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Geometric mechanism for antimonotonicity in scalar maps with two critical points
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Concurrent creation and destruction of periodic orbits —antimonotonicity —for one-parameter scalar
maps with at least two critical points are investigated. It is observed that if, for a parameter value, two
critical points lie in an interval that is a chaotic attractor, then, generically, as the parameter is varied
through any neighborhood of such a value, periodic orbits should be created and destroyed infinitely
often. A general mechanism for this complicated dynamics for one-dimensional multimodal maps is
proposed similar to the one of contact-making and contact-breaking homoclinic tangencies in two-
dimensional dissipative maps. This subtle phenomenon is demonstrated in a detailed numerical study of
a specific one-dimensional cubic map.

PACS number(s): 05.45.+b

I. INTRODUCTION

Bifurcations of periodic points of one-dimensional
maps command a prominent place in theoretical and ex-
perimental investigations of dynamical systems. For ex-
ample, the one-parameter quadratic map x„+,=a —x„
has been studied as the quintessential example exhibiting
one of the most common routes to chaos: period-
doubling cascades [1]. Moreover, some of the important
bifurcation behaviors of the quadratic map have been
found to be universal in a large class of unimodal
maps —maps with one critical point [2]. Despite the re-
markable success of unimodal maps in modeling bifurca-
tions in many applications [3], they also have inherent
limitations. For example, as the parameter a in the
quadratic map is increased, it has been shown that
periodic orbits are only created but never destroyed [4].

Unlike the monotone bifurcation behavior of the quad-
ratic map, creation and destruction of periodic orbits
have been observed both numerically [5] and experimen-
tally [6] in various nonlinear systems. For example, as
depicted in Fig. 1, reversals of period-doubling cascades
are indeed visible in a numerically computed bifurcation
diagram of the Poincare map of the periodically forced
oscillator of Van der Pol, which is prototypical model for
many nonlinear oscillatory phenomena. The Poincare
map of this nonlinear oscillator, as well as many others,
can be captured by a degree-one circle map, or simply by
a scalar multimodal map —a map with several critical
points [7]. Indeed, this is one of the reasons why mul-
timodal maps have been the center of different analytical
and numerical studies [8].

In this paper we present a geometric mechanism for
the creation and destruction of periodic orbits infinitely
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FIG. 1. Reversals of period-doubling cascades in the periodi-
cally forced oscillator of Van der Pol x +5(x —1)x +x
=40sin(cot). In this bifurcation diagram, the x coordinate of
the Poincare map is plotted against the driving frequency co.

often as a parameter is increased near certain common
parameter values in generic chaotic multimodal scalar
Inaps with at least two critical points. We call such con-
current creation and destruction of periodic orbits an-
timonotonicity [9]. To describe antimonotonicity for mul-
timodal scalar maps more precisely, we proceed with
some definitions.

In a one-parameter scalar map x„+,=F(x„,a), a pa-
rameter value cz=ao is called an orbit creation value if a
periodic orbit does not exist for a&ao but exists for
n)ao. Similarly, a=no is called an orbit destruction
ualue if a certain periodic orbit exists for a&ao but it
does not exist for a) ao. A map x„+,=F(x„,a) is said
to be increasing (decreasing) monotone in an interval J of
parameter values if, for aE J, periodic orbits are only
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created (destroyed). For instance, the quadratic family is
increasing monotone on the interval [ ——,', 2]. On the
other hand, we say that a family is antimonotone at a pa-
rameter value a* if for each H )0 there is creation and
destruction of periodic orbits in at least one of the inter-
vals (a*,a*+e) or (a*—e, a*). The parameter value a~
is an antimonotone value. Antimonotonicity implies the
existence of infinitely many orbit creation and infinitely
many orbit destruction parameter values in any neighbor-
hood of a*, a situation with important consequences for
experiments on the fine structure of chaotic systems.
Indeed, as we have reported in an earlier publication [10],
we believe that antimonotonicity is a common
phenomenon in one-dimensional chaotic systems: If a
one dime-nsional map x„+,=F(x„,a) has at least two crit
ical points that lie in a chaotic attractor for a parameter
value a=a*, then generically, I' is antimonotone at a*.
We shall specify the genericity conditions in detail later
in Sec. III. However, we hasten to point out, in
particular, that the multimodal map x„+&

=o;—cz +2+x„—x„, which is the second iterate of the
quadratic map, is not generic.

The geometric mechanism —dimple formation —as the
source of antimonotonicity presented here is similar to
the one in two-dimensional maps. In the case of two-
dimensional invertible maps a definite result on an-
timonotonicity has been proven [9]: Any dissipative C
diffeomorphism is antimonotone at a parameter value for
which it has a nondegenerate homoclinic tangency. This
result is established by proving the concurrency of two
types of homoclinic tangencies. A homoclinic tangency

is called contact making if transversal homoclinic points
are created as the parameter is increased; similarly, a
homoclinic tangency is called contact breaking if some
transversal homoclinic points are annihilated locally as
the parameter is increased. The source of antimonotoni-
city in two dimensions is a consequence of the fact that
near any parameter value for which there is a contact-
making homoclinic tangency there must be a parameter
value with a contact-breaking homoclinic tangency. In
the one-dimensional case, the dimple formation turns out
to be a source of the concurrent contact-making and
contact-breaking tangencies.

Although a rigorous proof of antimonotonicity in two
dimensions exists, there remains substantial mathemati-
cal difficulties which prevent us from providing a corn-
plete proof in dimension one for multimodal maps. In
the remainder of this paper, we do, however, provide a
geometric mechanism which leads us to our main obser-
vation. More importantly, we present a careful numeri-
cal study of a specific cubic map where the dimple forma-
tion as the source of antimonotonicity is indeed visible.

II. A NUMERICAL EXAMPLE

Antimonotonicity is a subtle phenomenon. Yet, it is
observable in specific maps with careful numerical com-
putations and thus is of considerable practical impor-
tance. In this section we present a specific cubic map ex-
hibiting antimonotonicity. This example is quite general
and we believe that it reAects what happens with any gen-
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FIG. 2. Bifurcation diagrams of x„+&=F(x„,a):—a[ —x„'+3(0.95) x„]+0.099. (a) For each a C (1.0, 1.06), the iterates
1000—3000 of the two critical points at +0.95 are plotted. (b) Enlargement of (a) around the parameter value a0=1.03. (c) Further
enlargement of the bifurcation diagram around a& = 1.031 763 203. The iterates 1400—11 200 of the initial point —0.95 are plotted.
Actually, the whole attractor for each value of a is made of 14 pieces similar to the one observed in the figure. Therefore, in this win-

dow, orbits of period proportional to 14 are created. (d) Another enlargement of the bifurcation diagram, this time around the pa-
rameter value a2=1.031 76452. In this case, the iterates 1500—12000 of the initial point 0.95 are plotted. The whole attractor for
each value of a is made of 15 similar pieces. Therefore, in this window, orbits of period proportional to 15 are destroyed.
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eric family of multimodal maps near chaotic parameter
values at which the attractor contains two critical points.

Let us consider the scalar cubic map

x„+,=F(x„,a) —=a[ —x„+3(0.95) x„]+0.099,

where e is a scalar parameter. The critical points of F
are located at c, =0.95 (a maximum) and c2= —0.95 (a
minimum). When a is increased, the critical value
F(c„a)increases and F(c2,a) decreases.

We have plotted in Fig. 2(a) the bifurcation diagram of
F(x„,a) for the parameter region a&(1.0, 1.06). In Fig.
2(b), an enlargement of the bifurcation diagram about the
parameter value a=1.03 is shown. For this parameter
value, the critical points are in a chaotic attractor that is
an interval. At the moment these bifurcation diagrams do
not appear to be informative from the view of bifurca-
tions. However, as we have indicated in the Introduc-
tion, we do expect that near o; = 1.03 there should be pa-
rameter values at which the periodic orbits are created as
e is increased, and parameter values at which periodic
orbits are destroyed as e is increased. Indeed, a further
enlargement of the bifurcation diagram around
o.&=1.031763203 reveals the creation of periodic orbits
as seen in Fig. 2(c); in contrast, an enlargement about the
parameter value a2=1.031 76452 as depicted in Fig. 3(d)
uncovers the annihilation of periodic orbits.

Here, we interrupt the analysis of our example. How-
ever, we shall return to it after an explanation of a gen-
eral geometric mechanism as the source of antimonotoni-
city in the next section.

III. A GEOMETRIC OUTLINE
FOR ANTIMONOTONICITY

In this section we first describe a generic setting for an-
timonotonicity in one-dimensional maps. Then we out-
line a geometric mechanism, which we call dimple forma
tion, and explain how a dimple formation gives rise to an-
timonotonicity through homo clinic bifurcations. The
computational details of the scenario below will be forth-
coming in Sec. V.

The setting. We consider a one-dimensional multimo-
dal map x„+,=F(x„,a) depending on a parameter a.
We require that at a parameter value +=a, the map F
has at least two critical points c, and c2 that are con-
tained in the interior of an interval that is a chaotic at-
tractor. Also, we assume that the chaotic attractor per-
sists for the particular parameter values needed in the
discussion below. Finally, we require the orbits of the
critical values to be dense in the attractor with a positive
Lyapunov exponent.

Homoclinic tangencies. A chaotic attractor as above
will always contain an unstable periodic point p, whose
preimages (stable set) are dense on the attractor. Since
the forward iterates of a critical point c is assumed to be
dense on the attractor, we assume that for a parameter
value a near a', the critical point is mapped, after a finite
number of iterates, say, n, onto the unstable periodic
point p. When this happens the relevant critical point is
both on the unstable and on the stable set of p [11]. We
call such a parameter value a homoclinic tangency value.

Moreover, a homoclinic tangency value is said to be non-
degenerate if the iterate F"(c,a) of the critical point c
crosses past the periodic point with nonvanishing relative
velocity, that is, BF"(c,a)/Ba&0, and F" has a quadratic
extremum at c. Nondegenerate homoclinic tangency
values are the parameter values at which homoclinic bi-
furcations occur: they are points of accumulation of
saddle-node and period-doubling bifurcations through
which periodic orbits are either created or destroyed [11].

We distinguish two types of nondegenerate homoclinic
tangencies. The tangency is contact making at n if two
new preimages of the unstable periodic point under F"
are created immediately after the tangency [10]. In this
case, new homoclinic orbits to p are created as a is in-
creased past cx. Analogously, the tangency is contact
breaking if two preimages of the periodic point are des-
troyed immediately after the tangency. In this case,
homoclinic orbits to p are destroyed as a is increased.
Periodic orbits are created for parameter values close to
contact-making tangency values and destroyed in the vi-
cinity of contact-breaking ones.

Dimple formation and homoclinic bifurcations. One of
the main ingredients that contribute to the occurrence of
antimonotonicity is the fact that contact-breaking homo-
clinic tangencies occur close (in parameter space) to
contact-making ones. We now explain how this happens
in the case of bimodal map F (x,a ).

Since the iterates of the critical points are assumed to
be dense on the attractor, for a parameter value a, near
a*, we expect that F (c&,a, )=c2 for some iterate of the
map while BF (c, a, )/c}a is difFerent from zero. At this
parameter value, F +' will have a quartic critical point
at c &. As we vary the parameter further, this quartic crit-
ical point spits into three quadratic critical points. Esti-
mates of the relative speeds of these critical points reveal
that if, for example, the middle critical point undergoes a
contact-breaking homoclinic tangency, the other two
critical points undergo contact-making homoclinic
tangencies (or vice versa) for nearby parameter values.
This geometric mechanism, which we call dimple forma-
tion is responsible for the creation and annihilation of
periodic points for parameter values close to one another.

A ntimonotoni city. The final ingredient that contributes
to antimonotonicity is the occurrence of infinitely many
pairs of contact-making and contact-breaking homoclinic
tangencies. Let us consider again the parameter value a*
at which the attractor is chaotic and contains the two
critical points c

&
and c2 in its interior. At that parameter

value the union of the unstable periodic orbits and of
their preimages are believed to be dense in the attractor.
Also, we expect the existence of infinitely many chaotic
parameter values near a'. Therefore, immediately after
the dimple is formed at a„while the function F"+
for some n +m + 1 is moving as the parameter is varied,
we expect the curve F"+ +'(x, a) to typically cross
infinitely many preimages or elements of unstable period-
ic orbits. Accordingly, the family will switch from orbit
creation to orbit destruction infinitely often and, thus,
will be antimonotone.

As we have mentioned in the introduction, certain
nongeneric maps, in particular the second iterate of the
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logistic map, do not exhibit antimonotonicity. In the
case of unimodal maps with a single critical point c, the
parameter values a, are such that F (c,a, )=c, and they
are values at which there is a superstable orbit. There-
fore, since at a=a, all points near c are attracted to the
superstable orbit, no tangent bifurcations or homoclinic
crossings occur in a neighborhood of a, . For a values
close to e„ there is an attracting periodic orbit and all
nearby points are attracted to it. Odd symmetric maps
are not generic in the same sense. The other two condi-
tions that are necessary for this picture to hold are the
following: (i) F (c, ,a, )=c2 while BF (c„a,)/Ba is
different from zero. (ii) The nondegeneracy of the homo-
clinic tangencies, in particular, the condition
t) F"( ca*) /B x&0 for a* such that F"(c,a*)=p. We
suppose that these are generic conditions.

We will provide the details of computations, support-
ing the dimple-formation mechanism above, in Sec. V.
Next, however, we return to the numerical investigation
of our previous specific cubic map and demonstrate that
it indeed exhibits dimple formation.

IV. NUMERICAL EXAMPLE CONTINUED

We demonstrate in this section that our previous
specific cubic map indeed exhibits the route to antimono-
tonicity through the dimple formation mechanism out-
lined above.

The formation of a dimple in the cubic map

F(x„,a) =a[ —x„+3(0.95) x„]+0.099

as the parameter is increased past a =a, is shown in Fig.
3. The iterate F' (x,a), with m =4 and n +1=9, of the
map I' is plotted as a function of x in a neighborhood of
the critical point c

&
=0.95, for the parameter values

cx, = 1.019 398 0,a i
= 1.019405 0, n2 = 1.019411 0,

(x3 1.019414 0, and a4= 1.0194160. The horizontal
line indicates the location of a preimage F "(p,a) for
k =5 of an unstable fixed point p that is in between c,
and c2. Actually, in this example p does depend on u;
however, the value of Bp/Ba is suKciently small so that
for the range of a values of all the figures that we show,
the variation of p is negligible. A dimple is formed to
a=a, —= 1.0193980 for which F (c„a,)=cz, with
m =4. For a(a„F"+ +' has only one extremum in
the x interval shown, while for a & a, it has three extre-
ma all moving with positive velocity as the parameter is
increased (i.e., BF"+ +'/Ba&0 at these extrema). In
this way, a contact-making homoclinic tangency occurs
at e=a2 and a contact-breaking one at a=+3. There-
fore, periodic orbits are created and destroyed for param-
eter values nearby.

We also illustrate with Fig. 3 some additional pairs of
contact-making and contact-breaking homoclinic tangen-
cies that occur for a& [a„a~]. On the right of this figure
we have indicated the location of some of the preimages
F "(p) of the unstable fixed point that F' (c„a) crosses
for these values. We have labeled each of these preim-
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FIG. 3. The creation of a dimple in x„+,
=F (x„,a) =a[ —x„'+3(0.95)'x„]+0.099. The iterate F"(x,a)
is plotted as a function of x, in a neighborhood of the critical
point c& =0.95, for different values of a. The parameter values
are a, =1.019 3980, a& =1.0194050, a2=1.0194110,
a3 1 ~ 019414 0, and a4 = 1.019416 0. The horizontal line indi-
cates the location of a preimage F (p) (k =5) of the unstable
fixed point p. A dimple is formed at a=a, -=1.0193980, when
F (c& ) =c2. For a(a„F' has only one extremum in the x in-
terval shown, while for a )a, it has three, all moving with posi-
tive velocity. In this way, a contact-making homoclinic tangen-
cy occurs at a =a2 and a contact-breaking one at a =a3. There-
fore, periodic orbits are created and destroyed for parameter
values nearby. The occurrence of several pairs of homoclinic
crossings is also illustrated: on the right of the figure we have
indicated the location (at the homoclinic tangency values) of
some of the preimages F "(p) of the unstable fixed point that
the curve F"+ '(x, a) in the x interval shown crosses for
a&la„a4]. The dense occurrence of these pairs of crossings
generates antimonotonicity.

0(c,)

—1.9
1.0193980 1.0194002

FIG. 4. (a) The iterates F' (c2,a) and F' (c&,a) as functions
of a for aH(a„a&), where a, and ai are the same as in Fig. 3.
(b) The iterates F' (c2,a) and F {c&,a) as a function of a in the
subinterval of {a„a&)which is indicated with brackets in (a). En

both figures, the straight line indicates the location of the unsta-
ble fixed point p. The iterates F'+ (cl ) "follow" the iterates
F'(c2 ), while the signs defined in Eq. (8) satisfy
sI+ (c& ) = —sI(c2). Thus, homoclinic crossings occur in pairs
of contact-making [s& l cz ) )0] and contact-breaking
[s&+ (c, ) (0] tangencies. This figure reveals the self-similar
structure of the homoclinic tangency values. For this reason we
expect antimonotonicity.
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ages with the number of iterates k after which the preim-
age is mapped onto the unstable fixed point. The ordi-
nate of these preimages on the graph corresponds to the
actual location at the homoclinic tangency value. It is
clear that for each of these values, at which
F' +"(c&,a)=p, the tangency is contact breaking, but
there is another value nearby at which F +"(c2,a)=p
and the tangency is contact making. We expect the ex-
istence of infinitely many of these pairs.

We illustrate with Fig. 4 another way of looking at
these pairs of homoclinic crossings. We have plotted in
Fig. 4(a) the iterates F' (c2,a) and F' (c„a)as functions
of a for a E-(a„a&), with a, and a, the same as in Fig. 3

[F (c„a,)=cz]. Figure 4(b) is an enlargement of Fig.
4(a) that corresponds to the subinterval of a values indi-
cated in Fig. 4(a). We have plotted in Fig. 4(b) the
iterates F' (cz,a) and F (c„a). In both figures, the
straight line indicates the location of the unstable fixed
point p. The figure shows that the occurrence of the
pairs of homoclinic crossings is connected to the fact that
both F™(c„a) -=F'(c2, a) and aF'+ (c„a)Iaa
—=aF'(c2, a)/aa for all I ~ 1, close to the parameter a, at
which F (c„a,)=cz. Indeed we can see in Fig. 4 that,
for parameter values close to a„ the iterates F'+"(c, )

"follow" the iterates F'(c2). Therefore, for each value at
which F'(c2) =p, there is another one at which
F'+ (c, )=p. Since this occurs while F' is moving as in

Fig. 3, then one of the tangencies is contact breaking and
the other contact making. On the other hand, this figure
also rejects the self-similar character of this kind of pic-
tures with hornoclinic tangency values accumulating on
homoclinic tangency values. Therefore, we expect the ex-
istence of an infinite sequence of internested contact-
rnaking and contact-breaking homoclinic tangencies.
This internested sequence will ultimately produce an-
timonotonicity.

V. SUPPORTING ANALYTICAL COMPUTATIONS

In this section we study analytically what happens to
parameter values close to the one at which one critical
point is mapped onto the other one. In particular, we de-
velop a simplified model that shows how hornoclinic
tangencies occur in pairs as in Fig. 4 and that gives us es-
timates of the distances in parameter space between the
corresponding homoclinic tangency values.

Let us call, as before, e, the parameter value at which
F (c„a,)=c2. Without loss of generality, we take c&

and c2 to be independent of e. Thus, also at e=e„ it is
aF"+ +'(c&,a, )laa=aF"+'(c2, a, )/aa for all r + 1

[10]. As we are interested in values of a close to a„we
will expand all quantities of interest assuming e-=e, . In
this way, we get

aF (c&,a)
F (c), a)=c 2+ (a a~ )

Be
2

1 a F"+'(c2,a) aF (c„a,)
Fm+r +1( ) Fr+1( )+ 2' ~' ~

( )2
2 Bx Be

(3)

for all r ~ 1.
We now suppose that at e=e, , there is a hornoclinic

tangency such that F" '(c2, a, )=p for some r ~1. We
want to determine if there is a value e2 at which
F"™+1(c„az)=p.For this reason we consider Eq. (3)
at e =e2 and insert in it the expansion

aF"+'(c2, a&)F"+'(c,a, ) -=F"+'(c,a, )+ (az —a, )
Be

aF"+'(c„a,)=p+

Taking into account that e2 is such that
F"™+1(c„a)=2p,then we obtain, to lowest order in

e, —e„

We can further simplify Eq. (4). First we use the equality

a F"+'(c,a) a F(c,a) aF"(F(c,a), a)
Bx Bx Bx

which holds for any critical point c and all r + 1. Then,
as we did in Ref. [10], we use the positive Lyapunov ex-
ponent A. at the nearby chaotic parameter value e*, to es-
tirnate the size of the spatial derivative at the critical
value w =F(c) as aF"(w, a)/ax =C exp(rA, ) for r
sufficiently large. Also, since aF/aa is bounded on the
attractor, using this approximation for aF (w, a)/ax, it is
reasonable to assume that

aF"+'(c,a) aF(F"(c,a)) aF(c,a) aF"(w, a)
Be Be Be Bx

e2 —e& =———
2

2
a F"+'( z, ac, ) aF (c„a,)

Bx' Be
aF"+'(c„a, )

Be

(a, —a, )

(4)

aF(c,a) aF"(w, a)
Be Bx

C aF(c,a)
Be

Introducing all these approximations in Eq. (4) we obtain
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a2 ai=
2

2
O'F(c2,a, ) BF (c, ,a, )

Bx Ba

BF(cz,a, )

Ba

(a, —a, )

6.10

(n2 —n3)

(6)

In order to determine whether the parameter a2 of Eq. (6)
is also close to a„we need to specify better what we
mean by "sufficiently close" to a, . We require that
5(a):F—'(c &, a ) F(c2—, a ) and B5/Ba provide only
small corrections to the values that F + '( c„a) and
BF +'(c„a)/Ba take on at a=a„ i.e.,
l&(a)l «IF(c2, a)l and l»(a)/&al «laF(cz, a)/Ba .
This also guarantees the validity of the truncations we
have made of the Taylor expansions. Using Eq. (3) for
r =0, its derivative to lowest order in (a —a, ) and the es-
timates in terms of the Lyapunov exponent which we de-
scribed before, we obtain that this criterion is satisfied if

la —a, f«
BF(cq,a, )

Ba

d F(c2,a, )

Bx

BF (c„a,)

Ba

2

If a=a, satisfies condition (7), it is easy to show that az
satisfies it as well. Therefore, if there is a homoclinic
tangency at a=a, close to a, such that F"+'(cz,a, )=p,
there is another one at a=a2 also close to a, at which
Fr m+1+(

We have compared the estimate (6) with the actual
differences obtained for the pairs of homoclinic tangen-
cies shown in Fig. 4, which correspond to the numerical
example described in the preceding section. We have
plotted in Fig. 5 the actual values of a2 —a, as a function
of

2a'F(c„a, ) aF-(c„a,)

c}x2 Ba

BF(c2,a, )

Ba

For this example it is

(a, —a, )' .

and

a, = 1.019 398 0,
m =4, B F (c2,a, )IBx = —1.629,

BF (c„a,)/Ba = —5.811,

BF(c2,a, )IBa—=83.33 .

The crosses that appear in Fig. 5(a) correspond to the five
pairs of tangencies of Fig. 4(a) and those of Fig. 5(b) to
the five pairs of tangencies of Fig. 4(b). We have also
plotted the diagonal on Figs. 5(a) and 5(b). Provided that
Eq. (6) is correct, the crosses should lie on the diagonal.
First of all we see that the sign given by Eq. (6) is the
correct one. On the other hand, we also see that Eq. (6)

0 -++

0

6.10-'
6.10 7

P (n1 —n, )2

(n~ —n3)

r++'

0 ++
0 6.10-8

P (n1—n, )2

FIG. 5. (a) The values of a2 —al obtained from Fig. 4(a) as a
function of P(a& —a, ) (crosses) where P= —

2

[(O'F(c„a,)/Bx'lBF (c, ,a, )/Bal2/BF(c, a )/Ba. For this
example, at a=a, =1.0193980 it is F (cl ) =c2, at a=aI it is
F'(c2) =p (for some l & 1 and at a =a2, F'+ =p). (b) Similar to
(a) but for the tangencies of Fig. 4(b). In both figures the cross
that corresponds to the first pair of crossings is almost at the
origin. The diagonal corresponds to the approximate value of
a& —al as given by Eq. (6). We see that this formula gives a
good estimate of a2 —al that improves as we get closer to a, .

gives a good approximation of the value of a2, even for
values of a, that do not satisfy condition (7). For exam-
ple, the last cross of Fig. 5(a) corresponds to
a, —a, —=6X10 while the right-hand side of Eq. (7) is
8.5X10 . However, the error introduced by using Eq.
(6) instead of the actual values is less than 20%. This er-
ror can be further reduced if we use Eq. (5). We also see
that, as expected, the approximation given by Eq. (6) is
better as we approach the value of a, . We can conclude
then that the simplified model is in good agreement with
what we find in our numerical example.

We want to see now which type of tangencies occur at
a2 and a, . For this reason we compute the sign

gpI
si(c,a):——sgn (c,a) (c,a)

Qx
' a (8)

at a=a2 for l =r +m +1 and c =c& and at a=a& for
l = r + 1 and c =c2. If this sign is positive at the tangen-
cy, then the tangency is contact-making [as in the case of
c being a maximum of F' while BF'(c,a)/Ba) 0]. If it is
negative instead, it is contact-breaking. In order to cal-
culate 8 F'/Bx we use Eq. (5) where we insert the expan-
sion (2). In order to calculate BF'/Ba we simply derive
Eq. (3) with respect to a. In this way we get, to lowest
order in a —a„

s„+ +,(c„a)=s„+,(c2,a)s (c„a)sgn(a —a, ) . (9)

Indeed, this equation reflects the fact that s„+ +,(c„a)
vanishes at a =a„something that occurs because
r) F" +'(c,a)/Bx vanishes whenever the critical point
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c is mapped to a critical point.
For the purpose of the argument, suppose that for

a &a, it is s„+ +,(c„a)=s„+,(cz,a). This holds if
s (c i,a ) = —1. Suppose that there are homoclinic
tangencies for both e & e, and o. & a, . We consider then
a homoclinic tangency that occurs at a, )n, . Then, by
Eqs. (7) and (6), a2 is also greater than a, . If the stable
set of the fixed point p is dense on the chaotic attractor at
+=a„ then it is always possible to choose r large enough
so that a, and a2 are so close to a, that s (c, ) does not
vanish on (a„max[a„a2]) [12]. Due to the same argu-
ment we also expect that s„+,(cz) will not vanish for a
between o,

&
and a2. In this way, one of the homoclinic

tangencies will be contact making and the other contact
breaking. Thus, we will have the creation and the de-
struction of periodic orbits for parameters nearby.

VI. CONCLUSIONS

We have presented a geometric mechanism for the
creation and destruction of periodic orbits in families of
chaotic scalar maps with at least two critical points c&

and c2 that satisfy certain typical conditions (excluding,
for example, bimodal antisymmetric maps and maps
which are the second or higher iterates of unimodal
ones). We have proposed that a dimple formation mecha-
nism, which can occur in a neighborhood of homoclinic
tangency parameter values of multimodal maps, is the
source of concurrent contact-making and contact-
breaking homoclinic tangencies. Thus, this dimple for-
mation is a geometric mechanism for antimonotonicity

for generic families of maps x„+i=F(x„,a) for which
there is a value a* at which the attractor is chaotic and
contains two critical points c& and c2 in its interior.

We have illustrated the dimple formation mechanism
in a detailed numerical study of a family of nonsymmetric
cubic maps [see Eq. (1)]. A similar behavior is observable
in the family

x„+,=a[ —x„+3(0.95) x„]+C

with fixed a and variable C (see, e.g., Ref. [13]).
Our study of antimonotonicity in one-dimensional

maps shows close similarities with the two-dimensional
case. Unlike the two-dimensional case, however, there
remain major mathematical difficulties which, presently,
prevent us from constructing a rigorous proof of an-
timonotonicity in scalar maps. Nevertheless, the numeri-
cal examples we found, the analogy between the one- and
the two-dimensional cases [13] and the geometrical mech-
anism we described in this paper provide support for the
presence of antimonotonicity in generic families of chaot-
ic scalar maps with at least two critical points.
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