Maxwellian distribution function.
(E=3.5X10 V/cm, Wc@=1 eV, n, =10' cm .)

The basic difference from the distribution function (13) is
due to the inclusion of the effect of the e-e collisions. In
the other limit s~ ee the asymptotic solution of Eq. (19)
takes the form

6+ 5yBc
y+1 (21)

Both expressions (20) and (21) reduce to the Maxwellian
distribution for y =0 and to the Langdon one for y ))1.
Combining the two above expressions we obtain

ln(glgo) =—
+—yBE

2
5

3j2 5 y
2 B(1+y)

(22)

V. THE EVOLUTION OF THE
ELECTRON DISTRIBUTION FUNCTION

We have carried out a detailed analysis of the evolution
of the electron energy distribution function. In Fig. 5 we

Equation (22) is one of the main results of this work.
In Fig. 4 we report calculations helping to appreciate

the accuracy of Eq. (22). In Fig. 4 we compare the results
given by the analytical formula (22) with those given by
the numerical solution of Eq. (1), at the value y=0.4,
which is representative of an intermediate case. For such
a value of y the actual electron distribution function is
expected to significantly depart from both a Maxwellian
one and the self-similar solution, Eq. (13). In fact, at the
chosen value of y, e-e collisions appreciably modify the
self-similar solution, Eq. (13), but are not yet able to
make the shape of the distribution function Maxwellian.

9Other parameters of Fig. 4 are Z =10, E =1.5X10
V/cm, t =10 sec, T, =55.2 eV, and B =0.406. We ob-
serve that at the chosen time, the stage of relaxation has
been completed, as it is witnessed by the value of B,
which is near the value B(y ) of Table I.

present typical examples of evolution of the electron dis-
tribution function during plasma heating by an intense
laser. The values of the parameters are taken as before
(see Fig. 1); with these values y —=0.46; the initial distri-
bution function is assumed to be a 5 function.

Because of the colhsions the electron distribution func-
tion begins to spread over all the energy spectrum and
consequently the product B =—', T, ~ Fo(t) changes
significantly from zero to the value B=B(y), Eq.—(18).
The evolution process during this time (relaxation time)
has an explicit nonstationary character determined by the
plasma parameters and by the shape of the initial state.
For more intense fields or for larger Z, that is for a larger
value of o.' the relaxation time decreases. When the relax-
ation is over the distribution function comes close to
some self-similar state and the value of the parameter B
approaches that given in Table I. In this self-similar re-
gime the change of the distribution function depends en-
tirely on the increment of the electron temperature and
the parameter B is determined solely by y (Table I). The
agreement between the actual value of B and that given
by Table I may be assumed as a criterion for the setting
up of the self-similar state in the course of the evolution
of the electron distribution function. With the further in-
crease of the mean electron energy the value of y de-
creases (B increases) and the distribution function ap-
proaches a Maxwellian shape. This evolution picture is
expected to hold true also for more general situations. In
conclusion, if at the initial time, for a given value of the
laser field and of the ion charge the electron-electron col-
lisions are negligible (y))1), the formation of a self-
similar distribution and its evolution proceed as it has
been shown by Langdon [2], but thanks to the heating
process the influence of the e-e collisions rises until the
self-similar solution transforms from In/=——s through5/2

the intermediate form Eq. (22) into the Maxwellian distri-
bution.

A final comment concerns a very recent work by Chi-
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chkov, Shumsky, and Uryupin [9] who have considered
the problem of nonstationary electron distribution func-
tions in a laser field under several conditions, including
e-e collisions as well. In particular, when ZUO)&vz- &)Uo
and Z ))1, Eq. (15) of Ref. [9] gives a distribution func-
tion, which amounts to a Langdon-type self-similar func-
tion modified by a small correction. Accordingly, it is
unable to describe strong departures from Langdon's
self-similar function, contrarily to our Eq. (22).
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