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The classical method of moments is applied to express the dynamic structure factor of model two-
component plasmas in terms of static correlations. The latter are studied using an original algorithm
based on the temperature-Green's-function method and including the local-field corrections to the
random-phase approximation.
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I. INTRODUCTION II. THE STRUCTURE FACTOR

Extensive molecular-dynamics (MD) computations of
time-independent and dynamic correlation functions for
model Coulomb systems over a wide range of thermo-
dynamic conditions characterized by dimensionless pa-
rameters

I =Pe /a, O = (PEF )

have been carried out by Hansen et al. [1,2]. Here
P =k~ T is the plasma temperature in energy units, a is
the signer-Seitz radius, EF is the Fermi energy, kz is the
Boltzmann constant, and —e is the electron charge.
Note that the Gell-Mann and Brueckner parameter

r, =a /az = 1.84159I 0
a~ being the Bohr radius.

Hansen and his collaborators studied the properties of
one- and two-component plasmas and binary ionic sys-
tems. Classical (by definition) one-component plasmas
(OCP) and binary ionic mixtures (BIM) were character-
ized only by the parameter I .

Earlier we applied the results of the approach [3] based
on exact relations and sum rules to the calculation of
dynamical characteristics of OCP and BIM [4]. The
dynamical properties and collective modes in strongly
coupled plasmas have also been investigated within the
quasilocalized-charge model and the mean-field theory
(dynamical and static) [5], and the approach based on the
representation of the Green's functions. as continued frac-
tions [6], but the implementation of the classical method
of moments [4] proved to produce the best overall agree-
ment with the MD data.

The aim of the present paper is to extend the results of
Ref. [4] to the investigation of the "charge-charge" dy-
namic structure factor S„(k,co) of the model semiquantal
two-component plasma (TCP) [2].

The structure factor S„(k,co) is directly connected to
the inverse longitudinal dielectric function e '(k, co) of
the plasma via the Iluctuation-dissipation theorem (FDT)

RIme '(k, co)

~4(k)[1—exp( —PRco) ]

where 4&(k) =4ne /k, and R is the reduced Planck con-
stant.

In order to construct the inverse dielectric function it
is useful to consider the frequency moments of the loss
function [ —Ime '(k, to)/co] [3],

C,(k) = ~' f —co 'Ime '(k, co)dco . (2.2)

S„(k,co) =—

Notice the finiteness of the moment

Co(k, co) =[1—e '(k, O)] . (2.3)

C~=co~[1+Q(k)] . (2.5)

In contrast to the OCP case, the TCP correction Q(k)
consists of three terms,

Q(k) =K(k)+L(k)+H, (2.6)

Since the loss function is an even function of frequency,
all odd-order moments are equal to zero; the second mo-
ment is the f-sum rule

C2 —cop (2.4)

(co is the plasma frequency); high-order even moments
C„v)4, diverge [3].

Since we deal here with the model system, there is no
need to include the internal transverse electromagnetic
field into its Hamiltonian and there is no high-frequency
compensation of the Coulomb contribution to the fourth
moment due to the magnetic interaction of charges [7].
Thus, the TCP fourth moment can be put as
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where

K(k)=3(k/kD) +v ~/18(ATk /kl )+ATk k~ (2.7)

S„(k,co)

S„(k,O)

pA

[1—exp( —PAco) ]

H= —,'h„(0)=, J "p'S„(p)dp
6m n

is due to electron-ion Coulomb correlations, and

(2.8)

is the kinetic contribution involving quantal corrections;
kD =kD, =kD; =4~n e p, A. T

= (iri p/2m )', A I =3 /2e p,
n =n, = n; is the number density of charged particles, the
indices e and i stand for electrons and ions, the hydrogen-
like model with n, =n; is considered, and I is the elec-
tron mass.

The contribution

Q)A co
X

[ 2( 2 2)2+hZ( 2 2)2]

In the quantal TCP the static structure factor

S„(k)=(2n )
' I $„(k,co)dco (2.16)

e '(k) =Ree '(k, O) =e '(k, O)

like it was in the OCP,

(2.17)

is no longer directly determined by the static screening
function

L(k)= f p [S„(p)—1]f(p,k)dp
3~ n

(2.9) 2

S (k) = [eocp(k) 1 ]
kD

(2.18)

takes into account the electronic correlations,

f( k )
5 3p 3 ( k —p ) p +k

8k 16pk P

In Eqs. (2.8) and (2.9)

and co, (k) and h(k) should be calculated separately along
with co&(k).

Finally, notice that the expression (2.12) with q(k, z)
substituted by 'h(k) [Eq. (2.14)] interpolates between
S„(k,O) and the asymptotic expansion

h,b(r)= [S,b(p) —5, b] exp(ip r).1 . dp
Qn. n, (2~)

(2.1 1) co co~(k)
'(k, co +~ ) =—1+ + + ~ ~ ~

CO CO

(2.19)

(a, b =e, i) are the correlation functions, and

S, (pb)=(n'n ~)
are the static structure factors, where n' is the a-species
(dimensionless) occupation number operator of the states
with momentum Ap.

The Nevanlinna formula of the classical theory of mo-
ments [8] expresses the response function

co (z+q)
e '(k, z) =1+

z(z —co2)+ q (z —co1)
(2.12)

co, =C2/CD=co [1—e '(k, O)]

co2 =C4/C2 = co~ [1+Q ( k) ] .
(2.13)

There is, obviously, no phenomenological basis for the
choice of an unique q( k, z), which would provide an exact
expression for e '(k, co). Nevertheless, to meet our goals
it is sufficient to approximate q(k, z) by its static value
q(k, O)=ih(k), connected to the static value S„(k,O) of
the dynamic structure factor through Eq. (2.1),

h (k) =(co2—co, )co„[mP+(k)co,S„(k,O) ] (2.14)

in terms of an R function q=q(k, z), analytic in the
upper half-plane Imz & 0 and possessing there a positive
imaginary part: Imq(k, co+i')) 0, 71)0; it also should
satisfy the limiting condition: (q(k, z)/z)~0, as z~ ~
within the sector 8&arg(z) &m.—8 (0&8&~). The fre-
quencies co, (k) and co2(k) in Eq. (2.12) are defined as
respective ratios of the moments C,

The specification of q ( k, co) including the Perel'-
Eliashberg asymptotic value for e(k, co))p 'A ') [9] is
discussed in Refs. [3,7].

III. CALCULATION OF THE TCP STATIC
CHARACTERISTICS

As was already mentioned, the system under considera-
tion is a hydrogenlike plasma with a partly degenerate
electron subsystem. One can go beyond the random-
phase approximation (RPA) to include the local-field
corrections (LFC's) by putting

411 (k) kD /k
e(k) =1+ +

1 —@G,(k)II, (k) 1 kDG;(k)/k—
(3.1)

G, (k)=k [ k +/k ]

In particular,

[ 1k2 Ol/2y ( )]1/2

(3.2)

(3.3)

is the inverse screening length of the RPA electronic
OCP (EOCP),

Here 11,(k) is the RPA static polarization operator of
electrons [10], and II, (k) is substituted by its classical
(nondegenerate) value (pn;); G, (k) are the static local-
field corrections (SLFC's).

There are various (but still not applicable under arbi-
trary thermodynamic conditions) forms of G, (k) [11].
Here, in order to satisfy both long- and short-range limit-
ing conditions, the electronic SLFC is cast in the
Geldart-Vosko-form [12]

so that the normalized dynamic factor RPA( k )
—

1 +k 2/k 2 (3.4)
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(+)—3O —3/2
2

(3.5)

where kTF =3/3cozm /A'kf, and

x dx
o exp(x —q)+ 1

is the Fermi integral. The chemical potential (g/P) is to
be calculated from the normalization condition

where

II, (k, l ) =II,(k, l )[1—&PG, (k)II, (k, l )]

mkF2
dyII, (k, l)= yk~ fi 0 exp(O 'y —g)+ 1

z+y+iUI
Xln

Z y+lUI

(4.2)

(4.3)

for the Fermi-Dirac distribution. The parameter ~ can
be determined from the compressibility sum rule for the
classical EOCP [12,13]

k,' [I+-'sr+a/3+ 8 CI -'/3
27

D

and the frequency dependence of the local-field correc-
tion is neglected. In Eq. (4.3) kF=(3m. n)' is the Fermi
wave number, z=k/2kF, VI=2+1m(Pfi kkF) ', and, in

what follows, II, (k) =II, (k, O).
Direct application of Eq. (4.1) is complicated by the

fact that the main summands of the l ~~ expansion of
II, (k, l) behave like

+ ll~l 1/3]+1
27 (3.6)

lim G, (k) = 1 —g, (0), i.e. , 8= [1—g, (0)]
k —+ oo

and g, (0) is the EOCP radial distribution function,

(3.7)

where A =0.899 3749, B= —0.224469 9, C =
—0.0178746, D=0.5175753 are the parameters of the
MD —fitted OCP equation of state [14], and 8 stems from
the self-consistency condition for G, (k ~ oo),

II (k, loo )=
l +Io

with a=(P/~) nEk, Ek =Pi k /2m,

3 0" 5/2
1/2

lo (l3+k /2ir) I +
2 +3/2 (il )

2 z2

(4.4)

To improve the convergence of Eq. (4.1), one can
rewrite it as

g, (0)=1+(2m. n )
' f p [S,(p) —1]dp, (3.8)

with S,(k) being the EOCP static structure factor.
The ionic SLFC and the static structure factor follow

from the algorithm of Ichimaru et al. [11]:

S,(k)= coth(vrlz)
nl2

II, (k, l )
+

Pn i i ]++II,(k, l )
I

a
$2+ (2

(4.5)

G, (k)=k [~k, +Ek e, (k)]

S,, (k)= t I+(kr /k )[e, '(k) —G;(k)]]

S„.(k)=[1—e, '(k)]S;;(k),

S„(k)=S,(k) —[1—e, '(k)]S„(k),
where

e, (k) = I+@II,(k) [ I —4&G, (k)II, (k ) ]

(3.10)

(3.11)

(3.12)

(3.13)

w~ere

l3=I lo+(fil3co /2m) [1—G, (k)]]'

and the number l, of summands in Eq. (4.5) is deter-
mined by the precision of the self-consistency procedure
[over g, (0)] and the computation itself.

The results for the parameter g, (0) for various values
of I and 0 are given in Table I. In contrast to the RPA
results, our g, (0) is always positive.

IV. THE EOCP STRUCTURE FACTOR

To take into account the quantal corrections, one can
calculate the EOCP structure factor S,(k) using the
Green's-function method,

II, (k, l )

Pn i
~ 1+4&II,(k, l)

(4.1)

is the EOCP static dielectric function.
Now, to compute the frequencies co,(k) and co2(k) ac-

cording to Eqs. (2.13), (2.6), (2.7), (2.8), and (2.9) it is
sufficient to determine the static structure factor of the
quantal EOCP and to carry out the self-consistency pro-
cedure over g, (0). Keep in mind that the MD results for
the static value of the dynamic structure factor S„(k,O)

can be used for the determination of S„(k,co) according
to Eqs. (2.14) and (2.15).

V. DISCUSSION OF RESULTS

The results for all static structure factors are presented
in Tables II and III. Since no adjustable parameters were
used, an agreement with the results of Hansen and
McDonald [2] confirms the applicability of our algorithm
to the computation of static characteristics of strongly
coupled hydrogenlike two-component plasmas.

The "molecular-dynamics" simulations of Ref. [2] were
performed for a model hot Boltzmann plasma. Quantum
effects were taken into account only through the use of
fi-corrected effective pair potentials [15]; at short dis-
tances these differ significantly from the bare Coulomb
potential. Thus the collapse characteristic of purely clas-
sical systems of particles of opposite charge was prevent-
ed [2].

Within our quantum-statistical ab initio approach
there was no need to care for the collapse prevention and
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TABLE I. Results of self-consistent computation of the EOCP g, (0) according to Eqs. (3.8) and (4.1);
the thermodynamic conditions of Ref. [2] are marked by the asterisk. Numbers in brackets indicate the
power of 10 by which the entry is to be multiplied.

0.100
0.100
0.500
0.500
1.000
1.000
2.000

54.10
64.35

194.0

0.1000
2.0000
0.4344*
1.0860*
0.1000
1.0000
0.2715
0.0586
0.0518
0.0114

0.1715[9]
0.8573[7]
0.1579[7]
0.6315[6]
0.1715[7]
0.1715[6]
0.1579[6]
0.1000[4]
0.8000[3]
0.4000[3]

n, (cm )

0.2579[30]
0.3224[26]
0.2517[26]
0.1611[25]
0.2579 [27]
0.2579 [24]
0.1611[25]
0.8099[22]
0.6980[22]
0.2390[23]

g, (0)

0.73242
0.41309
0.38457
0.25996
0.67383
0.15088
0.28574
0.35822
0.37045
0.46888

TABLE II. Results for the partial and charge-charge static structure factors (nominators) vs the cor-
responding MD data (denominators) for I =0.5, 0=0.4344 (r =0.4).

S;;(k)
SMD(k)

S;,(k)
SMD(k)

S„(k)
SMD( k)

S„(k)
SMD(k)

0.767
0.6604
0.5803

0.4373
0.4386

0.6074
0.6590

0. 1966
0. 1811

1.074
0.7160
0.6256

0.3319
0.3600

0.6198
0.7390

0.3360
0.3223

1.381
0.7770
0.6823

0.2484
0.2813

0.6572
0.8117

0.4687
0.4657

1.534
0.8041
0.7117

0.2147
0.2454

0.6811
0.8424

0.5272
0.5317

TABLE III. Same as in Table II, but for I =2.0, 0=0.2715 (r, =1).

q =ka S;;(k)
SMD(k)

S;,(k)
SMD( k)

S„(k)
SMD( k)

S„(k)
SMD(k)

0.767
0.7206
0.5638

0.6583
0.5716

0.7790
0.7191

0.0915
0.0598

1.074
0.6697
0.5131

0.5327
0.5000

0.7372
0.7382

0. 1708
0. 1257

1.381

1.534

0.6608
0.5065

0.6679
0.4171

0.4303
0.4274

0.3875
0.3937

0.7291
0.7766

0.7364
0.7989

0.2647
0.2142

0.3146
0.2643

TABLE IV. Frequency moments of S„(k,co) in units in which co = 1, I =0.5, 0=0.4344 (r, =0.4).
Compare So(k) to the corresponding S„(k)and S„(k).
q =ka

0.767
1.074
1.381
1.534

S,(k)

0.115
0.192
0.262
0.291

So(k)

0.195
0.333
0.464
0.521

Si(k)

0.134
0.263
0.434
0.534

S~(k)

0.282
0.641
1.251
1.687

S3(k)

0.419
1.306
3.354
5.121

S4(k)

0.935
3.338

10.220
17.049
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q =ka

0.767
1.074
1.381
1.534

S,(k)

0.082
0.157
0.249
0.299

Sp(k)

0.084
0.159
0.248
0.294

Si(k)

0.085
0.167
0.276
0.340

Sq(k)

0.122
0.268
0.516
0.697

S3(k)

0.183
0.459
1.023
1.496

S4(k)

0.327
0.888
2.207
3.403
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(2.1), using the relation

S„(k,—oi) =exp( —Pirtco)S„(k, co),

an analogous expression for the odd moments,

S~, , (k)=(Ap/4)(k/kD) C2„(k), v=0, 1,2 .

(5.5)

(5.6)

TABLE VI. Values of normalized frequencies co&(k ) /cop
(nominators) and ~2(k)/co~ (denominators) for various values of
k and thermodynamics conditions. Compare co2(k)/co~ to the
positions of peaks (near co~) of S„(k,co)/S„(k, 0) plots at Figs. 1

and 2.

It follows from Eq. (2.6) that for a quantal system

S3(k)/S, (k) =co2(k),

S,(k)/$, (k) =co,(k) .
(5.7)

q =ka

0.767

0.5;0.4344

1.081
1.735

2.0;0.2715

1.016
1.509

S"(k)/S" (k) =(co (k))",
$2'(k) /S(')'(k) = (co,(k) )" .

(5.8)

In the classical approximation Eqs. (5.7) are replaced by
1.074

1.381

1.160
2.092

1.263
2.524

1.031
l.701

1 ~ 052
1.970

Equations (5.7), but not Eqs. (5.8), are directly verified by
the data of Tables IV—VI.

Thus, we believe that in quantal strongly coupled
Coulomb systems the collisional damping of plasmons is
su%ciently low so that the Langmuir mode persists at
least until quite high values of the wave number k =a
and its high damping demonstrated by the MD computa-
tions was just due to the neglect of quantum-statistical
effects.

We compared positions of high-frequency peaks on the
graphs of Figs. 1 and 2 to the data for the frequency
co2(k) [Table VI], and concluded that at least for the con-
ditions considered the dispersion law of the plasma mode
is very well approximated by the k dependence of co2(k)
[Eq. (2.13)].

Finally, since higher-order frequency moments of the
energy-loss function Cz (k) diverge for v) 2 [9,3,5], the
presented results can be improved only by a specification

1.534 1.322
2.764

1.066
2. 134

of the interpolation function q(k, co) [7]. In conclusion,
the present approach can also be used to calculate other
dynamic properties of nonideal plasmas, like the stopping
power, etc.

ACKNOWLEDGMENTS

One of the authors (I.M.T.) acknowledges stimulating
discussions with G. Kalman and the hospitality of the
Universidad Politecnica de Valencia. This work was sup-
ported by the Ukrainian Ministry of Education (Contract
No. 92-356) and the Spanish State Authority for
Scientific Research and Technology (DGICYT) (Contract
No. PS-90-0142).

[1]J. P. Hansen, E. L. Polock, and I. R. McDonald, Phys.
Rev. Lett. 32, 277 (1974); J. P. Hansen, I. R. McDonald,
and E. L. Polock, Phys. Rev. A 11, 1025 (1975); I. R.
McDonald, P. Vieillefosse, and J. P. Hansen, Phys. Rev.
Lett. 39, 271 (1977); J. P. Hansen, I. R. McDonald, and P.
Vieillefosse, Phys. Rev. A 20, 2590 (1979);J. P. Hansen, F.
Joly, and I. R. McDonald, Physica 132A, 4721 (1985).

[2] J. P. Hansen and I. R. McDonald, Phys. Rev. A 23, 2041
(1981).

[3] V. M. Adamyan and I. M. Tkachenko, Teplofiz. Vys.
Temp. 21, 417 (1983) [High Temp. (USA) 21, 307 (1983)];
V. M. Adamyan, T. Meyer, and I. M. Tkachenko, Fiz.
Plazmy 11, 826 (1985) [Sov. J. Plasma Phys. 11, 481
(1985)]. See also J. Ortner and I. M. Tkachenko, Phys.
Rev. A 46, 7882 (1992).

[4] S. V. Adamjan, T. Meyer, and I. M. Tkachenko, Contrib.
Plasma Phys. 29, 373 (1989); S. V. Adamyan and I. M.
Tkachenko, Ukr. Fiz. Zh. 36, 1336 (1991) (in Russian).

[5] CJ. Kalman, in Physics of Nonideal Plasmas, Teubner
Texte zur Physik, Band 26 (Teubner, Stuttgart, 1992), p.
167.

[6] J. Hong and Ch. Kim, Phys. Rev. A 43, 1965 (1991).

[7] V. M. Rylyuk and I. M. Tkachenko, Phys. Rev. A 44,
1287 (1991);J. Ortner (private communication).

[8] N. I. Akhieser, The Classical Moment Problem (Oliver and
Boyd, London, 1965); M. G. Krein and A. A. Nudel'man,
The Markov Moment Problem and External Problems
(American Mathematical Society Translations, New York,
1977).

[9] V. I. Perel' and Cx. M. Eliashberg, Zh. Eksp. Teor. Fiz. 41,
886 (1961) [Sov. Phys. JETP 14, 633 (1962)].

[10]N. R. Arista and W. Brandt, Phys. Rev. A 29, 1471 (1984).
[11]S. Ichimaru, S. Mitake, S. Tanaka, and X.-Z. Yan, Phys.

Rev. A 32, 1768 (1985); S. Ichimaru, H. Iyetomi, and S.
Tanaka, Phys. Rep. 149, 91 (1987)~

[12] I. M. Tkachenko, Europhys. Lett. 9, 351 (1989).
[13]Z. Djuric, A. A. Mihajlov, V. A. Nastasyuk, M. Popovic,

and I. M. Tkachenko, Phys. Lett. A 155, 415 (1991).
[14]G. S. Stringfellow, H. DeWitt, and W. Slattery, Phys. Rev.

A 41, 1105 (1990).
[15]C. Deutsch, Phys. Lett. 60A, 317 (1977); C. Deutsch, M.

M. Gombert, and H. Minoo, Phys. Lett. 66A, 381 (1978);
72A, 481 (1979).


