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In this paper, we report experimental results of strongly nonlinear phenomena observed in the ther-
moacoustic system which we have termed “Taconis oscillation” [W. H. Keesom, Helium (Elsevier, New
York, 1942), p. 174; C. F. Squire, Low Temperature Physics (McGraw-Hill, New York, 1953), p. 23; K.
W. Taconis, J. J. M. Beenaker, A. O. C. Nier, and L. T. Aldrich, Physica 15, 733 (1949) (see footnote on
p. 738)]. The system exhibits quasiperiodic and chaotic dynamics in spontaneous states and states forced
by external oscillation. In spontaneous states, we observed that three clearly defined stable modes with
incommensurate frequencies can be excited simultaneously, and that competition between them leads to
chaotic motion near the overlapping regions of the stability curves. Experimental time series of chaotic
oscillations are analyzed by theories of nonlinear dynamical systems, and the dimension and entropy of
chaotic attractors are determined. In forced thermoacoustic states, a spontaneous oscillation is periodi-
cally perturbed by a mechanical force with amplitude and frequency externally controlled. Nonlinear
coupling between thermally and mechanically driven oscillators leads to quasiperiodicities, frequency-
locking, and the onset of chaos within a certain bandwidth. The global and local universal properties for
the quasiperiodic transition to chaos are experimentally studied and compared with circle map univer-
sality. We present experimental results for universal scaling properties at the onset of chaos in order to
examine the applicability of the map to certain aspects of thermoacoustic systems such as (1) the self-
similar hierarchical structure and scaling power spectrum at a particular winding number (the golden
mean), (2) the fractal dimension of the set of locked states on the critical line, and (3) the multifractal
spectrum. In particular, the scaling power law of the spectrum is found to change from f* to f2 as the
system approaches the onset of chaos. We provide numerical support for the hypothesis that the change
of the scaling power law is attributed to the drastic change of the Poincaré cross section from a mild to a
sharp wrinkle. The experiment demonstrates that the thermoacoustic system belongs to the same
universality class as the simple map, at least up to the onset of chaos, in spite of the complexity of the
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system.

PACS number(s): 47.27.Cn, 05.45.+b, 05.70.Ln, 43.90.+v

I. INTRODUCTION

Some thermoacoustic phenomena such as the Sond-
hauss tube [1] and the Rijke tube [2] have received con-
siderable attention for over two centuries. The progress
of research on these phenomena, however, was slow be-
cause of the great complexities of the system and the lack
of systematic experiments. In recent years, there has
been a growing interest in the concept of thermoacoustics
in connection with the fields of nonlinear dynamics and
applications [3].

The thermoacoustic system which attracted our in-
terest is the self-sustained oscillation of a thermally in-
duced cryogenic gas column. When a gas column
confined in a long cylindrical tube is subjected to strong
temperature gradients, its spontaneously oscillates with
extremely large amplitudes (~ 10* Pa or more). We have
termed this the “Taconis oscillation” [4], which is a clas-
sic thermoacoustic phenomenon where some heat is con-
verted to work under certain conditions. Recently, ther-
moacoustic oscillations have been studied in terms of hy-
drodynamics and thermodynamics. Rott [5] gave the
theoretical phase diagram for hydrodynamics between os-
cillation and no oscillation, and this was experimentally
confirmed by Yazaki, Tominaga, and Narahara [6] to be
valid within a small-amplitude region. Swift [7] and
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Tominaga, Narahara, and Yazaki [8], who reviewed ther-
modynamics, presented a qualitative understanding of
thermoacoustics, some important parameters for the pro-
duction of sounds by heat, and the essential principle of
an acoustically driven refrigerator as applications of ther-
moacoustics.

In a certain bandwidth of the stability curve, the
Taconis-oscillation system provides us with abundant
nonlinear phenomena such as quasiperiodicity, frequency
locking, and chaos. In this paper, we present experimen-
tal studies of highly nonlinear phenomena associated with
thermoacoustic turbulence in spontaneous states and
universal scaling properties for the quasiperiodic transi-
tion to chaos in externally forced states. Some of the re-
sults have already been reported in previously published
Letters [9].

In this study, the mechanism of chaotic behavior is
shown to arise from competition between different modes
of oscillation in a gas column. Stability curves for three
different oscillatory modes intersect with each other on
the phase diagram. Near the overlapping region and the
intersection of the stability curves, three or two modes
with incommensurate frequencies can be excited simul-
taneously, and competition between them leads to chaotic
motion (thermoacoustic turbulence) through complex
quasiperiodic routes. Two routes to chaos through three-
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and two-frequency quasiperiodicities are experimentally
identified. While the ability of three-frequency quasi-
periodicity to exist stably has been theoretically ques-
tioned, our experimental system shows that a stable oscil-
lating flow consisting of three incommensurate frequen-
cies exists before chaotic motion is observed. Numerical
experiments done by Grebogi, Ott, and Yorke [10] have
demonstrated that a stable three-frequency state exists,
especially in conjunction with small nonlinear perturba-
tions. In a few experimental systems [11], the observa-
tion of such a state has also been reported. Observed
nonperiodic time series which are developed from the
two routes are reconstructed and analyzed using non-
linear dynamical theories. The dimension and entropy of
chaotic attractors are calculated to give experimental evi-
dence of deterministic chaos [12].

When an oscillating system with one characteristic
mode is periodically perturbed by a second oscillator and
the two modes nonlinearly interact with each other, the
system exhibits abundant nonlinear phenomena. For a
small nonlinearity, oscillators are in a quasiperiodic state
or a locked state if the ratio of their frequencies (or wind-
ing number) is irrational or rational, respectively. As the
degree of nonlinearity increases, locked regions become
stable over a wide bandwidth of the applied frequency
and form “Arnol’d tongues” in the phase diagram. A
stronger force leads to the onset of chaos and a hysteretic
effect which occurs in the overlapping regions of the
tongues. Some of these features related to nonlinear cou-
pling between two modes are common to many physical
systems [13], mechanical oscillators [14], driven electrical
oscillators [15], forced convective flow systems [16,17],
and solid-state physics [18]. The possibility exists that
the quantitative behaviors of a natural oscillation system
subjected to a periodic force may be described by a one-
dimensional circle map. The following is a typical model
called the sine circle map:

9n+1=9n+ao—%sin(2wen) , (1)

where two control parameters K and € correspond to
the degree of nonlinearity and the unperturbed winding
number, respectively. For the transition from quasi-
periodicity to chaos (K =1) two types of scaling univer-
sality have been theoretically predicted by means of nu-
merical and renormalization group techniques [19,20]:
one type is the local scaling universality seen in the criti-
cal power spectrum at a particular winding number, the
golden mean o =(V'5—1)/2 which has the slowest possi-
ble convergence, and the other is the global type for the
whole range of winding numbers on the critical line, the
fractal dimension D of a devil’s staircase. The global
scaling universality of the attractors is characterized by
the multifractal spectrum [21], which is also predicted by
the circle map for trajectories on the critical golden
torus. The relevance of the map universality has already
been tested and supported in a few experimental systems
such as Rayleigh-Bénard convection [13,16,17] and
solid-state physics [18].

We would like to experimentally verify whether the
map universality is applicable to complex nonlinear ther-
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moacoustic systems. An external periodic force is used as
a second oscillator to perturb a natural internal oscilla-
tor. Parameters K and Q,, which are directly related to
the amplitude and frequency of the external force, can be
controlled with high accuracy. We present experimental
results for universal scaling properties at the onset of
chaos to examine the relevance of the map to ther-
moacoustic systems: (1) the self-similar hierarchical
structure and scaling power spectrum at the golden
mean, (2) the fractal dimension of the set of locked states
on the critical line, and (3) the multifractal spectrum.
The experiment demonstrates that a complex ther-
moacoustic system belongs to the same universality class
as the simple map. No matter how complex physical sys-
tems are or even if basic equations characterizing non-
linear systems are not known, the behavior of the system
at the onset of chaos can be described effectively by the
scaling universality predicted by the circle map.

We also report experimental observations for strong
forcing, where the dynamical behavior is complex. If
spontaneous oscillation does not have a high enough am-
plitude, the excitation dominates the behavior of the flow
before the transition to chaos takes place. A similar
phenomenon has also been observed in a forced
Rayleigh-Rénard convection [17] and a driven nonlinear
spin-wave system [22].

The purpose of this paper is to give detailed experi-
mental results of nonlinear thermoacoustic phenomena
partially containing our preliminary results previously
published [9]. This paper is organized as follows. In Sec.
II we describe briefly our experimental setup and experi-
mental phase diagram. In Sec. III we give experimental
results on thermoacoustic turbulence in spontaneous
states and on universal scaling properties at the onset of
chaos in externally forced states. In Sec. IV we discuss
experimental results regarding the change of the scaling
power law seen in the envelope of spectral peaks. In the
last section, we summarize our conclusions.

II. EXPERIMENT

A. Experimental setup

The experimental arrangement of Taconis oscillation is
schematically shown in Fig. 1. Helium gas was confined
in a long cylindrical tube with a symmetrical steplike
temperature distribution along its axis. A gas column in
the tube consists of three sections, homogeneous temper-
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FIG. 1. Mean temperature distribution along the tube closed
at both ends.
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atures (warm, Ty, and cold, T), and abrupt
temperature-jump regions at x ==+/. The warm part Ty
was maintained at room temperature (=296 K) and T
was U shaped at X =0 and could be varied continuously
from T-=4.2 K to about 45 K using the continuous-
gas-flow method [6]. The tubes used were stainless steel
with inner radii of »r=1.2, 2.2, and 3.7 mm, wall
thicknesses of 0.3 mm, and whole tube lengths of
2L =2.1-2.9 m. The length Ax with a temperature
jump was less than 4% of the tube length. Mean density
of the helium gas was continuously varied through a
capillary tube attached to the gas column. Acoustic and
mean pressures were converted to electrical voltages by
two small pressure transducers (Toyoda Koki, Model No.
DD102-1F) attached at the two closed ends with excel-
lent linearity over a wide range. The signal voltage V(z)
monitored by a spectrum analyzer (Ono Sokki, Model
No. CF6400) was digitized by 12-bit analog-to-digital
converters. The time series of 16 384 sample points were
analyzed by a computer to obtain information on detailed
power spectra and attractors in the phase space.

B. Control parameter and phase diagram

Researchers in the field of cryogenics often suggest
that the amplitude of Taconis oscillation strongly de-
pends on the inner radius 7 of the tube. That is, the abili-
ty to induce excitation is greatly lessened if the inner ra-
dius of the gas column tube is too large or too small.
This empirical observation suggests that the dimension-
less parameter r /8 is important to control thermoacous-
tic oscillation. The intrinsic parameter 8 represents the
thermal boundary layer thickness ~Va/w (o is the an-
gular frequency of the oscillation and « is the thermal
diffusivity of the gas) formed at a tube wall. At least one
of parameters controlling the amplitude of Taconis oscil-
lation is given by
172

(=7). (2)

a

=r

r
)

Defining the relaxation time 7=r2/a we can rewrite Eq.
(2) as

Y2=owr, (3)

where 7 shows the time delay between the tube wall and
oscillating fluid temperatures. If w7 <<1 (or r <<§), then
the motion of a fluid in a tube becomes isothermal. If
wT>>1 (or r>>§), then the motion becomes adiabatic.
In such reversible processes, Taconis oscillation is not ex-
cited. When wr=1 the oscillation can be effectively in-
duced [7,8]. Our experimental apparatus was designed to
vary the control parameter, Egs. (2) or (3), continuously
through the mean density of a gas over a wide range.

As Eq. (2) is not well defined in temperature-jump re-
gions, we select the following dimensionless numbers well
defined in Ty and T¢ to map out the phase diagram, the
boundaries of stable and unstable regions:

172 172

_ [4]
, YH"“r

(2974

ac

YC =p (4)
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where the subscripts H and C represent warm and cold,
respectively. Equation (4), however, is not the indepen-
dent variable in the experiment because the frequency is
not initially known for a given tube. Therefore we recon-
structed Eq. (4) and adopted the following new numbers
independent of the frequency as control parameters:

Y, Ty Ye 2/1+8

R=—¢++ —_ = YH

V' Te ) (5)

where A is defined by wl/ /ac (a. is the adiabatic sound
velocity at the cold part) and B is 0.647 for helium gas.
The experimental phase diagram drawn up in the space
of Eq. (5) is shown in Fig. 2. Taconis oscillation is spon-
taneously induced when the temperature ratio exceeds a
threshold value which is dependent on R. The time de-
velopment of the pressure growth was initially exponen-
tial and saturated after a few seconds. Neutral points
were explored by gradual variation of R through the
mean density of a gas at a constant temperature ratio.
The control parameter R could cover three orders of
magnitude, with large overlap, by changing the mean
density and the tube inner radius. The phase diagram is
characterized by a united curve which is independent of
tube geometry. This means that Eq. (5) is essential to
characterize the stability of Taconis oscillation. As
pointed out in the beginning of this section, the spontane-
ous oscillation can be induced in the limited region of wr
above a minimum temperature ratio. There exist two sta-
bility limits corresponding to the left- and right-hand
branches. A gas needs a suitable thermal boundary layer
thickness to maintain the oscillation. The region wr=1
is in the temperature-jump region, where the driving
acoustic energy source exists. Thus, at the left-hand
branch it is possible that faster gas motions (higher fre-
quency modes) with thinner boundary layers are induced
instead of the fundamental mode. The second and third
modes with two and three pressure nodes at T were ob-
served near the left-hand branch only. The stability
curve of the second mode intersects with that of the fun-
damental mode at Ty /T-==15. The intersection of the
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FIG. 2. Experimental phase diagram for £=0.3 as a function
of temperature ratio Ty /T¢ vs R =r(ac/acl)'’?. Stability lim-
its for an asymmetric tube closed at X =0 and L are shown by
solid triangles.
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curves of the second and third modes was observed at
Ty/Tc=55.

Although measurements of the pressures at the two
closed ends of the tube provide no direct spatial informa-
tion, there is some indirect evidence in favor of our deter-
mination of the modes. It was confirmed that two pres-
sure wave forms observed at either end were the same in
the amplitude and 180° out of phase for the fundamental
and third modes, and in phase for the second mode. Ap-
pearance of the second mode predicts that a spontaneous
oscillation of the fundamental mode can be induced in an
asymmetric tube closed at X =0. We found the funda-
mental mode produced in the closed tube, whose stability
curve (shown by solid triangles in Fig. 2) coincides closely
with that of the second mode (solid circles).

We also observed that the frequency modes that can be
thermally excited strongly depend on the location of a
temperature jump determined by the ratio between tube
lengths of Ty and T, (L —1)/I1(=§). Recent theoreti-
cal work [8] indicates that the driving energy source is
proportional to the product of the mean temperature gra-
dient and the gradient of the square of pressure for the
standing acoustic wave (a negative product indicates
strongly damped oscillation). The direction of the tem-
perature increase must coincide with that of the pressure
increase to maintain oscillation; hence, a gas oscillating
tube must be closed at the warm end. The most favorable
location for the temperature jump is therefore halfway
between a node and a loop. If, for simplicity’s sake, the
pressure distribution is assumed to be that of a gas
column oscillation in a tube with constant temperature,
the product reaches a maximum when £ is 1, 0.33, or 0.2,
depending on whether the oscillatory mode is the funda-
mental, the second, or the third mode. This suggests how
many values of £ we need to select to observe mode com-
petition. The value of £(=0.3) used in Fig. 2 enabled us
to observe the chaotic mode competition which occurred
in the unstable region, where three or two modes are
simultaneously induced. For £=0.5, only two modes, the
fundamental and the second, are simultaneously induced
when the temperature ratio is less than 70.4, and chaotic
mode competition was also observed. The ratio § plays
an important role in limiting the number of spontaneous
modes. For a tube with a large &, higher modes are
effectively frozen out.

C. Forced thermoacoustic oscillation

In order to study the quasiperiodic transition to chaos
at a fixed winding number and to map out Arnol’d
tongues, we used the external driving force as one oscilla-
tor for experimental convenience. We performed the ex-
periment using the following apparatus and procedure.
The value of £ was 1 in our experimental design (whole
tube length 2.8 m, inner radius 1.2 mm), where only the
fundamental mode is singled out as a stable excited mode.
The spontaneous oscillation was perturbed by an external
force whose frequency and amplitude could be continu-
ously and independently varied over a wide range. One
closed end of the tube was replaced by a stainless-steel
dynamic bellows. A gas column was periodically driven
by the bellows attached to a woofer speaker (50 W and 4

Q) impedance), to which an ac voltage, A4,sin(27f,t),
with the external driving frequency f, and amplitude 4,,
was applied through a power amplifier from a synthesizer
(Hewlett-Packard Model No. 3325B). This produces sim-
ple harmonic motion in the gas column. The natural os-
cillator was nonlinearity coupled with the mechanically
driven oscillation at the desired winding number and
with nonlinearity through the frequency and amplitude of
the synthesizer. We could tune the winding number to
the golden mean within the accuracy of 107*. It is essen-
tial to keep the winding number constant for comparison
with existing models. Nonlinear interaction between two
oscillating modes leads to the onset of chaos when their
amplitudes are within a certain range.

Real time monitoring of the power spectrum of the sig-
nal voltage by a spectrum analyzer on a logarithmic fre-
quency axis enabled us not only to determine the critical
point due to an increase in broadband noise level but also
to estimate the accuracy with which we can tune the
winding number to the golden mean. The main spectral
peaks are spaced at regular intervals on a log scale on the
frequency axis, and peaks of the first generation can be
recognized up to o® near the critical point. Two types of
digitized time series of 16 384 points, which were sampled
by 2 msec and a period of the external driving force, were
recorded with no filter to obtain scaled power spectra and
strobed attractors. The determination of a transition
point to chaos was also confirmed by the change of a
Poincaré cross section from a mild to a sharp wrinkle in
addition to an increase in the spectral visible noise floor.
The frequency-locking states (f,/f,=p/q; ¢ >p, p and q
are integers) were ascertained by counting the number of
clumps in the Poincaré cross section on a display unit.
The number gives the denominator ¢q. Using this method
we could exactly search the 13/21 locking state.

III. EXPERIMENTAL RESULTS
A. Thermoacoustic turbulence in spontaneous states

Chaotic oscillations were investigated at two constant
temperature ratios (T /T-==70.4 and 18.4) near the
left-hand branch of the phase diagram using a tube with
an inner radius of 1.2 mm and a length of 2.9 m. The
cold part T, was always immersed in liquid helium
(T-=4.2 K) and Ty was maintained at 296 and 77.3 K
(liquid nitrogen). For Ty /T ~18.4, the periodic motion
of the second mode is first excited at R =7.7, and a fur-
ther increase of R leads to the generation of both the fun-
damental and second modes. Weak nonlinear interaction
between the two modes resulted in quasiperiodic motion
with smooth modulation, but the chaotic mode competi-
tion was not observed when the temperature ratio was so
small. Chaotic motion does occur, however, at a higher
temperature ratio (=70.4), where the stability curves for
three different modes intersect. In the overlapping re-
gion, three or two modes can be excited simultaneously,
and mode competition leads to chaos. The bifurcation
structure leading to chaos was very complex in spontane-
ous states. We experimentally found two different routes
to chaos: three-frequency and two-frequency quasi-
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FIG. 3. Schematic representation of the observed routes to
chaos as a function of R. (a) Three-frequency quasiperiodic
route. The periodic-chaotic sequence follows the periodic state
of the third mode P(f;) spontaneously induced at
R.=10.4—quasiperiodic state, QP,(f3,f;) or QP,(f3,f3)
—three-frequency quasiperiodicity QPs(f5,f;,f>)—chaotic
state C;. (b) Two-frequency quasiperiodic route. The sequence
follows the periodic state of the second mode
P(f,)—quasiperiodic  state = QP,(f,,f;)—locking state
L(f,,f,) with f,=2f,—quasiperiodic state modulated at a
low frequency Soms QP,(f,/2,f,)—chaotic state
C,—QP,(f5,f1). (C) The periodic state of the fundamental
P(f1).

periodicities. = The observed sequences, periodic-
quasiperiodic-chaotic motions, were classified into two
types as schematically shown in Figs. 3(a) and 3(b). The
experimental complication comes from the fact that three
states, including a periodic state of the fundamental mode
[Fig. 3(c)], can be excited for a given R within the re-
stricted limit, and the transitions between them, which
are sometimes not reproducible, take place along with
hysteretic changes in the control parameter.

1. Routes to chaos

As R is increased slowly at Ty /T-=70.4, a pure
periodic oscillation of the third frequency mode P(f) is
spontaneously generated at R =10.4, the left-hand limit
of stability in Fig. 2. The value of A(=4.14) indicates

that three pressure nodes exist at 7. The sequence lead-
ing to chaos follows the three-frequency route shown in
Fig. 3(a). The fundamental mode (sometimes the second
mode) increases, and both f; and f; modes (or f; and
f,) are simultaneously induced. The nonlinear interac-
tion between them leads to a quasiperiodic state
QP,(f3,f1) [or QP,(f3,f,)] where the periodic signal of
the third mode is slowly modulated at frequency f,; (or
f>). The spectrum consists of the sharp peaks of f3,f;
(or f3,f,) and components of their linear combination.
Following the third mode, whether f, or f, is induced
depends on only a slight difference in the location of the
temperature jump. Although the frequency ratios of
f1/f3 and f,/f5 are close to 1 and 2, respectively, the
frequency-locking state is not observed except in very
small widths of locked regions. Before the onset of
chaos, we observed a three-frequency quasiperiodic state
QPs5(f1,f1,f,) stable enough to be easily detected in the
spectrum. The wave form and the corresponding power
spectrum including a partially magnified figure are shown
in Figs. 4(A), 4(a), and 4(b). All spectral peaks were
identified and were described by linear combinations of
f1>» f2, and f; within the experimental accuracy of 30
mHz. To confirm that no synchronization between the
three modes occurs in the state shown in Fig. 4(A), we
calculated the correlation dimension v (to be discussed
later) of the attractor constructed from time series using
the embedding method. We obtained v=3.0. Further-
more, we ascertained that the Poincaré cross section is
not a closed curve. Taconis oscillation exhibits a stable
quasiperiodic oscillating flow consisting of three incom-
mensurate frequencies. Chaotic mode competition [Fig.
4(B)], represented by C;, was observed in a small layer of
R after the three-frequency quasiperiodic regime. The
corresponding power spectrum in Fig. 4(c) shows the gra-
dual broadening of the spectral peaks. We could not ex-
perimentally determine whether chaotic motion follows
the three-frequency quasiperiodic state or the two-
frequency mode-locked state. If R increases further, the

FIG. 4. Pressure records
(5.5X10° Pa/V) and power
spectra of instabilities leading to
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FIG. 5. Pressure record and power spec-
trum of chaotic state through two-frequency
route (R =13.5).
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third mode is frozen out and the system makes a transi-
tion from the chaotic state to a state of the two-frequency
route.

The quasiperiodic state QP,(f3,f;) sometimes follows
the two-frequency route before the generation of three-
frequency quasiperiodicity, normally via the periodic
state of the second mode P(f,). This sequence depends
on the history of the system and exhibits hysteresis.
When we gradually decreased R after the transition to
the second mode, the transition from the second to third
mode occurs at a position near the extrapolation line of
the stability curve of the second mode without developing
quasiperiodicity.

The sequence leading to chaos through the instabilities
induced with only two oscillators, the fundamental and
second modes, follows the two-frequency route shown in
Fig. 3(b). After the periodic state P(f,) developed into a
quasiperiodic state QP,(f,,f;) due to fundamental mode
generation with a frequency of about half that of the
second mode, we observed frequency locking between f
and f,(f,=2f;). As a control parameter increases,
modulation of the locked state L(f,,f), which is com-
posed of the spectral peaks of f,/2 and its higher har-
monics, begins at a low frequency f,,. The system even-
tually reaches a smoothly modulated quasiperiodic state
QPy(f,/2,f,,). The sinusoidal envelope gradually
deteriorates, and finally the system exhibits well-
developed chaotic motion C,, whose time record and
power spectrum are shown in Figs. 5(A) and 5(a), respec-
tively. The resultant chaotic region is sufficiently wide
compared with that of the chaotic three-mode competi-
tion. The chaotic motion changes into the quasiperiodic
state QP,(f;,f,) with amplitude modulation exhibiting a
“cockscomb” pattern, which is characterized by a sudden
jump [9]. A further increase of control parameter R
leads to smooth modulation and a decrease of the number
of spectral peaks, and finally the second mode is frozen
out so that only the fundamental mode is excited [Fig.
3(c)]. In large control parameter regions, the gas column
oscillates with amplitudes greater than 40% (~5X10*
Pa, peak-to-peak value) of the mean pressure.

In such large-amplitude regions, we observed thermally
driven shock waves characterized by discontinuity in the
slope and a concomitant sudden rise in the pressure. As
a result we could not maintain the steplike temperature
distribution because of the abnormal heat transport
enhanced by the oscillation [23]. Observation of shock
waves has also been reported in gas column oscillation
mechanically driven by a piston near a resonance fre-
quency [24].

We found a two-frequency state QP,(f,,f;) using a
tube with £=0.5, in which the third mode was frozen out

100
f(Hz)

and only two modes, f; and f,, were excited below
Ty/T-~=70.4. The observed sequence leading to chaos
was essentially the same as the two-frequency route [Fig.
3(b)] observed in the tube with £=0.3.

2. Time series analysis of chaotic oscillations

To document that the nonperiodic oscillations present-
ed in Figs. 4(b) and 5(A) are deterministic chaos, we ana-
lyzed the experimental time series using recent methods
from theories of nonlinear dynamical systems. Deter-
ministic chaos is characterized by the fundamental quan-
tities of indicators, at least one positive Lyapunov ex-
ponent, a finite and positive value of the Kolmogorov en-
tropy, and a fractal dimension of the attractor. Several
techniques have been developed for estimating such
quantities directly from experimental time series. The ex-
perimental determination of the quantities may be useful
not only to document deterministic chaos but also to pro-
pose an appropriate model equation describing ther-
moacoustic turbulence.

Assuming that the observed signal is caused by some
deterministic nonlinear system with a finite dimension,
we can regard the signal as a one-dimensional projection
of the trajectory in a multidimensional phase space. A
phase projection of dimension m is directly constructed
from a single time series V(t;) using the embedding
method [25]. The phase-space coordinates which are to-
pologically equivalent to the portrait of the original sys-
tem are constructed from the vector

V), Vit +1), .., V(s +(m —1)ry)

where 7; is an arbitrary delay time. Two-dimensional
projections of three-dimensional phase portraits which
were constructed by plotting the voltages V(¢;),
V(t;+74), and V(t;+27;) are shown in Figs. 6(a) and
6(b) for the experimental data presented in Figs. 5(A) and

(a)

FIG. 6. Two-dimensional projections of three-dimensional
phase portraits constructed by plotting of the voltages V(¢;),
V(t;+71,), and V(t;+271,): (a) and (b) correspond to Figs. 5(A)
and 4(B), respectively.
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FIG. 7. Log-log plot of correlation integrals
C,,(€) vs radius € of m-dimensional ball: (a)
and (b) correspond to chaotic attractor of Fig.
6(b) and a limit cycle of the third mode, re-
spectively. The saturated slope for large m
shows the correlation dimension v of the at-
tractor.
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4(B), respectively. The delay time 7, was set to about +
of the intrinsic oscillation period. The Poincaré cross
sections given by the intersection of trajectories in three-
dimensional portraits with a plane are broken down, and
yield no useful information.

To obtain phase-space information of such chaotic at-
tractors we adopted the generally accepted method intro-
duced by Grassberger and Procaccia [26] to determine
the correlation dimension v and the entropy K,. These
values are defined in terms of quantities called correlation
integrals C,,(€), which show the number of pairs of data
points whose separation is less than € in the phase space
of the m-embedding dimension. Because the correlation
integrals scale as ~ € over some range of €, the correla-
tion dimension v can be determined by

which is an approximation of the fractal dimension. Us-
ing about 8500 sampling points, we calculated C,,(¢e) for
the chaotic attractors. Numerical results for the chaotic
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FIG. 8. The entropy parameter K, ,, estimated from the
correlation integrals as a function of the embedding dimension
m for periodic state (@), chaotic state (O ), and noise (H). The
quantity K,,, converges to a finite and positive value
K,=0.033 msec™! for chaotic state and to zero for periodic
state, and increases infinitely for noise.

logz¢€

attractor [Fig. 6(b)] and the limit cycle of P(f;) (for com-
parison) are shown in Fig. 7 on logarithmic scales for the
embedding dimension (m =1,2,...,35). As m in-
creases, the slope v converges on a constant value. The
saturated slopes were determined by the least-squares
method within a suitable range of e. We obtained good
convergence for large embedding dimensions, and ob-
tained v=3.5 and 4.2 for the chaotic attractors in Figs.
6(a) and 6(b), respectively.

The Kolmogorov entropy, which is the most important
measure characterizing chaotic motion, is equal to the
sum of positive Lyapunov exponents and can be estimat-
ed from the correlation integrals as follows:

C,(e)

.1
K,  =lim—Ilog,———
2,m g2 C, . (e

e—~>0Ty
which represents a lower bound of the Kolmogorov en-
tropy for large embedding dimensions. Figure 8 shows
the entropy parameter K, ,, for the chaotic and periodic
motions presented in Fig. 7 as a function of the embed-
ding dimension at a constant € (log,e=9.17). The value
of K, ,, for chaotic motion converges on a finite and sta-
tionary value of K, over a restricted range of € as the
embedding dimension increases. We obtained K, =~0.023
msec ™! and K, ~0.033 msec ™! for the chaotic attractors
corresponding to Figs. 6(a) and 6(b), respectively. When
the value of the Kolmogorov entropy is finite and posi-
tive, at least one of the Lyapunov exponents must have a
positive value and deterministic chaos exists. The value
of K, for periodic motion tends toward zero, and the
value of K, at a small range of € [log,e=6.15 in Fig.
7(b)], where the slope is not saturated due to statistical
noise, shows a tendency to increase infinitely rather than

. to converge.

B. Forced thermoacoustic states

1. Small-amplitude region: Observation
of quenching phenomenon

Keeping the temperature ratio constant
(T /T-=170.4), we increased R by gradually increasing
the density of the helium gas with no external force ap-
plied. After R goes beyond the critical value R (=14.4)
a gas column spontaneously oscillates with a small ampli-
tude of the fundamental mode (f;). The amplitude of
the oscillation, which grows rapidly and evenly as R in-
creases, can be controlled by R. For R ~15.8 where the
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FIG. 9. Signal amplitude 4, of f,(0O) and 2f,(®) vs external
driving amplitude 4,. Both of them are normalized by unper-
turbed signal amplitude of f,.

instability amplitude is small (~4.5X 10? Pa), the exter-
nal force generates quasiperiodic states with a small num-
ber of combination peaks and thin layers of frequency
lockings. The forced oscillation, however, can never gen-
erate chaotic motion in a gas column when the amplitude
is so small. Figure 9 shows the signal amplitude of f,
and 2f,; versus the external driving amplitude, where
both amplitudes are normalized by the unperturbed f,
amplitude. As the external amplitude increases, Taconis
oscillation is suddenly quenched and a drastic decrease in
its amplitude follows. In a quenching state, all spectral
peaks except the forcing peak decrease and eventually be-
come negligible, and the external force starts to dominate
the flow in the system completely. Thus, when the
Taconis oscillation system is in a small-amplitude region,

FIG. 10. Observed sequence of strobed pressure voltages
when increasing the external force in the moderate amplitude
region: (a) the signal just after the onset of a sudden decrease of
Taconis oscillation, (b) the irregular burst signal with various
heights, and (c) the signal for the extremely strong forcing.

the chaotic motion is not induced even when the force is
strong.

In a moderate-amplitude region, the quenching
phenomenon also occurs before the onset of chaos takes
place, but the external force does not completely dom-
inate the flow. The system exhibits complex dynamics.
To obtain information about the quenching process, we
examined the time series strobed with an external force.
If the excitation completely dominates the flow, the
strobed voltage will be zero. The observed sequence after
a sudden decrease in the strobed signal is shown in Fig.
10 for the increases of the external amplitude. Figure
10(a) shows the signal just after the sudden decrease. As
A, increases, the large strobed voltage begins to show
many irregular bursts with various heights as shown in
Fig. 10(b). The strobed voltage never vanishes even for
extremely strong forcing [Fig. 10(c)]. Taconis oscillations
with moderate amplitudes are not completely quenched
by the external force.

Our observations bear out that there is a minimum am-
plitude of the instability below which the external force
will not induce the quasiperiodic transition to chaos. A
multicritical point exists in a generalized parameter space
with the amplitudes and frequencies of two oscillators.
This space may be divided into small- (including
moderate-) and large-amplitude regions. In small- and
moderate-amplitude regions, we did not observe the
stable critical point which marks the onset of chaos, but
did observe the quenching phenomenon caused by an
external force. The stable point exists only in the large-
amplitude region. This fact bears a striking resemblance
to the phenomenon observed in the forced Rayleigh-
Bénard convection reported by Stavans [17]. In self-
excited systems to which a periodic force is applied, there
should exist a critical amplitude of the oscillatory insta-
bility between small- and large-amplitude regions, which
is dependent on the winding number. Experiments show
that the critical amplitude is about 2X10° Pa for the
golden mean in the Taconis oscillation system.

50 100

f (H2)

FIG. 11. Power spectra of pressure oscillations for increasing
the external force in the large-amplitude region (R =17.2): (a)
quasiperiodic state below the critical point, and (b) the onset of
chaos just at the critical point.
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FIG. 12. Experimental Poincaré cross sections projected
onto a plane, V(¢;) vs V(¢t;+7), (r=1/f,): (a) subcritical and
(b) critical corresponding to Figs. 11(a) and 11(b), respectively.

2. Large-amplitude region: Transition
from quasiperiodicity to chaos

For a higher control parameter (R ~17.2), the oscilla-
tion has an amplitude large enough to produce the onset
of chaos. The instability with no external force has an
amplitude of 3.2 X 10 Pa. Adjusting the perturbed wind-
ing number to the golden mean and keeping the control
parameter fixed, we gradually increased the external am-
plitude. In Fig. 11, we show power spectra below and at
the critical point (the point nearest to the onset of chaos).
As the amplitude of the external force approaches the
critical point, the spectrum shows an increase of about 20
dB of visible noise floor in addition to the increase of
higher-order mixing components which consist of the
linear combination of f and f,. Near the critical point,
the spectrum contains a great deal of spectral peaks in
the low-frequency region. After the onset of chaos is
achieved, further increases in the external amplitude do
not lead to a further increase of the number of combina-
tion peaks, but lead instead to a sudden decrease in spite
of the fact that the amplitude is above the critical point.
The excitation has a tendency to depress the chaotic
motion, and starts to dominate the flow. The system with
large amplitudes also exhibits the quenching phenomenon
observed in the moderate-amplitude region. The band-
width of the external amplitude is also dependent on R
for the development of chaos.

The experimental determination of the critical point
was also confirmed by direct observation of the change in
the Poincaré cross section and the self-similar structure
of the power spectrum as the most reliable method. Fig-
ures 12(a) and 12(b) show subcritical and critical Poincaré
cross sections corresponding to Figs. 11(a) and 11(b), re-

spectively, which were reconstructed from the strobed
time series V' (¢;) (i =1,2,...,16384). The cross sections
are nonintersecting in embedding three dimensions,
V(t;), V(t;+7), and V(¢t;+27) with 7=1/f,, and show a
well-defined closed loop with no fold for the subcritical,
and just above the critical point wrinkles start appearing
on the secton and the invariant two-torus is broken
down. The apparent folding and break of a torus as evi-
dence of the onset of chaos was observed for larger ampli-
tudes of instability. Figure 13 shows the sequence of
Poincaré cross sections below, at, and beyond the critical
point observed for R =~20.4, where the oscillatory ampli-
tude is 4.6 X 10° Pa.

3. Universal scaling properties

The local universal property can be seen in the en-
velope of the spectral peaks at the low-frequency region.
Experimental spectral peaks shown in Figs. 11(a) and
11(b) fall off algebraically as the frequency decreases. We
searched the scaling power of f yielding a flat envelope in
the low-frequency peaks, and found that the scaling
power exists not only at the critical point but also at the
subcritical. The data shown in Fig. 11 were reconstruct-
ed, and the results are shown in Fig. 14 where the sub-
critical and critical spectra are divided by f* and f?, re-
spectively, and the scale of the frequency axis is logarith-
mic. At least the envelope of the spectral peaks for the
first generation (labeled 1), which are expressed by all
linear combinations of f; and f, with successive
coefficients of the Fibonacci sequence (1,1,2,3,5,...) for
the seed (1,1), is found to be approximately flat in height.
The peaks for the critical, belonging to the first genera-
tion, can be recognized up to o’ in spite of no averaging.
Other peaks (labeled by 2,3,4,5) are generated from the
Fibonacci sequences with different seeds; for example,
peaks labeled 2, 3, 4, and 5 are caused by the sequences
with the seeds (2,2), (1,3), (3,3), and (1,4), respectively.
Experimental results clearly demonstrate that the scaled
power spectrum exhibits a self-similar band structure not
only at but also below the critical point, and that as the
system approaches the onset of chaos, the scaling power
law changes from f* to f2. In the next section (Sec. IV)
and the Appendix we will show that such a change of the
scaling power law should be attributed to the change of
the Poincaré cross section.

Several experiments have been carried out in hydro-
dynamics (open and closed flow systems) [16,17,27] and
solid-state physics [18] in order to find the scaling power
of the frequency at the critical point. Previous experi-

(a) (b) (e)

v(ti+T)
N

FIG. 13. Experimental Poincaré cross sec-
tions projected onto a plane, V (t;) vs V (¢, +7),
observed for R =20.4: (a) subcritical, (b) criti-
cal, and (c) supercritical.

v(t)
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FIG. 14. Experimental scaled power spectra at the golden
mean winding number o: (a) subcritical and (b) critical corre-
sponding to Figs. 11(a) and 11(b), respectively. Spectral peaks
labeled by 1, 2, 3, 4, and 5 are generated from the Fibonacci se-
quences with the seeds (1,1), (2,2), (1,3), (3,3), and (1,4), respec-
tively.

ments have supported the f2-scaling power law for the
critical except for the experiment by Gwinn and West-
ervelt [28], who supported the f*-scaling power law, but
have not reported on the scaling for the subcritical. We
also tested the universal form seen in the critical power
spectrum for a different irrational winding number, the
silver mean V2—1, and obtained the self-similar spec-
trum scaled with f2.

We consider the global scaling universality [20] for the
whole set of winding numbers on the critical line. The
driving frequency of a synthesizer was slowly swept
around the golden mean at a constant external amplitude.
Monitoring the Poincaré cross section, we drew up the
frequency-locking diagram called “Arnol’d tongues” by
varying the external amplitude. The experimental result
is shown in Fig. 15 where the boundaries of locked re-
gions ordered in the ratio of the adjacent number of the
Fibonacci sequence with the seed (1,1) are mapped out in
the space of the external voltage versus the unperturbed
winding number Q,=f9/f, (f9 is the frequency of the
instability at no external forcing). Within each tongue,
the oscillation f is locked into the driving frequency f,
at f1/f.=p/q. As the denominator g decreases and the
external voltage (nonlinearity K) increases, the tongues
increase in width. This property is equivalent to that of
the phase diagram predicted by the sine circle map. We
focus our attention on the locking structure, the widths
of tongues on the critical line (K =1) where a complete
devil’s staircase is formed. It is theoretically predicted
that the tongues form a Cantor-type set with a fractal di-
mension of D =0.868 on the critical line. The dimension
D characterizing the scaling of the locking structure was
estimated from the equation 3;(S; /S)?~1 where S is the
distance between two locked-band parents around an ir-
rational winding number and S; are the distance between

(V)
W >
T T

AMPLITUDE
N
T

-
T

0.55 0.65 0.70

UNPERTURBED WINDING NUMBER (o

FIG. 15. Experimental frequency-locking diagram (Arnol’d
tongues) of driving amplitude A, vs unperturbed winding num-
ber (.

adjacent tongues (including in the parent) constructed ac-
cording to a Farey composition. The experimental criti-
cal line, however, is not flat for a whole winding number.
It depends on Q,. Therefore, we locally estimated the di-
mension around the golden mean at a constant external
amplitude. The 2 and Z tongues were selected as two
parents and only one £ tongue as the daughter. The ob-
served intervals of S, S,, and S, were 55.79-57.77,
55.79-56.60 and 56.76—-57.77 Hz, respectively. Thus, we
obtained D =0.89 with an experimental error of +0.02.
The experimental value close to theoretical D =0.868
was obtained for a higher amplitude of instability where,
as the driving amplitude increases, the dimension de-
creases as follows: for the driving amplitudes of 2.0, 2.4,
and 3.0 V, D takes 0.92, 0.90, and 0.87, respectively. The
same universal number D was also obtained in other hy-
drodynamical experiments, Rayleigh-Bénard convections
in mercury [17], *He-superfluid—*He mixture [29], and
open flow system [27].

The fractal structure is seen in the critical Poincaré
cross section itself. The critical attractors shown in Figs.
12(b) and 13(b) are constructed not from a part with
homogeneous density of points but from some parts with
high and low concentration of points. A global scaling
property of the attractors with density variation is
characterized by the multifractal spectrum f(a) [21],
which is a fractal dimension of the set of the singularity
with scaling index a. To calculate f («) efficiently from
short data sets including a small drift during the experi-
ment, we used an indirect method, recurrence-time ap-
proximation, proposed by Jensen and co-workers [21].
The probability P;(I) that other points fall within a small
distance ! of a given point i on the Poincaré cross section
was estimated by the inverse of the averaged recurrence
time m;(l) for a few points. According to whether the
concentration of points is high or low, the recurrence
time is short or long, respectively. We determined the
f (a) for the critical Poincaré cross section using the rela-
tion for a small distance /,

D(g,)={m;(D}"9)y ~1"2D |

where the angular brackets show the average overall
points ( ~ 3000 points). Figure 16 shows the log-log plots
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FIG. 16. Log-log plots of I'(g,!) vs I for several values of g.
I'(g,!) for negative and positive g obeys the left- and right-hand
scales, respectively.

of I'(q,1) versus [ for several values of g, where the range
of I represented corresponds to 2—25% of the largest sep-
aration between two points on the attractor. For many
values of g, we found the scaling exponent 7(g) by fitting
the log-log plots to a straight line using the least-squares
method in a reasonable scaling region of / (for example,
we selected 150 </ <450 for g = —2), below which noise
effects become dominant. The f (a) spectrum was calcu-
lated from 7(q) through the Legendre transformation,

_dr(q)
dg ~’
flalg))=qga—7(q) .

The experimental results for f (a) versus a are shown in
Fig. 17, where solid circles, open circles, and triangle
marks represent the critical, subcritical, and supercritical
Poincaré cross sections corresponding to Figs. 12(b),

1.0
f(a)
0.8

0.6
0.4+

0.2

FIG. 17. Experimental f(a) spectra for subcritical (O ), criti-
cal (@), and supercritical (A). The solid curve is theoretical
f(a) predicted by the sine circle map at the golden mean wind-
ing number and at the onset of chaos.

12(a), and 13(c), respectively. The solid curve is the
theoretical f(a) spectrum defined by the sine circle map
at the critical point and at the golden mean winding num-
ber. The agreement of the critical f (a) between the ex-
periment and the theory means that Taconis oscillation
belongs to the same universality class as the sine circle
map in spite of the complexity of thermoacoustics.

The subcritical f (a) spectrum tends to narrow and its
maximum point shifts slightly toward a=1. The tenden-
cy for the spectrum to narrow and shift has also been ob-
served in Rayleigh-Bénard convection [21,29] and an
electronic resonator system [15]. Subcritical attractors
do not have the multifractal structure, and in principle
the subcritical f(a) should be trivial. It collapses to a
point at f(1)=1. Experimentally, a small deviation from
the criticality causes the width of f (a) to narrow consid-
erably. Using the sine circle map, Arneodo and Hol-
schneider [30] showed that the nontrivial spectrum for
the subcritical is due to a finite number of data points.
The supercritical spectrum exhibits an increase of the top
value of f(a) (indicating an increase of the Hausdorff di-
mension ) and a shift to the right of the maximum scaling
index a.

The sine circle map can effectively describe the
behavior of a forced thermoacoustics system at least up
to the onset of chaos. However, the universal scaling
properties for supercritical attractors strongly folded can
no longer be described by the one-dimensional circle
map. Now we are interested in the universality beyond
the onset of chaos predicted by Gunaratne and co-
workers [31] who suggest that low-dimensional strange
attractors can be categorized into several classes charac-
terized by universal topological features.

IV. DISCUSSION

Shenker and Ostlund and co-workers [19] have theoret-
ically predicted that the critical power spectrum for a
time series given by iterating the sine circle map (K =1)
shows a self-similar hierarchical structure on the log-log
plots of the power scaled with f2 versus the frequency.
To test the applicability of such a fascinating prediction,
Fein, Heutmaker, and Gollub [16] performed the experi-
ment in the thermally modulated Rayleigh-Bénard con-
vection system, and confirmed the f2-scaling power law.
Subsequent experiments [17,18,27] have also supported
this scaling power law for the angle, except for the work
in solid-state physics [28]. Fein, Heutmaker, and Gollub
and Mori [32], however, suggested that the observable
should correspond to the projection along an axis in the
phase space rather than the angle itself. The envelope of
the spectral peaks for the projection follows the scaling
with a different power law; that is, at the critical point,
the envelope is found to be scaled with a higher-order
power f* [16]. The f* scaling is clearly different from
the experimental fact. Which variable of the map is
equivalent to the observable, the angle or its projection?
Experimental results regarding the change of the scaling
power law from f* to f? may offer the key to answer this
question. In the Appendix we give a numerical explana-
tion of the results, and show that the change from f 4 to
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f? is attributed to the change of the Poincaré cross sec-
tion from a mild to a sharp wrinkle. Important features
are that the scaling law obtained is derived from the pro-
jection and exists not only at the critical point but also at
the subcritical one. It is our belief that the f? scaling ob-
served in other systems is also attributable to the same
origin. As an answer to the question stated above we as-
sert that the empirical variable does behave like the pro-
jection in the phase space.

V. CONCLUSIONS

We have presented experimental data on thermoacous-
tics oscillations in which spontaneous states and external-
ly forced states are observed to exhibit quasiperiodic and
chaotic dynamics. In spontaneous states, chaotic
motions arise from competition between three different
oscillatory modes simultaneously induced with incom-
mensurate frequencies. As a route to chaos, stable three-
frequency quasiperiodicity was found to exist before the
onset of chaos. We analyzed experimental time series us-
ing techniques of nonlinear dynamical theories, and
determined the correlation dimension v and the entropy
K, of chaotic attractors. Typical values were v=4.2 and
K,=0.033 msec”! for the three-frequency route, and
v=3.5 and K,=0.023 msec ' for the two-frequency
route.

A spontaneous state was periodically perturbed by the
external force. In forced states, we found that the insta-
bility with a small amplitude is quenched by strong forc-
ing, and stable critical points for the onset of chaos exist
only in the large-amplitude region. We tested whether
the local and global universal properties predicted by the
sine circle map for the quasiperiodic transition to chaos
are applicable to thermoacoustic systems. We have
presented some experimental evidence in favor of the
relevance of the map universality: (1) the self-similar and
scaling power spectrum at the golden mean, (2) the frac-
tal dimension D =0.891+0.02 of the locking structure on
the critical line, and (3) the multifractal spectrum for the
golden torus. In particular, we found that the scaling
power law yielding a flat envelope of spectral peaks
changes from f*to f? as the system approaches the onset
of chaos. It was numerically confirmed that the change
of the scaling power is due to the change of the Poincaré
cross section from a mild to a sharp wrinkle.

Recently the concept of thermoacoustics has been of
great interest in many physical systems, astronomy, fields
of application to a new type of refrigerator, and so on.
The applicability of the map universality to the system
will enable us to effectively predict the qualitative and
quantitative behavior of nonlinear thermoacoustic phe-
nomena even if basic equations are not known or if they
are too difficult to solve. I believe that the experimental
results presented in this paper are important for the de-
velopment and application of thermoacoustics in the fu-
ture.
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APPENDIX

All behavior from a torus to chaos cannot be complete-
ly described by the circle map alone. We need to capture
the property of wrinkles appearing on a torus near the
onset of chaos. Typical examples were presented in Figs.
12 and 13, where wrinkles develop from mild to sharp as
the system approaches the onset. We used the simple
model proposed by Antoranz and Mori [33] to consider
the radial motion characterizing wrinkles on a torus.
The radius R (6,) of the Poincaré cross section is pro-
vided by R(6,)=1+asin(mw6,) or R,(8,)=1
+a cos(mm0, ), where a is a parameter with a nonzero
value and m is an odd number. The model R(6,)
presents a continuous closed curve with a mild wrinkle
characterizing the subcritical Poincaré cross section. The
model R,(6,) gives a critical cross section characterized
by a sharp wrinkle, and produces a discontinuous change
R,(0)—R,(1)=2a. For the angle 6,(mod1) we used the
sine circle map. The dressed winding number was always
adjusted to the golden mean. We calculated power spec-
tra of the Cartesian coordinates, X; =R (6, )cos(270,)
and X, =R,(6,)cos(270, ). Power spectra of X; and X,
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FIG. 18. Scaled power spectra of X =R cos(278,) at the
golden mean winding number: (a) R =(R;)=1-+0.5sin(70,)
and (b) R(=R,;)=1+0.5cos(76,). The angle 6, follows the
sine circle map with K =0.5 and Q,=0.614 5264 . . . for (a) and
K =1 and Q,=0.6066610. .. for (b). The scaling power law
follows f* or f? according as the radius R is R, or R,.
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compare well with those of time series below and at the
critical point, respectively. Figure 18(a) shows the scaled
power spectrum for X, on a log-log plot, where we select
a=0.5, m =1, K=0.5, and Q;y=0.6145264.... The
height of the spectral peaks is found to be proportional to
f*. Figure 18(b) shows this for X, with a sharp wrinkle,
where we select a@¢=0.5, m=1, K=1, and
0,=0.6066610.... The scaling power law of the fre-
quency yielding a flat envelope is £2, which is the same as

T. YAZAKI 48

the power law of the angle predicted by Ostlund et al.
[19]. We tested the power law for other kinds of func-
tions R(6,), other values of a, and a different irrational
winding number, the silver mean. It was confirmed that
the scaled power spectrum has a self-similar structure in
all cases and that its envelope follows the power law f?2 if
the Poincaré cross section has a sharp wrinkle with a
discontinuity. Antoranz and Mori [33] numerically
found the same power law for the linear map (K =0).

*FAX: 0566-36-4337.
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