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We consider a phase-field model of a binary mixture or alloy which has a phase boundary. The model
identifies all macroscopic parameters and the interface thickness e. In the limit as e approaches zero, an
alternative two-phase alloy solidification model (with a sharp interface) is obtained. For small concen-
trations, we recover the classical sharp-interface problems, the theory of which is reviewed. We obtain,
in the simplest phase-field system, a new (nonlinear) interface relation for concentration c which
is discontinuous across the interface and subject to [In[c/(1 —c)]]+= —2M, coupled with —cr(av +It)
= [s]s [ T —Te —[(T„—Te ) /2M]ln[(1 —c +

) /( 1 —c ) ] ], where cr is surface tension, v is (normal) veloc-
ity of the interface, tr is the curvature, [s]z is the jump in entropy density between phases, T„and Ts are
the melting temperatures of the two materials, M is related to the phase diagram, and a is a dynamical
constant.

PACS number(s}: 68.45.—v, 81.30.Fb, 81.30.Bx, 81.10.Jt

I. INTRODUCTION

The study of free boundaries in recent years can be
grouped broadly into two categories: (a) sharp-interface
problems in which one or more variables (or their deriva-
tives) are typically discontinuous across an interface; and
(b) systems of parabolic equations in which the interface
is specified by a level set of one of the variables. In the
1980s a close relationship was established between these
types of models [1,2]. Similar issues have also been dis-
cussed for a broad spectrum of free boundary problems
(see [3] for a survey).

An important example of (a) is the surface tension and
kinetics model (or modified Stefan model) which de-
scribes solidification. The material, which occupies a
spatial region QC:1R", may be either of two phases, e.g.,
liquid and solid, separated by an interface I (t)&R
and is described by the equations

E&
C„T,+ —$, = hT, (1.4)

[s]E
ae P, =E bP+ ,'(P P)+—e— (T —TM), (1.5)

between the two models (crAO and o =0) is actually
quite profound for two reasons. Setting o. =O has the
effect of (1) eliminating an important length scale in the
problem, which is crucial in terms of the stability of the
interface, and (2) enabling the sign T(x, t) to determine
the phase of the material, i.e., T &0 implies the material
is in the liquid phase.

An alternative formulation of phase boundary prob-
lems along the lines of (b) is the phase-field model in
which a phase or "order" parameter P(x, t) is employed.
In the distinguished limit of the surface tension and ki-
netics model, (1.1)—(1.3), one can write the parabolic sys-
tem for (T,P) as

C„T,=K,AT in Apl(t),
lv= IC, [VT —n] on I (t), (1.2)

T —TM = — (tr+av ) on I (t),
[s]

(1.3)

where T is (absolute) temperature, C„ the specific heat
per mass, K& the thermal conductivity divided by den-

sity, l the latent heat per mass, o. the surface tension, a
the relaxation scaling, s the entropy per unit volume, and
[s]+ the difference between the solid and liquid phases.
The unit normal is n and the (normal) velocity to the in-
terface I (t) at (x, t) is denoted v while the sum of princi-
ple curvatures at (x, t) on I (t) is denoted tr(x, t) or tc.

Thus the sharp-interface problem can be stated as finding
T(x, t) and I (t) in suitable spaces subject to initial and
boundary conditions.

A special case of (1.1)—(1.3), known as the classical
Stefan model, is obtained by setting cr =0, so that
T —TM=0 at the interface. We note that the difference

where e represents the thickness of the interfacial layer
and all other variables are the same as previously defined.
The interface in (1.4) and (1.5) is now defined implicitly as
the level curve where P vanishes. Equation (1.5) arises
from a dynamical "model-A-type" equation (see, e.g., [4])
of the form P, = —oF/op, with F as free-energy density,
while (1.4) is an energy balance equation.

The theoretical link between the phase field model (1.4)
and (1.5) and sharp-interface models such as (1.1)—(1.3)
was established using formal matched asymptotics in
[1,2] and proven rigorously under various conditions in
[5,6]. A number of theorems have also been proven for
the special case in which the phase equation (1.5) is con-
sidered independently for fixed T (see [7] and references
therein). While the theoretical results are concerned with
the limit e—+0, computations have shown that the phase-
field equations exhibit an interface which is close to the
sharp interface problem even when e is relatively large
[8].

In the present paper, we discuss a generalization of this
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model to the case of alloys. A related approach has been
used in the isothermal case in [9]. We will use a
simplified set of equations which are derived in [10] and
studied in mathematical detail in [11]. Our aim is to
write the simplest system of equations of phase field type
which has the characteristic behavior of alloys and can be
shown through asymptotic analysis to have the appropri-
ate scaling and coefficients. Furthermore, the analysis
then leads to a new sharp-interface alloy problem that
generalizes equations which are currently studied.

II. THE ALLOY PROBLEM

The problem of phase boundaries involving a mixture
of two materials (e.g. , alloys or impurities) is of great
practical interest and presents challenging theoretical is-
sues which we review brieAy in this section. We consider
a substance (e.g. , a binary alloy) comprised of a mixture
of material A and material 8, with concentration
c (x, t) E (0, 1) denoting the fraction of material A in the
mixture. Two aspects of this problem are particularly in-
teresting from a physical perspective. (a) There is a jump
in the concentration itself, and not just in the gradient, as
in temperature. (b) The diffusion of material is generally
much smaller in the solid phase compared with the
liquid, and leads to partly degenerate equations in the
limit of zero diffusion in the solid.

An understanding of (a) is best accomplished by means
of the (c, T) phase diagram (Fig. 1). A clearly written
reference is [12]. We focus on the c =0 side of the dia-
gram. A complete phase diagram for an "ideal" mixture
or alloy [13] is shown in Fig. 2. The intriguing aspect of
this phase diagram is that liquid and solid are not
separated by a single curve, but by two curves (called
liquidus and solidus), which merge at the melting temper-
ature T~ of the pure B material (c =0). To a reasonable
approximation for small c, one may assume these two
curves are linear. To be specific, we will discuss the

phase diagram displayed in Fig. 1(a). At a fixed tempera-
ture TE & T~ the liquidus line intersects with T=TE at a
point cl while the solidus intersects at cz. Thus one ex-
pects an interface at equilibrium at temperature TE to ex-
hibit concentration cl on the liquidus side and cz on the
solid. That is, the concentration is a piecewise constant
function with a jump between cL and cz at the phase
boundary.

While the (equilibrium) phase diagram explains (a), it is
irrelevant to (b) since the latter is a dynamical phenome-
na, exhibited in the (concentration) diffusion equation
below. The dynamical modeling of the alloy problem is
typically accomplished by means of a (sharp-interface)
free-boundary problem which often accounts for only the
liquid phase ("one-phase problem" ) thereby neglecting
the diffusion of impurities in the solid which is small.
Also, the concentration of impurities is assumed to be
sufficiently small that one does not need to regard the
thermodynamic variables, such as latent heat, as a func-
tion of c.

A. The two-phase (sharp-interface) problem

A reasonable two-phase description of the dilute binary
alloy may be written by expanding on the usual discus-
sion of the one-phase problem (e.g. , [12])as follows.

The (dilute) two phase alloy -model

We consider the coupled system for ( T, c, I ) satisfying
(1.1), (1.2), and

c, =%2~Ac in Qy I (t),
—v [c]+=I 2[Vc n]+ on I (t),

(2.1)

(2.2)

T —T~ = — (a.+av)+ —,'(m&c++m, c ) on I (t),
s E

(2.3)

Liquidus (slope m
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FIG. 1. Idealized phase diagrams in the neighborhood of (c, T)=(O, T&) which display linear liquidus and solidus lines which

separate the single-phase regions from the coexistence region. This idealization is inherent in typical sharp-interface alloy models
(one-phase or two-phase) and represents a local approximation to the phase diagram displayed in Fig. 2. Case (a) assumes negative
slopes for the liquidus and solidus lines while (b) assumes they are positive. The sign of the slopes determines which phase has higher
solute concentration. In (a), solute from the liquid must be rejected as the material freezes. The phase-field alloy model we discuss is
not restricted to constant slopes, but asymptotically approaches constant slopes in the neighborhood of small c.
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B

where we can unambiguously write c (rather than c+ or
c ) since we are only concerned with concentration in
the liquid. Furthermore, by making the approximation
that the jump in c for the dynamics [c]+ is equal to that
of the statics, i.e., [c]+=cL —cs, and using the relations

TA
or

CgJ=
CL

cL —cs =(1—j)cL,

(2.5a)

(2.5b)

FIG. 2. The phase diagram for the range of c values display-

ing the melting temperatures T& and T& for the pure materials
A and B. The liquidus is given by the upper curve while the
solidus is given by the lower curve. The extent to which the
liquidus and solidus are separated from the line connecting
{0,T&) and (1,T„) is determined by the jump in entropy. The
phase diagram can be obtained from the free energy through the
phase-field alloy model {in equilibrium) so that the liquidus is
c+{T) and the solidus is c {T).

1c —msc on I (t), (2.4)

where Tz is the melting temperature of the pure B ma-
terial [i.e., T~ in (1.3)] and c represents the limit of c
from the liquid side (and c the solid side) while [ ]+ is
the difference between the limits from the liquid and solid
sides. Also, K2 are the diffusivity of the solute in the
liquid and solid phases, respectively, and all other param-
eters are as defined in Sec. I.

We note that the last term in (2.3) has been written to
refiect the symmetry of the situation since clearly (in
equilibrium) one has mac+ =m, c (c+=cL, c =cs in
equilibrium). In fact, Eq. (2.3), which is a generalization
of the interface relation (1.3), can be understood very sim-
ply in terms of the basic phase diagram (Fig. 1). If we
consider a stationary planar interface, then ~= v =0 in
(2.3) so that the value of T is given by

T re= —(mac +m c )=merci =m cs (2.5)

B. The one-phase (sharp-interface) problem

The single-phase version of (2.1)—(2.4) is obtained by
suppressing the role of concentration in the solid while
maintaining some of the key relationships in the phase di-
agram. In particular, the relation (2.3) is replaced by the
single-phase version

T —T~ = — (x.+au)+mtc on I (t)
[s]

(2.3')

This means that a temperature T is compatible with the
coexistence of liquid and solid phases if the liquid has
concentration CL and the solid cz, as shown by the hor-
izontal line in Fig. (la) or (lb). Thus (2.3) represents a
modification of (1.3) in which the equilibrium alloy effects
are combined linearly with the Gibbs-Thomson (namely
the aa term) and the kinetic undercooling (aou term)
effects.

one can write the analog of (2.2) as

—(1—j)uc =K2+ Vc.n on I (t) (2.2')

where c again denotes concentration in the liquid (i.e., c+
on the interface). The right-hand side of (2.2') has been
further simplified by assuming that the limit of Vc on the
interface from the solid side can be neglected. The ra-
tionale for this would be that the physical effect of
diffusion and conservation of mass are adequately
represented. In other words, Eq. (2.2) expresses the idea
that the excess concentration, which is deposited (or ab-
sorbed) at the interface as a result of different concentra-
tions in the two phases, must diffuse into the material in
order to conserve mass. The modification to (2.2') implies
the hope that allowing this excess to diffuse into the
liquid alone will not change the physical picture drasti-
cally. Thus the issues involved in a "one-phase alloy"
problem are similar to those in the "one-phase Stefan"
problems, and the difficulties demonstrated in [14] are
also similar. Nevertheless, our objective is not to endorse
the "one-phase" approach but merely to demonstrate its
relationship to the other models, and mention that its use
leads to some exact solutions and stability calculations
(see, for example, [15,12]). The problem is usually writ-
ten as a system which is coupled to a two-phase tempera-
ture system, but can easily be modified so that a system
with truly one-phase results.

The (dilute) one phase alloy m-odel

Consider a system for (T,c, l ) satisfying (1.1), (1.2),
(2.2'), (2.3'), and

C, =K2+hc in liquid . (2.1')

This model accounts for heat conduction in liquid and
solid, but impurity diffusion only in liquid. For the com-
pletely one phase probl-em, consider (1.1) also to be valid
in the liquid only, while (1.2) is modified to

—lu=K, VT.n on I (t) . (1.2')

Thus the completely one-phase model involves a time-
dependent domain, with part of the boundary consisting
of I (t).

In addition to the similarities between the one-phase
alloy and one-phase Stefan models, there are significant
differences. In terms of thermal diffusion, the differences
between the two phases is usually not vast, so that the
neglecting of one of the two phases is a mathematical
convenience, and any degeneracies which may arise are
mathematical artifacts. For the alloy problem, however,
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there usually is a large difference in the diffusivity of
solute, i.e., K2 &&K2+, and K2 is generally close to zero.
Thus, at least part of the degeneracy, embodied in (2.1) as
K2 vanishes, is generic to the physical problem, and
presents a fundamental issue which is independent of the
particular mathematical approach.

It is worth noting that both the one-phase and two-
phase models defined above are based on a linearized
phase diagram such as Fig. 1 and do not incorporate the
physics of Fig. 2.

In the subsequent section, we consider a phase-field ap-
proach to this problem in which K2 has a transition layer
between the values K2 in the solid to K2 in the liquid,
and Ez %0. The model embodies the entire phase dia-
gram shown in Fig. 2.

III. A PHASE-FIELD MODEL
FOR AN ALLOY WITH THERMAL PROPERTIES

We consider a relatively simple model of phase-field
type which incorporates the physics of binary alloys and
thermal properties. A detailed derivation of a more
comprehensive system is presented in [10]. Our objective
here is to study the simplest set of equations which (a) ex-
hibit the characteristic behavior as the interface thickness
e approaches zero, and (b) identify all of the material pa-
rameters.

The free energy of the binary mixture can be written
essentially as a sum of the free energies of the two parts
[with concentration c in the A material, and (1—c) in the
8 material], so that using V= f nF dx one can write

9'[Q, T,c] = J dx ' c+ (1—c) ~Vy~'+ + (1 —P')'
2 2 8a& 8Q&

—
—,
'

j [s]„(T—T~ )c+ [s]ii(T —Ts )(1—c)]p+ Vc(1 —c)

+RT[c lnc +(1—c) ln(1 —c)]—C„TlnT ' . (3.1)

1/2

o (c)=—', [g~ c +pa(1 —c)]' +
Qg Qg

(3.2)

while the interface width e (c) is given by
—1/2

e (c)=[g~c+gs(1—c)]' +
Q~ Q~

(3.3)

Note that if gz =gii and az =ail, then o and E are the
constants of the pure model [2].

We describe the dynamics of this system by augment-
ing the phase-field equations with an equation in conser-
vation form, so that one has, with u as internal energy
density

The logarithmic terms arise from the entropy of mixing
while the Vc (1—c) is due to the differences in interaction
energies between similar atoms compared to distinct
atoms [16]. In particular, V =0 corresponds to an ideal
mixture. The parameters g„, a„, etc. are microscopic
parameters which will be related to macroscopic values.

A calculation similar to that of [2] shows that the sur-
face tension o (c) is given by

phase-transition problem concludes that there is a need
for both P and c variables. In pure equilibrium, the vari-
ables l)) and T are adequate to determine c; however, this
is no longer possible in nontrivial geometries or dynami-
cal situations (see [10] for further discussion). A study of
the isothermal alloy problem based on (3.4) and (3.6) has
been carried out in [9]. However, our scaling and asymp-
totics differ from theirs. A fourth-order concentration
has also been coupled with a phase equation in a recent
paper [17].

Our approach in studying (3.4)—(3.6) will involve sim-
plifying the equations by considering the idealization that
a number of variables such as surface tension o., entropy
difference between phases [s]z, the latent heat 1, the in-
terface thickness e„are identical for both materials, A

and 8, and that V=O. In this way we can focus on the
crucial aspects of the alloy phase diagram and dynamics
which are preserved by considering different melting tem-
peratures (T~WTii) and solute diffusivities (IC2 WKz ).
Under these conditions, substitution of the free energy
(3.1) into the governing equations (3.4) —(3.6) results in
the system

5F
rift

ut=V K)VT,

r2c, =V K2(P, T)c(1—c)V
5F

(3.4)

(3.5)

(3.6)

ae P, =e b,P+ ,'(P P)——
+ [s]+[T—T~c —Ts(1 —c)J,

C T+—P ——c =VK VTv t 2 t 2 t 1

(3.7)

(3.8)

Here r, and r2 are relaxation parameters (which will be
identified in terms of the macroscopic parameters) and
K2 is the solute diffusivity. This formulation of the alloy

c, =V K (P, T)c (1 —c)V NP+R Tln, (3.9)
1 —c

where e is a measure of the interface width, n is defined
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by a —=r, /e, and Q and N are defined by

Q—:2(T~ —T~ ) C„+
(3.10)

This has a solution P (z)=tanh(z/2), assuming solid on
the left [P( —~ ) = —1] and liquid on the right
[P(~)=1]. For stationary profiles, the concentration
equation (3.9) implies

We present a preliminary analysis of these equations in
order to (1) demonstrate the basic ideas with a minimum
of technical detail, (2) show that the transition layer in
concentration c has a logarithmic relationship to the
transition in the order parameter P, and (3) derive the
equilibrium phase diagram from the equations so that the
macroscopic parameters in the equations are related to
those of the phase diagram.

Initially we consider a stationary one-dimensional in-
terface and let r be the coordinate which measures the
distance to the interface, i.e., /=0. Using the stretched
or inner coordinate z =r/e, we can define P(z, t) =P(r, t),
c(z, t)—:c(r, t), etc. Then the phase equation (3.7) can be
written as

e s0=/„+ —,'(P —P )+ [f' T~c —T~(1—c)—] .

(4.1)
We look for an asymptotic solution of the form
P=pW+eP'+e P +. . . (to be made precise in Sec. V), so
that substituting this identity into (4.1) and formally
equating terms with similar powers of e leads to the 0 (1)
equation

p +
2 [p (pP) ]=0 . (4.2)

N= 2[s]E(T& —Tti) .

Here s' and s are the entropy densities of the solid and
liquid phases. Note that ~2 has been incorporated into
K2.

Thus the form of (3.7)—(3.10) shows that all of the con-
stants are identified as macroscopic material parameters
with the exception of e. From the asymptotic analysis it
will be clear that the interface has a transition layer of
the form tanh(r/2e) so that the interface width is ap-
proximately 10m. Thus, setting 10e=10 cm would be
physically reasonable. In order to extract further infor-
mation from these equations, however, it is important to
examine (a) what the equations imply in the limit e—+0
(with all other parameters held fixed), and (b) to what ex-
tent the solutions vary as e is made much larger. Objec-
tive (a) is accomplished through asymptotic analysis and
leads to key relationships between variables at the inter-
face. Objective (b) is essential to quantitatively reliable
numerical computations, since the use of the true value of
e would necessitate a grid which has far too many node
points to be practical. For the pure phase-field equations,
it was shown [8] that the interface could be stretched out
(within the limits of the geometry to be resolved) to a
practical value which is several orders of magnitude
higher. Note that the system (3.7)—(3.9) can easily be
modified along the lines of [5] by multiplying [s]E by a
term proportional to (1—P ) if preserving the pure
phases at exactly +1 is convenient mathematically.

IV. BASIC IDEAS
AND EQUILIBRIUM DIAGRAM

N pW+ R f' ln r 0
=0 (4.3)

or
r 0

N(P, = —RT c(1—c) (4.4)

~0 ~

where we assume T is independent of z (as shown in Sec.
V, even in the dynamical situation). Integration of (4.3)
with respect to z implies

NP5+Rf' ln
r 0

cp
(4.5)

where A is independent of z but may depend on other
variables. Subtracting (4.5) at z = —~ from the same
equation at z = ~, one has to leading order

+
c 2X

ln
1 —c RT (4.6)

Here we have used the values of P at + 00 as well as the
standard asymptotic result that lim, c =lim, p+c
Thus (4.6) is one of the equations which relate c+, c
and T to form the solidus and liquidus lines as shown in
Figs. 1 and 2. The second is obtained through the phase
equation (3.7) [or (4.1)] which provides the Gibbs-
Thomson relation for a pure material.

Subtracting (4.2) from (4.1) results in

XP':—P,', + —,
' [1—3(P)')P'

[&]z -0 ~0
30

[T —T c —T (1—c )]=H. —
A B (4.7)

[Note that in this special case Fredholm's alternative is
obtained simply by diff'erentiating (4.2), multiplying by P
and subtracting from it (4.7) multiplied by P, . One ob-
tains (4.8) upon integration and using integration by
parts. ]

In order to evaluate (4.8), we utilize (4.4) to substitute
for pP, and write the integral as

~p

2(T —T )= ——(T —T )f' f dz (4.9)

or, in terms of the usual variables, with c+ and c denot-
ing the limits of c from the two directions,

1 —c+
2( Tz —T)=—( Tz —T„)T ln

1 —c
(4.10)

Since Pb, is a solution to the homogeneous equation
X/=0, the Fredholm alternative theorem implies that a
necessary condition for the solution of (4.7) is that pP be
orthogonal to H, i.e.,

f P[f' T„c T~(1——c )]dz =—0 . (4.8)
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ln
c —ln

1 —c +
1 —c

= —2N), (4.11)

2N, ( T —Tz ) = ( T~ —Tz ) ln
1 —c

has a unique solution (c+(T),c (T)) given by

(4.12)

c+(T)= c (T)=
1

1 —NI
(4.13)

2N&( T TB /( T~ —TBwith N, =e ' " (see Fig. 2). The deriva-
tives are given by

(c+ )'( T)=
—2N)

(1—e ')(T~ —Tz)

[2N& /( T~ TB )](T TB )
e

+O(T —Tz),
2N,—2N) e

(1—e ')(T~ —Tz )

(c )'(T) =

+O(T —Tz)

(4.14)

[ 2Nl /( Tg TB ]( T—TB

so that the derivatives evaluated at T = Tz are

Thus (4.10) along (4.6) determines the phase diagram, i.e.,
the complete liquidus curve c+(T) and solidus curve
c ( T) as follows.

Lemma 4.1. For any N, ( T) (e.g., N, =N /(R T)
= [s]z(T„—T z)/(2R T) ) the system of equations

straight line connecting (0, Tz ) and (1,Tz ). Furthermore
the particular logarithmic-exponential relationships be-
tween c +—and T expressed by (4.13) are a direct conse-
quence of the fundamental ingredients of the theory: (a)
the entropy of mixing term in the free energy V, (b) the
linear superposition of the free energies of the pure 3 and
8 materials, and (c) the form of the concentration equa-
tion which involves V'(5F/5c). In particular the linear
interpolation in (c) between the melting temperatures T~
and T~ combined with the entropy of mixing term results
in the crucial equation (4.3) by which the transition layer
in P forces a transition layer in c.

Given T„and T~ an "average" or base-line slope due
to the line from (O, TR) to (1,T& ) is established [i.e.,
m,„=(T„—TR)l(1 —0)=T„—TR]. This base-line slope
is evident in (4.16) and (4.15). The extent of spreading be-
tween the c+(T) and c (T) is determined by the ratio
m, /m„which, by (4.17), is determined by N). As N) ap-
proaches zero, (4.16) implies m, /m, approaches 1. Also,
we have for N, -0 approximation that

T Tg
c (T)=c (T)-

TA TB
(4.18)

As N& becomes larger the gulf between liquidus and
solidus widens.

The results above are stated for an arbitrary N)(T).
Upon substitution of the value of N, derived from the
free energy (namely N, = [s]z(T~ —Tz )l(2R T) ), one
has, from (4.16),

—2N, (TR)(c+)'(Tz)=

2N&( TB—2N, (TR )e
(c )'(Tz)=

(4.15)

m =—
S

([s]E/RTB )(T& —TB )a 1 —e

[S] ([s]E/RTs)(T& —T&)
e

8 ([s]&/RT& )(T —
T& )

mI = 1 —e
[s]E

(4.19)

The linearization of (4.14) obtained from the Taylor ex-
pansion near c +—-0 and T —Tz -0 is

1 (T —T ), m, =
m, 8 & s

1c+= (T —Tz), m, =
mI

(1—e ' )(Tg —TR )

(1—e ' )(Tg —TR)
—2N)(TR)

(4.16)

The slopes m& and m, thereby satisfy

ml 2N (T )
(4.17)

Discussion of Lemma 4.1

The identity (4.17) establishes a one-to-one relationship
between N, ( TR ) and the ratio of slopes of c ( T) and
c+(T) near TR (see Fig. 1). In the context of the full
phase diagram (Fig. 2), the lemma implies the following.
(1) The linear superposition of free energies for an ideal
mixture [V=O in (3.1)] results in liquids and solidus
curves which have a particular symmetry about the

Here the slopes of the liquidus and solidus lines in the
phase diagram are related directly to the macroscopic pa-
rameters. As discussed above, mi and m, converge when
N, approaches zero, which means that [s]z ))R, i.e., the
term which arises from the shift in melting temperatures
e([s]z/3cr)[T —T~c —TR(1 —c)] is large in comparison
with the entropy of mixing RT[c inc +(1—c) ln(1 —c)].
In other words, as the entropy difference between the
phases vanishes, the distinction between solid and liquid
vanishes, so that the equilibrium values of concentration
are the same in both phases, i.e., c+(T) c(T)~0 as-
[s]E~O. The comparison of [s]z with R arises since
these two quantities, both with entropy density units, are
the coefficients of the two key quantities relating to two
different sources of entropy, namely, phase and concen-
tration.

It will be shown in Sec. V that Eqs. (4.6) and (4.10) ap-
ply to a moving interface with nontrivial geometry pro-
vided that the left-hand side of (4.10) is supplemented by
the terms —o(au+a). The two equations together su-
percede the Cxibbs-Thomson condition (1.3), and also
reduce to this condition in appropriate limits as concen-
tration approaches 0 and 1.
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The concentration profile (see Fig 3.)

Returning to the integrated equation (4.5), we see that
a solution can be obtained to leading order as

1M= —ln
2

Then the concentration equation is rewritten as

(4.22)

A /(R T) —(N/R T)P

A /(RT)e —(N/RT)P (4.20) c, =V Kz(P, T)c(1 c—)V MP+ln
1 —c

(4.23)

where we use the original (c,P) so that P =tanh(r/2e). If
we consider (4.20) in the approximation T- TB, then

A /(RTB N/(RTBB

A /( R TB ) N /( R Ts )1+e ~ e
(4.21)

A /(RTB N/(R TB

B A/(RT ) N/(RT )—1+e

C, T, +—P, =V.K, VTl
(4.24)

and the phase equation (3.7), to form the simplest phase-
field alloy system [(3.7), (4.23), and (4.24)].

where M is defined by (4.22), and coupled with a
simplified heat equation

and the integration constant A must depend upon T. It
is also evident that setting the integration constant to
zero, so that one considers 5F/5c =0 instead of
V(5F/5c) =0 in equilibrium results in an immediate con-
tradiction, since c and c+ do not tend to zero as T ap-
proaches T~.

In fact, examining (4.3) with pP fixed as tanh(r/2e), it
is clear that one boundary condition is needed in order to
solve for c . This boundary condition can be the values of
c at —~ (that is, c ) or at + co (that is, c+). Of course,
in equilibrium, the value c is the value of the concentra-
tion which corresponds to a particular temperature on
the solidus line in the phase diagram. Hence the bound-
ary condition for the basic concentration profile, (4.3),
which is defined as A in (4.5), necessarily involves the
temperature. At a fixed temperature in equilibrium,
knowing any one of the triple (c,c+, A) thereby deter-
mines the other two. Our treatment avoids the calcula-
tion of A, since (4.4) is valid for any value of the integra-
tion constant, and, along with the phase equation (4.1),
leads to (4.6) and (4.10), which determine c+(T) and
c ( T). Hence the constant A is determined partly
through the phase equation.

V. ASYMPTOTIC ANALYSIS
OF PHASE-FIELD ALLOY MODELS

In this section, an asymptotic analysis for small e will
be carried out for layered solutions of the system (3.7),
(4.23), and (4.24). A complete determination of the solu-
tion will involve initial and boundary conditions; howev-
er, they will be left unspecified here, as our primary atten-
tion is rather on the laws of motion of the interface. A
supplementary discussion in some special cases will be
presented in Sec. VI. (We will specify the boundary and
initial conditions at that time. ) Our analysis here treats
motion of interface as a moving internal layer of width
O(e). The interfacial curve I is defined as the set of
points in domain 0 at which &)I&=0. Setting x =(x„xz),
we define r (x, t, e) in a neighborhood of I to be the
signed distance from x to I, with the convention that +
is the direction of positive P and —is the direction of
negative tt. . Note that for any small e) 0, the system
(3.7), (4.23), and (4.24) is parabolic and has regular solu-
tions [11]. It is reasonable to suppose that r is a smooth
function in a neighborhood of I . The interface I itself
may be represented by the equation

A simplification of the dynamical system of equation

The discussion above demonstrates the role of the basic
concentration profile equation in determining the transi-
tion layer of c as a function of (t&. The role of the
coefficient RT is less significant since an energy conserva-
tion equation such as (3.8) will prevent transition layers
in T. Then T is essentially a constant for the inner expan-
sion equations. However, the presence of T in (3.9) results
in T derivatives which are mixed with the c derivatives in
the pure phases. Under the assumption that V T-Vc and
chT terms are not significant in comparison with the
remaining terms in (3.9) one may make the following
simplifications which also serve as a generalization of the
model.

Consider instead of V ((NP+RT ln[c/(1 —c)]] in (3.9)
the term V[M&))+In[c/(I —c)]J where M is a constant
independent of T, so that R T is absorbed into E2 and the
derivatives of T ignored. The constant M can be evalu-
ated based on the asymptotics as discussed above and the
phase diagram with the result

r(x, t, e)=0, ~Vr~ =1, br =sc

on interface I, where ~ is the curvature of I .
We define a function s (x, t, e) so that (r, s) is a local or-

thogonal coordinate system in the neighborhood of I,
such that on I, s measures arc length from some point
depending smoothly on t. We set up outer expansions for
the functions c, T, and P, i.e.,

C (X t E)=&C&(X& t ) +EC ( X, t ) +. . .

T(x, t, e)=T (x, t)+ET'(x, t)+. . . ,

P(x, t, e) = (t) (x, t) +eP'(x, t ) +. . . .

(5.2)

The terms on the right-hand sides of these expansions
may be discontinuous at r =0.

The inner expansion proceed by using the stretching
transformation z=r/e and considering c, T, and P as
functions of the variables z, s, and t and
c (x, t, e) =c(z, s, t, e), etc. Thus
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c(z, s, t, e) =c (z, s, t) +ec '(z, s, t)+. . . ,

T(z, s, t, e) = f' (z, s, t)+ef' (z, s, t)+. . .

P(z, s, t, e) =P(z, s, t)+ eP'(z, s, t)+. . . .

By the definition of r, we have

(5.3)

Proposition 5.2. In limit as e—+0 and for small concen-
tration c, there exists a formal asymptotic solution

(P, T, c) (with linearization for concentration c) of the
phase field alloy model (3.7), (4.23), and (4.24), which is
governed by the two-phase alloy problem

$(0,s, t, e)—=0 . (5.4)

In the following, we will use the notation f~r+to
denote the limiting values of f as I is approached from
the side where r )0 or r (0, respectively. The notation
f„~r+ is defined similarly. The variables P and c will ex-
hibit transition layers as shown in Fig. 3, while V T.n ex-
hibits a similar transition layer behavior.

The main results in this section are the following (see
Fig. 4).

Proposition 5.1. In limit as @~0, there exists a formal
asymptotic solution (P, T, c) of the phase-field alloy model
(3.7), (4.23), and (4.24), which is governed by the follow-
ing sharp-interface model:

C, T, =K,bT in Q&I(t),

c, =K2 bc in A&I (t),

[T]+=0 on I (t),

[KiVT n]+= —lu on I (t),
—ZM=e on I (t),

[K2Vc n]+ = —[c]+v on I (t),

[s)E T„—TIiav+~= T —T~- (c —c+)—0 2M

(5.6)

on I (t) .

C, T, =K,AT in A&I (t),
c, =K2 bc in QgI (t),
[ T]+=0 on I (t)

[K,VT n]+= —lv on I (t), (5 5)

Verification of Proposition 5.1

To obtain the first two equations, we use the outer ex-
pansion (5.2). Setting (5.2) into (3.7), (4.23), and (4.24)
and equating coeKcients of corresponding powers of e,
we obtain the 0(1) system

ln = —2M on I (t),
1 —c

[K2Vc n]+ = —[c]+u on I (t)

yo (yo)3 —0

C, T, =K(AT (5.7)

av+~= [s]E
T Tg

T~ —Ta 1 —c+
ln

2M 1.
—c

on I (t) . c, =V K2~c (1—c )V ln
C0

1 —c0

Thus (5.5) is a new sharp-interface alloy problem which
describes the entire (c, T) phase diagram, unlike the alloy
models described in Sec. II. Of course, the asymptotics
leading to (5.5) are valid for any value of M, but would
not correspond to the phase diagram if (4.22) is not
satisfied.

where we take P = —1 and P+ = 1, and the 0 (e) system

[1—3(P ) ]P'+ I T T„c Tti(1 —c —)I =—0,

C, T,'+ —P,'=Kid, T',l

c'
c,'=V K;+c'(I —c')V My'+,c'(1—c') (5.8)

(p. C+ +V K z~c '( 1 —2c )V ln
0

1 —c0

+V K2(P )P'c (1 c)V ln—0
1 —c

FICi. 3. Profiles of P and c across the interface. In phase-field
models, a phase change corresponds to a transition layer in the
order parameter P while temperature T has a transition layer in
its gradient and the concentration c has a transition layer which
is similar to that of P. However, while P always has a transition
from (approximately) —1 to 1, the transition in c (between the
two positive values c& and cL ) depends on the temperature, in
accordance with the phase diagram of Fig. 2.

b, u =u„„+hru„+
~
Vs u„+Asu, (5.9)

and the time derivative u, as u, + r, u, +s,u, . One writes
the system (3.7), (4.23), and (4.24) in terms of (r, s, t) as
follows:

Thus the first two equations follow from the 0 (1) system
of the outer solution.

To obtain the interface conditions, we need to use the
stretched inner expansion (5.3). Using the (r, s) coordi-
nate system one may write the Laplacian as
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Phase field alloy model
bF
bg

C„Tt —V KtVT = H(g, c, bt, c,)

bF
&tet ——V Krc(1 —c)V

bc

Appropriate F, H and physical idealization

Simpler phase field alloy equations

&s $g = s et/+ —(P —p ) + —[s]s(T—Tsc —Ts(1 —c))
2 3d

1
C„T, + — l(c)4t —(Q+ [l]s Ae)cg V ' KtVT

c
cq ——V' K~(g}c(l —c)V' 1VQ+ BTIn

Physical approximation

Simplest phase field alloy equations

tts It = t A&b + —(P —P ) + —[s]s(T —TAC Ts(l —c) )
2 = 2 1 e

3d
f

C„Tg + —„eg ——9'- A, )V'T

c
cq ——V'. I~2(p)c(1 —C)V' Md+ In

1 —c.

Pure phase field equations

cts P = s'-Ad + —(d —y ) + [s]s(T ——TM)1

2 3d
f

C„T, + -y, = V'. Z, V'T

Pure surface tension and kinetics model

C„T] ——Ki AT in 0 $ I'(t)
[Kt T„] = -tv on I'(t)
—v(ov + v) = [s]s(T —TM) on I'(t)

!

I

!

!

!

!

!

c~0!~ J

Two-phase alloy model without cross term
C„T~ ——Ki DT in 0 $ I'(t)
c& ——K2+Ac in 0 $ I'(t)
[Ki T„j+ = —fv on I'(t)

[ln j+ = —2M on I'(t)
1 —c

[K2c„j+ = —[cj+v on I'(t)

[~j~ TA —Tg 1 —c+
&V+K = T —Tg- ln

0 2M 1 —c
on r(t)

Small c appmximntion (dilute impurities)

Dilute binary alloy model
C„T = K, AT in O'I(1(t)
ci ——K2+Ac in 0 '(I, I'(t)

[K T„j+ = —fv on I'(t)
c+ =c e 2M on l(t)
[K c„j+ = —[cj+v on 1 {t)

crv+ e = T —Tgy-[sj T+ —Tg
(c —c ) on I'(t)

d 2M

Neglect solid phase

Traditional one-phase (dilute) binary aHoy model
C„T) ——Kg QT in A(t)
cg —K2Dc in A(t)
Ai T„=-Iv on I'(t)
K2c„= —(1 —j)cv on I'(t)

T —Tg = (av+ ~) + rn(c on .I'(t)
[~j~ ~

Two-phase allay model with cross te ~
1

C'„T, ——(q+[t], c, =KIT m n(r(t)

., = V . KP (1 —,)V (ZT l, '
) n ~ r(t)

[K,T ]+ = —(q[c]+ + [l]ss(c+ +c ) —2Ts[s]s)v on I'(t)

RTPn j+ = —2N on I'(t)
1 —c

[KsTc„]++ [Ksc(1 —c) (ln T ]+ = —[c]+» on I(t)'

[s]@ R(T~ —T~) 1 —c+
&V+K= T —Tg- Tln on I' t

2N 1 —c

l(c) = (TAc+ Ts(1 —c)) [s!s
[l]B A = (Ts —Tz)[s]s

s'+ ~'
Q = 2(Ts —Tw) (C„+

m(
M = —ln-

m$

[T„]+= jump in T„, etc.

TA(
)

TA s
1

N = [s]s(Tg —Ts)-
T„=O'T n, etc. ,

FIG. 4. Relationship between different alloy models. The most general phase-field model (upper left box) leads to a number o
different limiting sets of equations, some of which are classical, e.g., the traditional one-phase alloy model (dilute binary alloy), and
some are introduced in this paper, e.g., the two-phase alloy model without cross terms, in which the conditions involving c and c
are the new interface relations replacing the Gibbs-Thomson condition. With various simplifications and idealization, we obtain the
"simplest" phase-field alloy model which retains the key characteristics of an alloy. These idealizations consist of fixing, for example,
the surface tension cr, for the mixture, an assumption which is accurate for pairs of materials with similar surface tension between
phases, or for small concentrations of one material in another. The solid lines and arrows between the boxes indicate a mathematical
relationship in the sense of a theorem for simpler geometries and matched asymptotic for more complicated geometries. The dashed
lines indicate physical idealizations or approximations.
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The inner expansion is

G.g2[p, +p„r, +p, s, ]=E [p„„+~Vs~ p»+Isrp„+As', ]+—(p —p )+& I T Tgc Ta(1

C, [T,+r, T„+s,T, ]+—[p, +r,p„+s,p, ]=K)[T„„+lVsl T„+~rT,+~sT~]
I
2

[c,+r,c„+s,c, ]=K2(p)c(1—c)IF,„„+Vsl'F|„+~rFi, +~s i, ]

+ IK,(p)c (1—c)]„F,„+lVs i'[K2(A)c {1—c)],Fi,

(5.10)

(5.11)

(5.12)

Fi(g, c ) =MQ+ln
1 —c

Scaling the r variable by use of z = r/6, one may write (5.10)-(5 12) as follows:

+ '(p —p)+e. —ctr, p, +br/, + [f—Tgc —Tg(1 —c)] +& [IVs I p +~sf (5.13)

K, T +e K,hrf', — r, p, —C,—r, f', +e K, ( Vs~ f'„+bshe) —C„(T,+s, f', ) — (p, +s—,p, ) =0, (5.14)

tK (p)c(1 —c)(F,(p, c)),],+e[brK2(p)c(1 c)(F&(p,e—)),—r, c, ]

+&2[K2(p)c(1 —c)(~Vs~ F2)„+bsF), )+~Vs~ (K,(p)c(1 —c)),F&, —c, —s,c, ]=0 .

P, +-,' [P' —(P')'] =o (5.16)

Substituting (5.3) into (5.13)—(5.15), we obtain the 0 (1)
system:

where the equalities (5.19) and (5.20) have been used.
Note that Eq. (5.16) and conditions pP( —&n)= —1,

pP(0) =0, and P5( ~ ) = 1 imply that

=0zz

~0
K2(Pb)c (1—c ) MR@+in

l —c'

(5.17)

=0 . (5.18)

P(z) =tanh—
2

'

Integrating Eqs. (5.22) and (5.23), one obtains

K, f + r, pP=c3(s, t)—,
0~

(5.24)

(5.25)
We seek to construct bounded solutions of the 0(1)

equations (5.17) and (5.18) above with 0 (c ( 1. The
solutions to (5.17) and (5.18) which satisfy this require-
ment are

~1
Kz(PV)c (1—c ) MP +

c(1—c) =r, c +c4(s, t) .

P(z, s, t)=c, (s, t),
~0

MPV+1n =c2(s, t),
1 —c'

(5.19)

(5.20)

(5.26)

After using the matching conditions (see, e.g., [18]), we
obtain from Eqs. (5.20), (5.25), and (5.26) that

where c, (s, t) and c2(s, t) are constants with respect to the
variable z, so that c2 may also depend on T . Next, one
has the 0 (E) system:

P,', +—,
' [1—3(pP)']P' +M+ ln

c'
1 —c' r+

=c2(s, t),

(5.27)

(5.28)

K2 c„~t-+=r( c
~ r++g(cts)

o~ [s]E o o oar, P7, + b, r pV, +—
I T Tz c Tz ( 1 c)]—— —

(5.29)

K, f",, r,'P, =o, ——I

~1
K (P)c {1—c ) MP'+

c(1—c)
O 0

z

(5.21)

(5.22)

Noticing also that the normal velocity v (dropping the
superscript) is given by —r„we may write r, =v in—0 0

Eqs. (5.27) —(5.29). Subtracting the equation with the
minus sign from that with the plus sign from
{5.27) —(5.29), respectively, we obtain the interface condi-
tions to lowest order. These are

(5.23) K& [T„)+= Iv— (5.30)
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+
ln

C

1 —c
= —2M, (5.31)

cross terms in the temperature and concentration equa-
tions, can be stated as

aE'P, =e b,P+ —,'(P —P')
[K2c„]+=—u [c ]+ . (5.32)

—(av +b.r )J,(pW, ) dz

=f, [f' T„c —Ts(1 —c)]P—dz .[s]E o o o (5.33)

By using Eq. (5.20), we can calculate the integral of the
right-hand side in (5.33), that is,

These give the interface conditions for first-order approx-
imation of the solution [except the last interface condi-
tion in (5.5)].

To obtain this last condition, we note that pP, satisfies

P' +-'[1—3(VP) ]P'=0

i.e., pP is an eigenfunetion of the linear operator
Kg= g„+—,

' [1—3(P ) ]/=0 corresponding to the eigen-

value 0, and it is simple, so that the solvability condition
gives

+ [s]z [ T —T~c —Ttt(1 —c)J,
C„T,+ —,

' [l(c)P, —(Q+[1]~„P)c,I
=V.K, V T,

c, =V K2(P)c(1 c)V—NP+RTln
1 —c

where

l (c)= [T~c+Ttt(1 —c)][s]z,

[I]s „=(Ttt—T„)[s]E,

N =
—,
' [s]E(T„—Ttt ),

s'+s'
Q =2(Ttt —T~ ) C„+

(5.36)

(5.37)

2f' 2T — —(T —T )1
30' M 1 —co( —ao )

(5.34)

From (5.33), (5.34), and the matching conditions, we may
obtain, by use of 4r =K, the interface relation which
generalizes Gibbs- Thomson,

—(au +I~ )

[s]s o 1 1 —c+
2T 2T& — (T—„—Ts) ln2' M 1 —c

(5.35)

on I (t), where we have used J„&(pP, ) dz =—', . T»s &om-

pletes verification of Proposition 5.1.

c, =V K2 c(1—c)V RT ln
C

1 c
in QyI (t)

and on the interface I (t)

[T]+=0,

[K,VT n]+= —,'[Q[ ]+c+[l]~„(c +c ) 2T~[s]EIv, —

and R is Boltzmann's constant, the other parameters are
the same as in (3.7), (4.23), and (4.24), and s' and s' are
the entropy densities in solid and liquid, respectively.

By the same method as employed in verification of pro-
position 5.1, we have the following asymptotic result.

Proposition 5.3. In limit as @~0, there exists a formal
asymptotic solution (P, T,c) of the phase-field alloy model
(5.36), which is governed by the following two-phase
sharp-interface alloy model

C„T,——,'(Q+[l]~ ~ )c, =K, b, T in Qy I (t),
(5.38)

Verification of Proposition 5.2 RT ln
1 —c

= —2N, (5.39)

ln
1 —c0

Note that for small values of c+ and c, one has

c+(1—c )
=ln c' (1—c+)

[K2RTVc n]++ RK2c(1 —c) ln VT.n
1 —c

aIld

0C+
=ln

c0

= —[c]+u,

[s]s R (T„—Ts ) 1 —c
cxv +K= T Tg T ln

0' 2N 1 —c
0

1 c+
ln =c —c+ .

1 —c

Then Proposition 5.2 follows irnrnediately from the proof
of Proposition 5.1.

Finally, a more detailed phase-field alloy model, with

Note that equations in (5.36) differ from the simplest
version (3.7), (4.23), and (4.24) in that all equilibrium con-
stants including X are obtained from free-energy con-
siderations and cross terms in c and T are present. The
two equations agree in the small c or 1 —c limit. In par-
ticular, if we write the concentration equation
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I(.2(p, T) c
c, =V c(1—c)V NP+RT ln

1 —c

E2N=V c (1—c)VQ+ V.K2Vc

+V E2 c(1—c) ln
TT c
T 1 —c

then it is clear that the first term will vanish in the pure
phases (as shown by the asymptotics) while the third term
will be smaller than c lncV'T. For small c, this last term
is consequently small compared with terms in the heat
equation.

VI. A PDE SYSTEM
WITH CONSTANT TEMPERATURE

In this section, we state a rigorous result for a system
of P and c (neglecting the temperature equation). It is
convenient mathematically to replace, without loss of
generality, the physical parameters by constants a and b.
We then consider the following system:

The main results in this section are the following two
theorems. The proof can be found in [11].

Theorem 6.I. Let co(x)HC'[0, 1] with 0&co(x) &1
and co (+1)=0. Then for any e & 0 there exists a unique
solution (P'(x, t),c'(x, t)) to the problem (6.1)—(6.3). The
solution is smooth in QT.

Theorem 6.2. In limit e~O+, there exists a pair of
functions (S ( t), c (x, t) ) defined on (0, T, ) with
S(t)EH'(O, T, ) and c(x, t)EL "(Qz, ), such that the
limit function c (x, t) of c '(x, t) and S ( t ) [(P'(x, t ),c '(x, t ) )
is the unique solution to the problem (6.1)—(6.3) as stated
in Theorem 6.1.] satisfy

c, =c in Qz gI(S(t), t)~ 0&t &T„]

with boundary and interface conditions

c(x,O)=co(x), x H( —1, 1)

c„(+l,t) =0, t e(0, T, )

[c„]+= —[c]+S'(t), t E(0, T, )

b 1 —c+
—'S'(t) = —2a — ln, t E (0, T, )3

1 —c

c
c =V c(1—c)V MP+ln

1 —c

(6.1)

(6.2) and

ln
c

1 —c
= —2M, tv(O, T, )

P(x, O)=tanh(x/e), x H( —1, 1)

(b(+ I, t ) =tanh(+ I /e ), t E (0, T)

c(x,O)=co(x), x E( —1, 1)

c„(+1,t) =0, t e (0, T)

(6.3)

where a, b, and M (with bM &0) are constants, one has
co(x)HC'[0, 1] with 0&co(x)& 1 and co (+1)=0, and
e & 0 is a small parameter.

in QT =—A X (0, T), subject to the suitable boundary and
initial conditions. In particular, if we let 0 be a one-
dimensional domain, e.g. , 0=( —1, 1), then we impose
the following boundary and initial conditions:

—1 if —1 &x &S(t)
+1 if 1&x &S(t)

as @~0+,where T, )0 is the first time such that one of
the following occurs: either T, = T, S ( T„)= —1, or
S ( T„)= l. Other approaches to alloy problems have been
used in [19,20].
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