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Intrinsic linewidth of a free-electron laser with an axial-guide magnetic field
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The intrinsic linewidth of a free-electron laser with an axial-guide magnetic field is analyzed using a
master Fokker-Planck equation. All electron emissions caused by the axial bremsstrahlung and the
transverse cyclotron have contributions to the linewidth.

PACS number(s): 41.60.Cr, 52.75.Ms

Some previous works [l —3] have discussed the problem
of the intrinsic linewidth of a wiggler-pumped free-
electron laser. In contrast to the quantum-mechanical
characteristic of the linewidth in the ordinary, i.e., atom-
ic or molecular, lasers, the linewidth in free-electron laser
has a classical expression, although intrinsic linewidths
were determined by spontaneous emissions in both ordi-
nary and free-electron lasers. The reason for this
difference is that the spontaneous emissions in ordinary
lasers are caused by quantum transitions among energy
levels of atoms, but emissions in the free-electron laser
are caused by the classical bremsstrahlung in the wiggler
field.

In general, an axial-guide magnetic field is usually in-
troduced in free-electron lasers for beam collimation.

The guide field also results in the transverse cyclotron of
the electron beam. In this case, both the axial brems-
strahlung in the wiggler field and the transverse cyclotron
in the guide field of the electron beam emit laser photons
spontaneously. And the two kinds of spontaneous emis-
sions have contributions to the intrinsic linewidth of a
free-electron laser.

The goal of this Brief Report is to analyze the intrinsic
linewidth of a wiggler-pumped free-electron laser with an
axial-guide magnetic field from a master Fokker-Planck
equation. The procedure is similar to that of Ref. [3].
We start from the three-dimensional single-particle
Bambini-Renieri Hamiltonian of a free-electron laser
with an axial-guide magnetic field [4]
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where A is Planck constant, c is the speed of light in vacu-
um, m is the electron mass, r=(x,y, z) is the electron po-
sition, p =(p„,p~,p, ) is the linear momentum of electron,
Bp is the strength of the guide field, co, =eBp/m is the cy-
clotron frequency, 0 is the coupling constant, co is the
frequency of the wiggler and laser fields in Bambini-
Renieri frame, k, (kz) is the wave number of the wiggler
(laser) field, k =(ki+k~)/2, aii, (aL ) and ais, (aL) are

me@, ice,
px+

2 y +
( (

py

+2mfi/co,
/

mcus

2

are the annihilation and creation operators of the elec-

the annihilation and creation operators of the wiggler
(laser) field, and
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tron transverse motion with the commutator [T,T+ ]=1. For conventional free-electron laser devices, the wiggler
field is much stronger than the laser field, so we can treat it as a c-number field, that is a~, a~-"y N~. Then, in the in-
teraction picture, the interaction Hamiltonian is written as
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The density operator p, &
of the electron-laser system

obeys Liouville's equation [5]

l

To further the discussion, we assume that the initial
electron-laser field density operator can be written as a
product of the electron, which is in the eigenstates lpo &

of the axial momentum p, with the eigenvalue po and
lNTp & of the transverse motion operator T+ T with the
eigenvalue NTO, and the laser field, which is in arbitrary
mixed or pure state. That is,
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Solving (7) through iteration and taking the trace Tr,
over the electron operators, one can obtain the reduced
density operator p =Tr,p, I of the laser field
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After some tedious manipulations, the "coarse-grained" time rate of change [5] for p(t) is then given by
d
dt p(t) = r, [p(t + T)—p(t) ]
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Substituting the coherent-state representation

p(t)= f fd'aP(a, a', t)la)&al

into (10) yields

where r, is the rate of injection of electrons per second, and

(12)
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Under the steady-state operating condition, we can set the laser intensity equal to the steady-state average value nss,
and then obtain the decay constant from the above formula,
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The ultimate linewidth is a classical result (independent of fi) In the. guide-field-free case, (15) drives at the previous
conclusions [1—3]. In the wiggler-free case, (15) gives the decay rate of free-electron laser only with the guide field. In
the general case, both the wiggler and the guide Geld have contributions to the linewidth. By using the following
definitions:

kpo T (CO CO~ )T Ak . Sinqv=, sine(q) =
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one can write (15) in an explicit expression,
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For the extreme relativistic case V,o~ c, where V,o is the
axial velocity of the electron beam in the laboratory
frame, we have k& =k2=k and co=ck. Then, in the limit
0i and 02»vT, (16) drives at
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So the broadening efFect of transverse motion of electron
on the linewidth of a free-electron laser is described by
the parameter
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In laboratory-frame variable, we have
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where kii, (Bii, ) is the wave number (strength) of the
wiggler Geld. Further, we let the initial energy
ill, I [NT, +(

I ~, I

—~, )/2lco, I ] be the nonrelativistic
classical equilibrium energy of the vertical motion of elec-
tron, approximately; then (19) gives

where G, ~ —(d /d 8, )sine(8, ) is the gain [6] of the
guide-field-free free-electron laser and
G2 ~ (d/d02)sine(02 —

—,'0i) is the gain [7] of the
wiggler-free free-electron laser. The maximum gains
occur at Oi = 1.3 and 02 —

—,
'

0& = —1.3, and the corre-
sponding ultimate line-width of the wiggler-pumped
free-electron laser with an axial-guide magnetic field is

r, %~A T
D=-

2n SS

NTOI CO~ I
+

2 (
I
Cc)~ I CO~ )

W

eB~
I?hack g

2 (21)

-4 (22)

The transverse motion of electron will enhance the

For conventional experimental parameters, the perpen-
dicular component Vz of the electron velocity should be
small, about 10%%uo of c, and (eB~/mck~ ) —5 X 10;then
the above formula gives
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linewidth of a free-electron laser several times.
Finally, it is necessary to point out that the Lorentz

equation governing the classical electron motion is invari-
ant under the transformation A„—+ —A„, A~ —+ —A~,
Ao~ Ao and t —+ —t, where A„, A ~, and Ao are the
vector potentials of the radiation, wiggler, and axial-
guide magnetic fields, respectively. Correspondingly, the
interaction Hamiltonian in quantum mechanics is also in-
variant under the same transformation. However, if we

perform the transformation Ao~ —Ao (the guide field is
inverted) only, then the time-reversal invariance is invalid
and the role of T+ and T in the interaction Hamiltoni-
an is replaced by that of T and T+, respectively. It is
this feature that causes the intrinsic linewidth D to de-
pend on the sign of co, .
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