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The inclusion of anisotropic surface free energy and anisotropic linear interface kinetics in phase-
field models is studied for the solidification of a pure material. The formulation is described for a
two-dimensional system with a smooth crystal-melt interface and for a surface free energy that varies
smoothly with orientation, in which case a quite general dependence of the surface free energy and
kinetic coefficient on orientation can be treated; it is assumed that the anisotropy is mild enough

that missing orientations do not occur.

The method of matched asymptotic expansions is used

to recover the appropriate anisotropic form of the Gibbs-Thomson equation in the sharp-interface
limit in which the width of the diffuse interface is thin compared to its local radius of curvature.
It is found that the surface free energy and the thickness of the diffuse interface have the same
anisotropy, whereas the kinetic coefficient has an anisotropy characterized by the product of the
interface thickness with the intrinsic mobility of the phase field.

PACS number(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp

I. INTRODUCTION

Phase-field models [1-6] provide a convenient basis for
the numerical solution of complicated solidification prob-
lems. In a phase-field model, in addition to the custom-
ary energy and/or concentration variables, an additional
variable, the phase field, ¢, is introduced to label explic-
itly the liquid and solid phases. The phase field takes
on a constant value in each bulk phase, e.g., ¢ = 0 in
the solid phase and ¢ = 1 in the liquid phase. The
transformation from solid to liquid occurs over a thin
transition region where ¢ varies smoothly from zero to
one. The usual thermodynamic functions describing the
system can then be modified to incorporate gradient en-
ergy terms; in particular, terms proportional to |V|2
can contribute to the surface excess quantities that play
a fundamental role in Gibbs’s formulation of surface ther-
modynamics [7]. In this sense, phase-field models are nat-
ural outgrowths of diffuse-interface models dating back
to work by van der Waals [8], by Cahn and Allen [9,10],
and by Cahn and Hilliard {11,12]. From a computational
viewpoint, phase-field models are similar in some ways
to the enthalpy method [13], in that explicit tracking of
the solid-liquid interface is avoided. Phase-field models,
however, are more versatile than enthalpy methods since
such effects as undercooling of the melt and departures
from thermodynamic equilibrium at the interface are in-
cluded automatically (see, e.g., [14]).

An important example of the utility of phase-field
models is given by the numerical studies of dendritic
growth by Kobayashi [15-18] and by Wheeler, Murray,
and Schaefer [19]. The phase-field treatments seem to
capture successfully a broad variety of dendritic growth
phenomena, including the correct relation between Peclet
number and undercooling, the emission of sidearms, and
the coarsening behavior of sidearms that are further re-
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moved from the tip. The anisotropy of surface free en-
ergy or of interface kinetics is generally thought to play
a fundamental role in the dynamics of dendritic growth
[20,21].

Since in a phase-field formulation the interface is dif-
fuse, the proper incorporation of surface free-energy
anisotropy requires careful consideration. Phase-field
models with anisotropy have been considered previously
for specific choices of gradient energy. Caginalp and Fife
[22,23] have considered models in which the isotropic
“square gradient” expression is replaced by a more gen-
eral quadratic form with different coefficients in each co-
ordinate direction. For an isothermal system this leads to
an elliptical equilibrium shape. In order to obtain more
complicated anisotropies, Langer [2] proposed the addi-
tion to the gradient energy of terms involving the squares
of higher derivatives of the phase field, and gave an exam-
ple leading to cubic anisotropy. Cahn and Kikuchi [24]
have considered discrete forms of diffuse-interface mod-
els, and have also included anisotropic effects through the
choice of nearest-neighbor interactions (see also [25,26]).
Both Kobayashi [17] and Wheeler, Murray, and Schaefer
[19] include anisotropy by allowing the coefficient of the
gradient energy to depend on the local orientation of the
gradient of the phase field. Early numerical calculations
were performed by Smith [27] and by Umantsev, Vino-
grad, and Borisov [28] in which no explicit anisotropy was
included in the models; rather, anisotropy was provided
implicitly by the underlying grid used in the numerical
calculations.

In this paper we present an asymptotic analysis in the
sharp-interface limit of the model studied by Kobayashi
[17] and Wheeler, Murray, and Schaefer [19], including
an anisotropic mobility. We consider a two-dimensional
phase-field description for the solidification of a single-
component material of uniform density, and assume that
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there is no convection in the melt. We also assume that
the anisotropy is mild enough that the resulting inter-
face shape is smooth. In such an asymptotic analysis,
the width of the transition region is thin compared to
the radius of curvature of the lines ¢ = constant. Sim-
ilar asymptotic analyses have been performed for the
isotropic case [29-32] to recover the boundary condition
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that relates the normal velocity of the interface v, (con-
sidered to be positive for the formation of solid), the
mean curvature of the interface, K, and the interface
temperature, T7; here p is the interfacial kinetic coeffi-
cient, Ths is‘the bulk melting point, v is the (isotropic)
interfacial free energy, and Ly is the latent heat of fusion
per unit volume. Our goal is to derive from an appropri-
ate phase-field model the corresponding anisotropic form
of this equation [33], which in two dimensions is

()~ T — %(’Y +v00)K — T1, (2)
where v = 7(6) denotes the dependence of the surface
free energy on the local interface orientation, as mea-
sured by the angle § between the interface normal and
a given crystallographic direction, and pu = u(6) is an
anisotropic kinetic coefficient that also depends on ; here
oo denotes the second derivative of the function ().

II. ISOTROPIC FORMULATION

Of prime consideration will be the surface free en-
ergy, v, which is defined in terms of the surface ex-
cess of the Helmholtz free energy of the system. In a
phase-field model, the bulk Helmholtz free-energy den-
sity, f, includes dependence on the phase field, ¢, so
that f = f(T, @), where T is the temperature. The free-
energy density of the solid is then f(T,0) and that of the
liquid is f(7,1), and at the bulk melting point, Tas, the
two are equal. The Helmholtz free-energy functional that
gives the free energy of an isothermal two-phase system
of volume V is assumed to have the form [34]

F= /V {f(T,w)+ §§|w|2} av, ()

where the constant £2 that appears in the gradient energy
coefficient has units of energy per unit length. If we ad-
just the bulk free energy so that f(Tar,0) = f(Tm,1) =
0, then for a one-dimensional system with ¢ = ¢(z) the
surface excess free energy per unit area is given by

v=/{f(TM,so>+§aoi} dz. (4

For an isothermal system, an evolution equation for
the phase field is often postulated by requiring that ¢
evolve so as to minimize F; that is, by setting

% _ 67 _ af

Tog, = &V T By’ (5)

where 7¢ is an empirical relaxation coefficient, whose in-
verse is an intrinsic interfacial mobility.

For the nonisothermal case, it is more appropriate to
start with an entropy functional for the system [34,35],

5= /{ er9) ——|W|2} (6)

in which the entropy density 5 depends on the internal
energy density and the phase. The parameter £ that
appears in the entropy functional may be related to the
parameter £ of the Helmholtz free-energy functional by
€2 = T¢? [34]. Evolution equations for the temperature
and the phase field may be derived by requiring that e
and ¢ evolve so as to ensure positive entropy production
locally; for example, phase-field equations of the form

sovfus(p)] o
3<p

= =Q(D)p (¢) — G'(p) + £V, (8)
can be derived in this manner [34]. Here My is pro-
portional to the thermal conductivity, and the internal
energy density has the form

e(T,p) = es(T) + p(¢)L(T) = er(T) + [p(p) — 1]1L(T),

(9)
where L(Ths) is the latent heat of fusion per unit volume
and p(y) is a smooth function with p(0) = 0 and p(1) =1,

so that e(T,1) — e(T,0) = er(T) — es(T) = L(T'). The
energy equation may then be rewritten in the form

oT o
(T, 9) 5 + LDP (9) 5 =V -kVT],  (10)
where we have introduced
_ aes 8eL
o(To) = 1PN 2Z 4 p(p) 2k, ()

which is an interpolation of the bulk heat capacities per
unit volume, and the thermal conductivity, k = My /T?;
the thermal conductivity may also be allowed to depend
on temperature and phase in a general formulation. The
function Q(T) is given by the expression [34]

Q(T) = /T L) ¢ = L(I;M)[

o3 dC = Zg T ~ Taa) + O(IT ~ Tue]?)

(12)

and the function G(p) is taken to be a double-well po-
tential of the form

2 2
—p“(1 — 13

(- 9P, (13)
where a is a constant that determines the height of the
intermediate maximum in the double-well potential; 1/a
has dimensions of energy density per degree.

G(p) =
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In the special case that de(T,0)/0T = 0e(T,1)/0T =
co and L(T) = Lg are constant, and p(¢) = ¢, Egs. (7)
and (8) become

orT 9p
CQ'E + Lo—a—t =V. [kVT] 5 (14)
350_ 272 L _ _
Top =& Vet Ze(l-e)(p—1/2)
Lo

which is essentially equivalent to the form used by
Langer [1,2] and Caginalp [4]. A disadvantage of the
choice p(¢) = ¢ is that the roots of the expression
Q(T)p' (¢) — G'(v) appearing in Eq. (8) that determine
the values of ¢ in the bulk phases then depend on temper-
ature; choosing a more general form for p(y) that satisfies
p’'(0) = p’(1) = 0 allows the roots ¢ = 0 and ¢ =1 for
all temperatures [17,34,36,37].

For the isothermal case with T' = T}y, the system ad-
mits a steady one-dimensional solution p(z) given by

o(e) = % {tanh [m] + 1} : (16)

where we have chosen the origin so that ¢(0) = 1/2. This
solution shows that the width of the interfacial layer is
proportional to the product £1/a. The surface free energy
(4) for this solution is given by

et [ o2 de = TM(EVa)

Thus to maintain a finite surface free energy in the sharp-
interface limit that £,/a tends to zero requires the con-
stant a to tend to zero as well; i.e., the barrier height of
the double-well potential becomes large.

III. ANISOTROPIC FORMULATION

To describe anisotropic surface free energies, we allow
the coeflicient £ that appears in the gradient energy term
€2|V|?/2 to depend on the orientation © of the contours
of constant phase; i.e., we set £ = £(©), where

© = arctan(py/¢q) (18)

is the angle that the normal to these curves makes with
the = axis. The angle © is thus defined throughout the
domain; in the sharp-interface limit in which the crystal-
melt interface is associated with the curve ¢ = 1/2, it re-
duces to the angle 6 that the interface normal makes with
a reference direction. The appropriate form for £(©) that
is necessary to recover a given anisotropic surface free en-

ergy v(0) will be noted shortly. Practical difficulties in
J
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defining © that are associated with the fact that |V|
tends to zero in the bulk regions far from the interface
are inconsequential to the asymptotic analysis, since the
role of surface free energy is significant only in the neigh-
borhood of the interface where |V | is non-negligible.

The term ¢2V2y in Eq. (8), which arises from the vari-
ation

2
_3 (—|V<p12) = 22, (19)

if £ is constant, is then replaced by a more complicated
expression,

- o (B wer) - k)P
+additional terms, (20)

whose specific form we next compute.
The variation of the integral

Ilel = 5 [IE@P(Ve)av (21)

is given by (here £’ = d£/dO)

oI = /{52V<p Voo + (Vp)2£L'60} dV

[{=807 {90} + €lpabe, — w801} v

- / {&3V3%p +266'VO - Vo
+ ([ +€€") [0=©y — 9y O]} SpdV, (22)

where we have integrated by parts and discarded the
boundary term because it does not contribute to the func-
tional derivative. In doing this, we have used the relation

56 — Pzdpy — Pydpe

=T (23)
By using the expression
;—ZI ~ (cos ©)% + (sin©)7, (24)
we obtain
00, = 0,0, = 19|V (T4 (25)
and
VO .Vy = |Vy|z-V x (%); (26)

here X, ¥, and Z are unit vectors in the z, y, and z di-
rections, respectively. The expression (20) therefore has
the form

- % (%[{(e)ﬁvwﬁ) = [£(O)]PV3p +2£(0)¢'(©)|Vyp|z-V x (lﬂ"_)

+{lg'(®)

[Vl

1+ £(0)£"(0)} |Vl V- (—Vi) - (27)

Vel
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An additional source of anisotropy is introduced by let-
ting the empirical relaxation coefficient depend on orien-
tation as well, so that 7 = 7(©). The anisotropic form
of the phase-field equations (8) and (10) then becomes

oI, 0) o + LW (9) 08 = V- [kVT],  (28)
"(0)5 = AW ()~ C'(0) - 5 (GHEPIVSP).
(29)

In the isothermal case with T = T, the equations
admit steady, one-dimensional solutions of the form ¢ =
¢(x - ), where 1 is a constant unit vector and x -1 =
z cos by + ysinfy. The orientation is then constant, with
© = 6y, and the solution is given by [cf. Eq. (16)]

o= % [tanh (W%}ﬁ) + 1] . (30)

The surface free energy for this orientation is then given
by

Ta[€(60)y/a]
6\/5(1 )

This one-dimensional solution shows that interface width
also varies with orientation; this width can be character-
ized by the parameter

7(00) = 6v2[£(60)V/a] (32)

which represents the width of the transition layer from
¢ =~ 0.05 to ¢ =~ 0.95. We note that y(6p) and 7(6o)
are both proportional to £(6g), i.e., they have the same
anisotropy.

7(0) = (31)

Dimensionless equations

It is convenient to work in dimensionless units. We
choose a length scale £ that represents a geometrical
length in the system, such as a typical radius of curvature
of the macroscopic phase boundaries. We choose a diffu-
sive time scale cy¢2/ky, where kz, is the liquid thermal
conductivity and ¢, = Oer, /0T is the heat capacity per
unit volume of the liquid, both evaluated at the melting
point. We measure temperature relative to the melting
point in units of T, and measure energy density in units

Appropriate scalings for the width of the interfacial
layer and the double-well barrier height are incorporated
by introducing the small dimensionless parameter €, de-
fined by

L(T
_ oL(Tm) (33)
Tm
where L(Tas) is the latent heat per unit volume at the
melting point. A thin interfacial layer is obtained by
setting

2019

M = e[(O), (34)

where I'(©) is of order unity and is a dimensionless form

of £(©). The dimensionless governing equations may
then be written in the form
_Ou 1-, dp ~
—+ = — =V_.|k
et SLp (p) Bt [ Vu] , (35)

27(0)% = 21— p)(p — 1/2) + QW (¢)

-5 (GrEPver), @)

where the space and time variables are now dimension-
less, and the variational derivative in the latter expres-
sion is given by Eq. (27) with I'(©) replacing £(O).
Here u = (T — Ta)/Tm is the dimensionless tempera-
ture, k(u,¢) = k(T,¢)/kL, ¢(u,¢) = c(T,¢)/cL, L(u) =
L(T)/L(Twm), and

TMCL

S = LiTu) &N
70) = g 59
G(u) = /Ou %dﬁ=u+0(u2). (39)

To retain the effects of interface kinetics, 7(©) should
be assumed to be of order unity. The dimensionless
Helmholtz free-energy functional for ' = Ty has the
form

al € 2 2 1, 2
i =~ J, {SR@PIVeP + Lo - o2} av.
(10)

From Egs. (31)-(34), we see that the dimensionless sur-
face free energy for orientation © = 0, is

7(60) _ T(f)

LTm)t ~ 6v2

T(Tw)? (41)

IV. MATCHED ASYMPTOTIC EXPANSIONS

An asymptotic expansion of the dimensionless phase-
field equations (35) and (36) in the sharp-interface limit
allows the identification of appropriate forms for the
coefficients £(©), 7(©), and a in order to recover the
anisotropic generalization (2) of the Gibbs-Thomson
equation. The formal procedure is similar to that em-
ployed by Caginalp [29] for the isotropic case, so we pro-
vide an abbreviated version of the asymptotic expansion.
To perform the expansion, two subregions of the domain
are identified: in the inner region, which represents the
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vicinity of the interfacial layer, the gradient of the phase
field is large and the temperature varies slowly, and in the
outer region, which represents the bulk phases, the phase
field is essentially constant. In each phase, the solution
can be represented by an asymptotic expansion in terms
of appropriately scaled inner or outer variables. The in-
ner and outer regions share a common region of overlap,
and in this intermediate region, the asymptotic expan-
sions for the inner and outer solutions can be matched
to determine the solution. Roughly speaking, the outer
solution determines the far-field boundary conditions for
the inner solution, and the inner solution determines the
appropriate interfacial jump conditions for the outer so-
lution.

A. Outer solution

The outer solution is defined in the bulk phases where
the spatial variation of ¢ is small, and this variation is on
an O(1) length scale. The solution is formally expanded
in powers of ¢,

u = u(O) + eu(l) + ezu(z) + e, (42)
P = (P(O) + 6(,0(1) + €2<P(2) 4o (43)
The leading-order solution is given by ¢(® = 1 and
©(© = 0 in the liquid and solid regions, respectively, and

the leading-order temperature in each region satisfies the
usual diffusion equation

(0)
5(0) ou

= v [fOvu©], (44)

where &© and k(©) have values appropriate to the respec-
tive bulk phases.

Far-field boundary conditions for the thermal field are
assumed to be known, but interfacial jump conditions,
that hold in the limit that the interfacial layer becomes
sharp, must be determined by matching with the in-
ner solution. The higher-order corrections for the ther-
mal field may be computed by continuing the proce-
dure, but are not required for the subsequent analysis.
From Eq. (36) we see that the first-order correction for
the phase field vanishes identically under the assump-
tion that p’(0) = p’(1) = 0. The formal expansion for
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the outer solution breaks down near the interfacial layer,
where the variation of ¢ is large.

B. Inner solution

To perform the inner expansion in the interfacial layer,
it is convenient to introduce a local coordinate system
based on a parametrization of the curve p(z,y,t) = 1/2.
In terms of the arclength s, this curve may be expressed
in the form ¢ = X (s,t) and y = Y(s,t). The curve has a
tangent vector (X’,Y”), a normal vector (Y', —X'), and
a normal velocity v, = Y'X; — X'Y;, where the prime
denotes the derivative with respect to arclength and time
derivatives are indicated by subscripts. We use s as one
of the local coordinates, and use the distance r along the
normal as the other coordinate, so that

z(r,s,t) = X(s,t) +1Y'(s,2), (45)

y(r,s,t) =Y (s,t) — rX'(s,t). (46)
The orientation of the curve is chosen so that the solid
lies on the left if the curve is traversed in the direction
of increasing s, and the normal then points into the lig-
uid; the coordinate system is described in more detail
in the Appendix. The governing equations in the local
coordinates are further transformed by introducing the
scaled variable p = r/e and writing @(p, s,t) = ¢(z,y,t)
and u(p, s,t) = u(z,y,t) in the inner region, with corre-
sponding expansions

=109 +eaM 4+ 2a® 4 ..., (47)

=50 4+ e 4253 4 ... (48)

in terms of the inner variables.

1. Matching conditions

Matching conditions provide the far-field boundary
conditions for the inner solution. The outer solution
u(z,y,t) at a point near the curve ¢ = 1/2 is written
as a function of the inner variables, and the resulting
expressions are expanded in € to obtain

(0)

n

17
u(X-}—epY',Y——er',t)zui))(X,Y,t) +€{u£t1)(X7Y7t)+p ;:t (X’Y’t)}+0(62)7 (49)

where the plus or minus subscript indicates the limiting
behavior of the outer solution as p tends to zero through
positive or negative values, respectively, to allow for the
possibility of discontinuous behavior of the outer solution
in the sharp-interface limit. The limiting behavior of
the phase field is simply ¢ = 1 + O(e2) for p > 0 and
@ = O(€?) for p < 0.

2. Transformation to inner variables

The orientation angle ©, which in the inner region sat-
isfies
—(X' + pY")P, + ¥,
(Y' - epX")p, + X',

tan © (p, s, Pp, Ps) = (50)
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can be expanded in the form
0 =0 10 4 0(?), (51)
with

tan©(® = —X'/Y' = tanf(s), (52)
i.e., to leading order, ©(? is simply the normal angle 0(s)
to the interface, and is independent of the variable p. A
short calculation shows that the first-order correction is
given by

o) = ;,;(0)/’*(0) (53)

we note that o, )(p, s) vanishes when p = 0, but is not
necessarily zero if p # 0.

The governing equations may be transformed by using
the results given in the Appendix; here we note some of
the intermediate expressions before presenting the final
J

(1+ epK)p,
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results. The time derivative transforms according to

Op _ —un 8(,0 0)

-z o(1
ot e Op +OQ). (54)
The transformed Laplacian assumes the form
e I )
(1+epK) T (1+epK) 7|,
S) ~
— L@+ + K950 100), )

and the gradient is given by

Vol = Vo2 + 2/(1+ epK)? =
here we assume that the coordinates are oriented so that
@5,0) > 0 when simplifying the square root.

We also have the expansions

620) +0(e);  (56)

v-(e) =m0 |«

= K(s)+ O(e)

and

Ve

\/<p + €%p /(1+€pK)2

1
z-V x =
(|V<P|) (1+ €pK) I:\/<p2+62 2/(1+ epK)?

(0) (0) (0)
=~ o + 0.
Pp ( Pp )
We therefore have

2 0

= [[(O)1°S) + ([L(9))*?

where in the final expression we have expanded I = I'(©)
using

@(0)
O =6(s)+e€ (0)

+ O(€?) (60)

—€ o (%[F(9)12|V<P|2) = [(©))2? (0)+e{[ ()] 6(1)4—[1—‘(9)]2[{(5) (0)+2F( )T (0)

@5/ (1 + epK)
ANk
(57)
Pp
\/<p +€202/(1 + epK)?
(58)
50 aﬁ"’a&‘?}
o
+{[r"(e)’ + T (O)r" (0 }K(S)A(O)} o)
) + [D(0)K ()3 + 20 () (6)5%)
(IO + TOM ) K97®) +0(), (59)
[
26 (0
[T(6)] —g(@?) =0, (62)
where
g(so(o)) _ _(p(O)(@(O) _ 1)("(0) —1/2). (63)

to simplify the result.

3. Leading-order solution

The leading-order equations take the form

8 Q)
RO _ 61
dp ( dp ) ” (61)

Here £ = k(@(®,5(®) denotes the thermal conductiv-
ity evaluated with the leading-order solution.

The thermal matching conditions for the inner prob-
lem,

a®(p, s,t) —» vl (X, 7, 1) (64)



2022

as p — too implies that E(O)aa“’)/ap = 0, and so u(®
is independent of p. It follows that the leading-order
thermal field for the outer solution is continuous across
the interface.
The leading-order solution for the phase field is [cf.
Eq. (16)]
50 _1 _r .
2% (p,s) 5 {tanh (2\/§F(0)> + 1}, (65)
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here the s dependence of 3(?) enters through the function
I', whose argument is the normal angle 6(s) along the
interface.

4. First-order solution

The first-order inner problem has the form

8 [+ (0)0aY Q)
T {EOZ= ") — _ - (5O, 66
op ( o7 ) vn =P (?7)%, (66)
AN ONNEY 50) _ §(@®)p (5© 2K ()30 1(6)5(0)
[T(0)] 57 9 (@3N = —v,7(0)8)) — QAP (V) — [P K ()8 — 2D (O)T'(6)P:
—{[I"(O) +T(O)"(6)} K (5)85)- (67)
The thermal matching conditions for the inner problem imply that
(1) (0)
Ty (pr38) > (XY (68)
as p — *oo. Integration of the thermal equation then gives the equation
L@@y . aul® . 84
—Up 3 =ky, B — ks an (69)

which is the appropriate heat-flux boundary condition for the outer solution.

Differentiation of Eq. (62) with respect to p shows that the function <p( )

is a homogeneous solution of Eq. (67).

The right-hand side of this equation must then be orthogonal to this function, which provides the solvability condition

i) [

— {['(0)]2 + T(O)T" (6)} K (s) / (¢)2 dp,

or, using the relation

oz, 1
/ @) do = g (71)

we have
v 7(6) _
6+/2I'(0)

which is our principal result.

3@©) - g—l—ﬁ [L(6) + T"(8)| K(s), (72)

V. DISCUSSION

The expression (72) is the dimensionless version of

Eq. (2) if we take Q(u) =~ u and revert to dimensional

variables,
v T
(0) Ty — T(Tw )(’y+’ygg)K Tr; (73)

o) dp = ~3(a®) — [T(O)PK (s) /

(w2 do -t o5 | [ (o) do]

— 00

(70)

f

here we have identified
u(0) = (ML(TM)) o

as the appropriate form for the kinetic coefficient, and
we recall that the surface free energy is given by

Tml¢(0)val
 6vV2a

Note that anisotropy in the parameter £(f) induces
anisotropy in both the surface free energy and the ki-
netic coefficient, even when the parameter 7 is isotropic;
note also that the anisotropy of the kinetic coefficient
depends on the ratio of £ and .

The expressions (74), (75), and (32) relate the phys-
ical parameters u, v, and the interface width 7 to the
phase-field parameters £, 7, and a. These relations can
be inverted to yield expressions for the phase-field pa-
rameters in terms of the physical parameters, viz.,

T? (74)

v(0) = (75)
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note that the latter expression implies a common func-
tional dependence for n and « in order for the resulting
parameter a to be constant. Alternatively, the parame-
ters 7 and £ may be expressed in terms of v, u, and the
single parameter a by using Eq. (78) to eliminate 7 in
Egs. (76) and (77).

It is noteworthy that the relationship of the bound-
ary condition Eq. (73) to the phase-field model has been
investigated numerically in the context of the dendritic
growth of nickel at an undercooling of L(Tar)/2cr by
Wheeler, Murray, and Schaefer [19]. Specifically, numer-
ically computed values of the tip temperature T7 were
compared to those computed from Eq. (73) for several
values of € (see Table 3 of [19], in which € = &/2). The
agreement improves with decreasing €, and for the small-
est value of ¢ = 1.25(1073) considered, the agreement
was within 11%.

As mentioned in the Introduction, an anisotropic sur-
face free energy can also be obtained by replacing the
isotropic gradient energy term by the more general
quadratic form (£2¢2 + £2¢2)/2 [23], where £2 and &)
are constants. In this case, the term ¢2V2p in Eq. (8)
would be replaced by

6 63} 2 : 2 2 2
—w ?(pw + ?pr = Ez‘P:c:c + £y‘Pyy' (79)

If z is scaled by &, and y is scaled by &,, this expression
reduces to that for the isotropic case. Since the isotropic
equilibrium shape is given by a circle, the correspond-
ing anisotropic equilibrium shape is therefore an ellipse.
This choice of gradient energy leads to one-dimensional
solutions of the form (30) with surface free energy (31),
where

£(0) = /€2 cos? 0 + €2 sin® b, (80)

This particular form of gradient energy term thus leads
to a surface free energy with two-fold axes of symmetry
about the orientations # = 0 and § = /2, and possessing
only two degrees of freedom (£, and &,). The present ap-
proach for introducing anisotropy, wherein a scalar func-
tion £ = £(0) is instead employed, allows general surface
energies v = y(6) to be treated.
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APPENDIX

We collect some pertinent facts about the local coor-
dinate system used in the inner expansion of the match-
ing procedure. The orthogonal coordinates r and s are
defined relative to the moving curve z = X(s,t) and
y = Y(s,t), where s is arclength along the curve. The
coordinate transformation is given by

z(r,s,t) = X(s,t) +rY'(s,t), (A1)
y(r,s,t) =Y (s,t) —rX'(s,t). (A2)
Thus
z, =Y'(s,t), yr = —X'(s,¢), (A3)
z, = X'(5,8) +7Y"(5,t), ys =Y (s,t) —rX"(s,1).
(A4)

If the angle that the normal to the interface makes with
respect to the z axis is denoted by 8(s), then 6, = K(s)
is the local curvature of the interface. We have

X' 443Y = ie'?, (A5)
and by differentiating we have
X" 4+iY" = —e“K. (A6)
It follows that
K=—(X"-iY")e? =X'Y" -Y'X", (A7)
and
(X")*+(Y")? = K2 (A8)

For the unit circle, this expression gives a positive curva-
ture K = 1.
We have the Jacobian

h(r,s) = z,ys — Tsyr = 1 + 7K (s). (A9)

Since z,z, + yrys = 0, the coordinates are orthogonal,
and the square of the element of differential arclength dS
in the three-dimensional set of orthogonal coordinates
(r, s,2) is given by

dS? = dr? + h?ds® + d2*. (A10)

The gradient of a function ¥(r, s) transforms according
to

Vi = %, F + 1, (A11)
and the Laplacian is given by
1 1
Vi = o {(hwr), + (H¢’) } . (A12)
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Given a vector

A(r,s) = ulr, s)F + v(r, 58, (A13)
we have
V.A= %{(hu)r + .}, (A14)
and
7-VxA-= %{(hv)r —u) (A15)

[These relations are analogous to those in cylindrical co-
ordinates, if h(r,s) is identified with the radius in the
corresponding expressions.]

If we regard the coordinates r and s as functions of
z, y, and t, we note that inverting the Jacobian matrix
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gives the relations

hre =Y'(s) —rX"(s), hry=-X'(s) —7Y"(s), (A16)

hsy = X'(s), hsy =Y'(s). (A17)
We also have
hry = (XY — Yo X') + r(X. X" + Y;Y")
+ (VX" - X[Y") = —v, + O(r), (A18)
hsy= —(Xe X' + Y,Y') + r(Y'X) — X'Y})
= —Vtan + O(7), (A19)
where v, = Y'X; — X'Y; is the normal velocity of the
curve and vy, = Y'Y; + X'X; is a tangential veloc-

ity which depends on the specific choice of arclength
parametrization.
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