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Thermal equilibration near the critical point: Effects due to three dimensions and gravity
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Two calculations are presented that clarify how the density profile equilibrates near the liquid-vapor
critical point. Both use the equation of heat transfer recently improved to account for the large
compressibility near the critical point. Previous work by others indicated that in one dimension the
slowest mode of this equation relaxes at a rate four times faster than that predicted by the older, usual
equation of heat transfer. However, this is not always true in higher dimensions. The first calculation
demonstrates this for the cases of isobaric modes excited by temperature gradients in a rectangle and in a
thin disk. For thin experimental cells with isothermal walls the slowest mode is accurately estimated by
the usual heat-transfer equation. The second calculation indicates that gravity-induced stratification
plays an insignificant role in determining the final relaxation rate. This is done by estimating the size of
the v VP term in the improved heat-transfer equation.

PACS number(s): 66.10.Cb, 64.60.—i, 65.70.+y, 05.70.Jk

I. INTRODUCTION

L 2

D~
(2)

where L is a characteristic length of the Quid's container.
However, in 1984, Straub and co-workers [1] measured
very short temperature equilibration times close to the
critical point even when low gravity was used to suppress
convection. This and related puzzles led to the realization
[2—5] that the divergence of the Quid s compressibility
near its critical point significantly affects thermal equili-
bration.

Calculations accounting for the diverging compressibil-
ity led to the replacement of Eq. (1) by an improved
heat-transfer equation

CV
T— 1—

Cp

BT P =(pc& ) V(AV T), (3)

where T, P, p, and k are the temperature, pressure, densi-
ty, and thermal conductivity, and c~and c~ are the heat
capacities per unit mass at constant pressure and volume.
Examinations of the time dependence of Eq. (3) in one di-
mension gave two interesting predictions about the Quid
temperature following a perturbation. First, for iso-
thermal boundaries, the initial temperature relaxation
was nonexponential and fast, typically lasting a few

The thermal diffusivity Dz- vanishes near the liquid-
vapor critical point. Until recently this fact plus the usu-
al equation of heat transfer

T=D~V2T

were seen by most workers as the complete picture for
the very slow relaxation times often observed in one-
phase critical point experiments. In the one-phase re-
gion, these times are of the order of

seconds instead of the tens of minutes or even hours pre-
dicted by Eq. (1) for typical experimental conditions.
Second, the final exponential relaxation was predicted to
be 4 times faster than that predicted by Eq. (1) [2]. In the
only quantitative test so far published, Behringer, Onuki,
and Meyer [6] reanalyzed previous measurements in
thermal conductivity cells [7,8] and found relaxation
rates only slightly lower than this latter prediction.

The improved heat-transfer equation is necessary
though perhaps not sufficient for explaining the results of
equilibration experiments carried out in Earth's gravity.
For example, in 1965, Straub [9] measured the relaxation
of the vertical density profile of NO2 following an expan-
sion and compression cycle and found that complete re-
laxation could take more than 1 day. Since then, similar
observations have been made by others (for example, see
Refs. [10—12]). During these long equilibration times,
deviations of the vertical density profile from its final
form are coupled to vertical temperature gradients
through the equation of state. However, there remains
uncertainty about the role of gravity in the equilibration
process.

These results concerning relaxation rates near liquid-
vapor critical points are of particular interest for the
design of practical critical point experiments where time
is limited, for example those carried out on sounding
rocket or Space Shuttle Qights. Because equilibration
times can be long enough to constrain experiments of
even 1 week's duration, the factor of 4 difference between
the predictions of Eqs. (2) and (3) is potentially impor-
tant. Furthermore, gravity's inQuence on the equilibra-
tion processes must be understood sufficiently well to pre-
dict low-gravity equilibration times from measurements
of equilibration on Earth.

This paper presents two calculations which clarify how
the density profile equilibrates near the critical point. The
first calculation uses simple examples to demonstrate that
the factor of 4 in the final relaxation, calculated by
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Onuki, Hao, and Ferrell [2] and generalized to finite
cp /c y by Behringer, Onuki, and Meyer [6], occurs only
in systems which are effectively one-dimensional (1D).
The key idea is that, in addition to the nonisobaric solu-
tions excited by changes in the average temperature,
there can also be isobaric solutions excited by tempera-
ture gradients. In the limit of a narrow geometry, the
isobaric solution decays as slowly as the solution of the
usual heat-transfer equation.

The second calculation indicates that gravity is not im-
portant in determining the final relaxation rate of the
density profile, provided that the equilibrium density
profile near the critical point is approximately linear.

This paper is organized as follows: Sections II and III
briefly review the improved heat-transfer equation, Eq.
(3), and its solutions in one dimension. Sections IV and V
use a 2D rectangle and a 3D disk to illustrate the qualita-
tive differences of isobaric relaxation in higher dimen-
sions. Section VI estimates the effect of gravity on the
final exponential relaxation rate, and Sec. VII concludes.

II. THE IMPROVED HEAT-TRANSFER EQUATION

Cp
(5)

where the thermal diffusivity is defined by

Ferrell and Onuki [13]first described the theory for the
qualitatively different thermal relaxation which occurs
near the critical point. Appendix A reviews a simpler
derivation, first published by Boukari et al. [3], of the im-
proved heat-transfer equation. Starting from Landau and
Lifshitz's [14] general equation for the transport of the
Quid entropy s,

pT(s+Vs. v)=V (AVT),

Boukari et al. ignored the Auid's velocity v and obtained
the linearized form

as that calculated by Eq. (1). This will be shown in Secs.
III-V.

III. SOLUTION IN ONE DIMENSION

where the temperature deviation 6T is defined by

5T(x, t) —= T(x, t) T(+—xo ) .

After a time long compared to xp/Dz-, the solutions to
Eq. (5) are purely exponential in time. In this limit and
in the limit where the heat-capacity ratio cp/cy is much
greater than 1 (true near the critical point), the slowest
modes are the nonisobaric mode [5,6],

5T(x, t) = To[1+cos(qx)]e

and the isobaric mode,

5 T(x, t) = To sin(qx )e (10)

For both of these modes, pictured in Fig. 1, the wave vec-
tor q is given by

qxp =7T,

and the relaxation time constant ~ is

1

Dz-q

2x p

m D~2
(12)

As first pointed out by Onuki, Hao, and Ferrell [2], this
relaxation time is 4 times faster than the slowest mode of
the usual equation (1).

IV. SOLUTION IN A RECTANGLE

Consider the relaxation to equilibrium following a tem-
perature disturbance in a one-dimensional cell of length
2xp with isothermal boundary conditions, namely,

5T(+xo, t )—:0,

D~ ——

pcp
(6)

To illustrate the importance of an extra spatial dimen-
sion consider the case of a rectangle of width 2xp and
height 2yp. For isothermal boundary conditions, namely,

In comparison with the usual heat-transfer equation,
Eq. (1), the improved heat-transfer equation, Eqs. (3) and
(5), contains an additional term proportional to P which
cannot be ignored near the critical point. This global
term causes the "critical speeding up" of the initial tem-
perature equilibration. Although for a closed cell with an
isothermal boundary the final, exponential part of the
temperature equilibration is very small, of order cz/cp,
the sensitive dependence of density on temperature
causes an observable effect on the density distribution.
Under certain conditions, the slowest mode of Eq. (5) is
characterized by a time constant which is 4 times faster
than predicted by Eq. (1).

There can be, however, solutions of Eq. (3) for which
P =0. Such isobaric solutions represent modes excited by
temperature gradients, and they are also solutions of the
more usual equation (1). They are important because, ex-
cept in one dimension, the slowest time constant for
geometries of narrow aspect ratio is very nearly the same

5T(+xo,y, t) =5T(x, +yo, t):—0, (13)

Eq. (5) does not have a simple nonisobaric solution.
However, the solution for the slowest isobaric mode is

T(x)
flOIL(SOki3I 1C

FIG. 1. The slowest relaxation modes of Eq. (5) in a one-
dimensional cell of length 2xo. The isobaric and nonisobaric
modes have the same time constant, which is 4 times faster than
the corresponding modes of the usual equation (1).
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5T(x y, t)=TTo cos(qx) sin(ky)e
—ty (14)

given by
n q (14as depicted by Fig. 2 I E . ), the wave vectors are

q 0
—

2
and k

and the time constant is

1

(q +k )Dr

2

, +
4X0 yo

D (16)
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V. SOLUTION IN A 3D DISK
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yielding the time constant for mode ab of

1

[g +k,b + (a &R ) ]DT

jab

4zo R
(23)

where j,b denotes the bth zero of the Bessel function J, .
In the limit of the thin disk, Eq. (23) becomes

2 2 2
4(j,b+a ) zo

ab 2 R
4zo2

m DT2 (24)

(25)

In comparison, the usual equation for noncritical heat
transfer, Eq. (1), predicts a slowest relaxation time of

2
4jo) zo1—

R
4zo

~DT2

which is slower than the slowest time constant, ~» of Eq.
(24), by only 6.36% 2.34% =4.02%%uo.

Note that for the other limiting aspect ratio, namely,
the case of a long, thin cylinder, where R «zo, the
slowest isobaric mode has the time constant

R

joiDT joj.

2
R
zo

(27)

To illustrate the close spacing of these slowest time con-
stants, for a thin disk with aspect ratio R /zo = 10, the rel-
ative sizes of the correction term in Eq. (24) for the
slowest four modes, illustrated in Fig. 3(b), are only

4(j,b+a ) zo
~ 2 2 2

=6.4%, 12.3%%uo, 20. I%%uo, and 20.4%
R

Eq. (4) can be written as

~vT+V T.v — 1—
Cp

(P+VP v)

=(pc~ ) 'V(A, VT) . (29)

dPVP= = —gpdz
(30)

and does not become small with time.
The size of the VP v term of Eq. (29) can be estimated

by analyzing the following gedanken experiment: Con-
sider the tall, narrow experimental cell in Fig. 4 having
perfectly conducting side walls at +xo and insulating
walls at +yo and at +zo, with yo, zo )&xo. Its interior is
filled with a Quid whose average density is the critical
density p, and whose temperature is initially held close
above the critical temperature T, . Gravity and the Quid's

(In what follows, only the vertical components of the ve-
locity and pressure gradient are considered, hence the
vector notation will be dropped. )

In contrast to Eq. (3), Eq. (29) has terms proportional
to VT.v and VP. v on the left-hand side. Here I will con-
sider the relative importance of these two extra terms in
the limit of long times after a small disturbance, namely,
the final exponential decay of the temperature deviation
5T where the velocity v and the amplitudes 5T and 5P are
all very small.

The VT.v term is the product of two small perturba-
tions and thus becomes negligible in comparison with the
first term.

In contrast, the VP v term cannot be ignored because,
in Earth's gravity g, it can be first order in the amplitude
5T. This is because, for a Quid in hydrostatic equilibri-
um, the pressure gradient in the vertical direction is

again only slightly faster than the prediction of Eq. (1).

VI. GRAVITY'S EFFECT ON THE FINAL RELAXATION

(a) g

3E
Zp

Bs ~T+ Bs

aT, aP VP, (28)

Gravity is certainly important near the critical point
because it causes equilibrium vertical density differences
of several percent in typical liquid-vapor experiments
[16]. This section will examine gravity's effect on the
evolution of a linear density profile following a small
change in the Quid container's wall temperature. Using
Eq. (4) as a starting point it will be shown that, through
the Quid's downward velocity, the effect of gravity is of
first order in the temperature perturbation 5T and is thus
potentially important. However, the size of the relevant
term turns out to be too small to significantly change the
final relaxation time constant.

Gravity can be incorporated into Eq. (4), the original
equation of motion for the entropy s, by retaining the ve-
locity v. Using the relations in Sec. II together with the
relation

insulated
ends a t +zp

f'inal pr ofile
t tile

height

FIG. 4. The model for estimating the effect of gravity on the
final equilibration time constant. The cell's wall temperature
steps down from (1+@)T,+AT to (1+@)T„and the slope of
the density profile p(z) increases. (a) The cell's boundary condi-
tions. (b) The initial and final density profiles.
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compressibility cause the density to stratify into an equi-
librium profile p(z). Now, starting at (1+e)T, + b, T at
time t =0, quickly cool the wall temperature by the small
amount b, T((eT, .[Here, e=—(T —T, )IT, is the re-
duced temperature. ] The final result will be a steeper gra-
dient in the z direction of the equilibrium density profile:

z ( 8 Bp
api (ZAT (37)

correlation length is only a weak function of height z, the
density profile is nearly proportional to z, allowing one to
write the profile difference as

p(z, (l+e)T, +ET)~p(z, (1+e)T, ) . (31)

p(z, t) =p, —p, [1—ae 'i'] .
Q

(32)

Here the final density profile is characterized by the pa-
rameters p, and the gravitational scale height [16]

P,
HQ =—

gPc
where P, is the critical pressure. The small parameter n
measures the difference between the initial and final den-
sity profiles.

The How at height z is equal to the total mass change
above z, giving

During the initial "critical speeding up" period the
fluid's density increases near the walls and decreases in
the interior, rapidly cooling the interior to slightly above
the wall temperature. Afterwards, in addition to the net
motion of the Quid from the top half of the cell toward
the bottom half, the approach to the final equilibrium
necessarily requires horizontal motion of the Quid from
near the cell's walls toward the cooling interior. Howev-
er, to a very good approximation, the pressure depends
only on the height z. Thus VP. U can be estimated from
the average downward motion of the Quid while ignoring
the horizontal component of U.

Two additional assumptions are made concerning the
density profile. First, that it is linear in z (applicable in
most experiments at reduced temperatures e) 3X1.0 )

and second, that it relaxes exponentially with a time con-
stant ~ according to

=ZET PC

HQ
(38)

=yrp,
0

hT (y+ i)

C

(39)

where y=1.24 and I are, respectively, the critical ex-
ponent and amplitude for the normalized susceptibility.
Note that

ATa +y «1,
i

ETc
(40)

Zp
X

HQ

2

e (41)

Now the pressure-gradient term in the heat-transfer
equation, Eq. (29), can be compared against the first-
order term in the absence of gravity, which is [2,5]

1 —t/7- 2~ T 1 t/7
Cp/Cv 1

(42)

The ratio of the pressure-gradient term to the T term is
thus

which is consistent with the assumption of a small densi-
ty change in Eq. (32). Inserting Eq. (39) into Eq. (36)
gives an expression for the pressure-gradient term in
terms of known quantities:

1

BT ~P yI, „T BP

ZQ

p(z, t)u (z, t) = f p(z', t)dz' .
Z

(34) aT VPu yl T a~

Putting the density profile equation (32) into Eq. (34) and
ignoring small terms, one obtains an estimate for the
vertical velocity field v (z, t):

ZQ
X

2
—(2y+ I ) (43)

p, u (z, t)-=— Exp i (z2z2)e t/
2&HQ

(35)

8T . = BT
VP v -=gp, u(0, t)

p p

The pressure-gradient term is thus largest at the rniddle,
z =0, where it has the value

where the estimate of CPIC1, =(cpic1, )oe 1s derived 111

Appendix B.
For a typical cell height of 2ZQ=10 mm, the smallest

reduced temperature e where the density profile is rough-
ly linear is e=3X10 . Using SF6 at this reduced tem-
perature as an example, the relative importance of the
pressure-gradient term is

BT ~gpizo
BP 2' QP

(36)
aT vP U

Final evaluation of the pressure-gradient term requires
estimating the factor ap& from the difference of the initial
and final density profiles in Eq. (32). In the restricted cu-
bic model [16] and at reduced temperatures where the

(1.24)(0.046)(0.013)(1.0X 10 ) —3 4s

(4)(6)

=0.006«1 .
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Thus, at reduced temperatures where the density profile
is approximately linear, the VP U term can be ignored,
and the final equilibration time constant is nearly the
same in the presence of gravity-induced stratification as it
would be in the absence of stratification.

VII. CONCLUSIONS

The late stage of one-phase equilibration near the criti-
cal point can be defined as the times when the Quid's tem-
perature distribution can be described by the sum of in-
dependent spatial modes, each decaying exponentially in
time. In one dimension, the slowest mode decays 4 times
faster than predicted by the usual heat-transfer equation,
Eq. (1). However, this is not true for real containers with
isothermal walls, and for thin cells the slowest isobaric
mode of Eq. (5) decays almost as slowly as the slowest
mode of the conventional equation (1).

For cells having other than isothermal boundaries, the
slowest isobaric mode may not be significantly slower
than the slowest nonisobaric mode. This was the case for
the thermal conductivity cells analyzed by Behringer,
Onuki, and Meyer [6], where the derivative of tempera-
ture with height, and not the temperature, was specified
at the top of the cell. Even in cells with isothermal walls,
the excited amplitude of the slowest isobaric mode will
depend on asymmetries such as heater locations and, in
Earth's gravity, the cell's orientation.

In experimental situations where temperature or densi-
ty gradients are deliberately imposed across the diameter
of a thin disk-shaped cell [10,11] it is useful to realize that
Eq. (24) implies that the slowest modes have relaxation
time constants which are closely spaced. Lateral temper-
ature deviations created by time-dependent temperature
gradients, along with their associated density deviations,
can thus be approximately described by a sum of in-
dependent spatial modes all relaxing with the same time
constant.

At reduced temperatures where the density profile does
not cause significant height dependence of the Quid prop-
erties, gravity should have a very limited effect on the
time constant for the equilibration of the density profile
near the critical point. This is because the VP U term is
small compared to the T term in Eq. (29). At reduced
temperatures closer to T„where the equilibrium density
profile is strongly nonlinear, the assumptions of Sec. VI
do not hold. Nevertheless, assuming the AP v term
remains small, gravity's only effect on the relaxation will
be through the height dependence of the Quid's proper-
ties.

The above results are useful for understanding experi-
ments where the vertical density profile relaxation is ob-
served following a change in the sample cell's wall tem-
perature [9—12]. First, gravity can be neglected in the
calculation of the time constant for relaxation at temper-
atures where the density profile is approximately linear.
Second, the temperature field created within the Quid can
be seen as the sum of two effects. The first effect is the
nonisobaric relaxation due to the change in the Quid's
average temperature. The second effect is the isobaric
mode associated with the vertical temperature gradient
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APPENDIX A: DERIVATION OF THE IMPROVED
HEAT- TRANSFER EQUATION

The improved heat-transfer equation, Eq. (3), can be
derived [3] from Landau and Lifshitz's [14] general equa-
tion for the transport of the fiuid entropy s, Eq. (4), by ig-
noring the velocity term. Using the relations

s= T+ 8 PaT, aP (Al)

Bs
p =pep (A2)

and

Bs
pT

T ' ()p

p BT (A3)

Eq. (4) can be written as

r @-

pep T+
p aT

P=V (kVT) .

Then, using the relation

(A4)

c c = Tp ap

p P
(A5)

in Eq. (A4) and dividing by pep, one then gets the im-
proved heat-transfer equation, Eq. (3).

In order to express Eq. (3) in terms of only the temper-
ature, one writes

BP T+ BP

aT,
In a closed cell, the spatial integral over the volume V
gives zero on the left-hand side. In the absence of gravi-

necessary to support the nonequilibrium vertical density
profile. If the cell is tall (height 2zo) and narrow (width
2XO), the amplitude of the final relaxation of the noniso-
baric mode occurring at very long times (t )zo/Dr ) will
be negligible. In the intermediate regime x 0 /Dy'
& t (zo/Dz, where density deviations are observable, the
isobaric mode will be slower than the first effect by about
a factor of 4, and it will govern the final relaxation rate of
the vertical density profile.
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ty, VP is almost exactly zero, so that the pressure changes
uniformly throughout the cell. Thus, for temperature
changes small compared to (T —T, ), Eq. (A6) yields an
expression for P in terms of the spatial integral of T:

Cp

cv

cv

cv

Tc BP
P, BT

R

Then the heat-capacity ratio can be estimated as

(B3)

P=— Bp BP 1

"r)T t) V I
Inserting Eq. (A7) into Eq. (3) then gives Eq. (5).

(Aj)
where R and A are the gas constant and molar weight
and, for SF6 [17],

APPENDIX B: HEAT-CAPACITY RATIO 7,
From Eq. (A5) the difference of the isobaric and iso-

choric heat capacities can be written in terms of the non-
divergent slope rJP/dT and the reduced susceptibility yT
as

Z, —: =0.284 .
p, T,R

(B4)

The heat-capacity ratio near the critical point of SF6 is
thus

TOP TBp P
P BT ~p BT Tp

2TOP, P

(Bl)

(B2)

Cp =—(6) (0.284)(0.028)(0.046@ r)
Cv

=—(c /c ) e r=0.013' (B5)
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