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Asymptotic crossover in polymer blends
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Susceptibility and specific-heat data for a low-molecular-weight polymer blend near its critical point
of unmixing are compared with a match-point renormalization-group theory which describes the cross-
over from classical mean-field to fluctuation-dominated behavior near the critical temperature. Using
the Flory-Huggins form of the bare free-energy density, the crossover function requires only two free pa-
rameters.

PACS number(s): 61.25.Hq, 64.60.Fr, 05.70.Jk

Until recently, the application of the concept of
critical-point universality was limited to the region very
close to the critical point, where the thermodynamic
quantities are described by scaling laws with universal ex-
ponents depending only on the spatial dimension of the
system and the symmetry of the order parameter. In the
case of simple fluids, a large portion of the experimental
data falls outside of this asymptotic scaling regime, and
extends over a temperature window where mean-field
(classical) theory is not valid. As the phase boundary is
approached, the inAuence of the critical fluctuations first
becomes apparent in the susceptibility, and the regime
where any critical enhancement of the susceptibility is
observed is referred to as the "global" critical region [1].
In the past, a quantitative description of the data in this
region was achieved by introducing so-called "correc-
tions to scaling. " Now, a number of formulations based
on the principle of critical-point universality have been
used to derive an equation of state valid over the entire
global critical regime. This has been accomplished by
solving the problem of crossover, from pure mean-field to
pure Ising critical behavior, as the critical point is ap-
proached [2—6]. The solution of this "asymptotic" cross-
over problem is most applicable to systems with a
Ginzburg number that is sufticiently small, such that a
crossover to classical behavior is actually observed a
finite distance away from the critical point.

Binary polymer mixtures, or blends, of suitably low
molecular weight exhibit a crossover from mean-field to
critical behavior as the critical point is approached
[7—10] and are thus ideal systems for studying this type
of problem. From the Ginzburg criterion, the observed
reduced temperature width of the global critical regime
should be directly proportional to (uovo ) (a ago)
where go is the bare correlation length, vo is the reference
cell volume, and the coe%cients ao and uo appear in the
Landau expansion of the free energy [8,10]. The constant
of proportionality should be roughly the same in all poly-

mer blends [8]. For the very-low-molecular-weight blend
considered in this paper [10], we obtain a value of this
constant which is a factor of 2 smaller than that reported
in Ref. [8], provided we use the extrapolated value of the
bare correlation length go, which guarantees consistency.
Given the order-of-magnitude nature of the Ginzburg cri-
terion, this agreement is reasonable. Using the theoreti-
cal form of go suggested in Ref. [8], however, gives a
value of this constant which is a factor of 20 smaller than
that reported in Ref. [8]. This could explain the
discrepancy reported by Janssen, Schwahn, and Springer
for another very-low-molecular-weight blend [7]. Al-
though this approach gives a universal description of the
size of the crossover window, it does not give a quantita-
tive description of the crossover itself. Motivated by this,
we have used the asymptotic crossover formalism for a
simultaneous description of the specific heat and suscepti-
bility of the same critical blend described in Ref. [10].
Because a phenomenological form of the "bare" free en-
ergy is available from the Flory-Huggins model [11],the
number of system-dependent parameters in the theory
can be reduced from four to two.

The analysis starts with Ginzburg-Landau-Wilson free
energy that follows from an expansion of the appropriate
Flory-Huggins free energy. This is given as [10]

f['ll]=fo+(k~Tlvo) Jd x —ave'4 + —uo%
1, 2 1

+—co ~
V%, (1)

where r'=(1 —T,' /T) is the (mean-field) reduced temper-
ature, co=aogo2, and the coefficients ao and uo are given
in terms of the rescaled degrees of polymerization of the
two species, the critical volume fraction, and the Flory-
Huggins interaction parameter y as derived in Ref. [10].
For the critical (deuterated)polystyrene-polybutadiene
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blend under consideration [10], the relevant parameters
are ao=0. 377, uo=2. 214, and go=9. 4 A. It is worth
noting that y and go are determined from a mean-field fit
of the susceptibility and correlation length data far above
the critical point [10], and thus ao and go are fixed
asymptotically. The parameter uo is obtained from the
Flory-Huggins model. None of these parameters will be
allowed to vary in the fit of the global critical region.

A description of the crossover to first order in c, =4—d,
where d is the spatial dimension, that requires no adjust-
able parameters [2] can be derived from a
renormalization-group analysis of Eq. (1). The Ginzburg
number

G =(uouo) (32m aogo)

emerges as the relevant parameter in this O(E) analysis
[2]. The Ginzburg criterion states that for r' ))G,
mean-field theory will be correct, while for ~' &&G, criti-
cal Auctuations will be important. For the system in
question, G =0.003, which is roughly an order of rnagni-
tude smaller than typical values in small-molecule Auids
[1]. In Fig. 1, the vertical axis is proportional to the mea-
sured inverse susceptibility raised to the 1/y power,
where we have used the Ising value of the susceptibility
exponent y =1.24. The error bars are roughly the size of
the data points. An asymptotic linear fit in the vicinity of
the critical point yields the extrapolated value of the true
critical temperature T, =41.15'C, which is in very good
agreement with the value T, =41.2+0. 1 C that we found
in Ref. [10] using temperature jump light scattering.
This suggests that @=1.24 correctly describes the data
very close to T„where there is a crossover to pure Ising
behavior. Thus the O(c, ) solution to the crossover prob-
lem will not be quantitatively correct, because it does not
give this correct Ising exponent very close to T, (Refs.
[I»]).

Although a useful phenomenological version of the
O(e) solution can be obtained by simply inserting the

0.10—

CQ 0.05—

correct Ising exponents [2], we have opted for a different
approach. This is the so-called "match-point" solution of
the nonlinear renormalization-group equations [12],
which gives an effective free-energy density in terms of
the bare parameters and a crossover function Y, from
which the thermodynamic quantities may be derived
[1,5]. From a renormalization-group matching pro-
cedure, it follows that the dimensionless renormalized
singular free-energy density b, A =(f fo)/—kii T can be
written in the Landau form as [1,5]

b, A =(a /2)rg Y'i' "~ +(u /4!)P YI r

—(ao/2uo)r (vu */a)[ Y —1], (2)

where y=1.24, v=0. 63, o;=0.11, and b, =0.51 are the
usual Ising critical exponents, P= ('ll) is the mean-field
order parameter, and u *=0.472 is the renormalization-
group Axed-point value of the coupling constant uo ~ The
quantities ao and uo in Eq. (2) are as defined previously,
but r=(1 —T, /T) is now defined in terms of the true
critical temperature. The crossover function Y is given
by [1,5]

1 —(1—u /u *
) Y = ( u /u *

)( A/~) Y'i (3)

(4)

The solution to Eqs. (3) and (4) subject to the constraint
aa~/ay=0 gives the crossover function Y in terms of r
and the two crossover parameters u and A, both above
and below T, . In the limit A/~~1, which corresponds
to the classical mean-field limit, Y~ 1 and Eq. (2) reduces
to its mean-field form, if T is far enough above T, so that
the difference between T, and T,' has become
insignificant. In the limit A/~ —+ ~, which corresponds
to the asymptotic critical limit, Y~(i~u /uA) ~" and
the asymptotic scaling laws with the first "correction to
scaling" are recovered [1,5]. Because the blend under
consideration exhibits pure mean-field behavior further
than 15 K away from T„we can restrict ourselves to the
asymptotic problem, and we do not need to modify Eq.
(3) to account for an absence of (observed) mean-field
behavior far above the phase boundary. In addition,
there are usually four system-dependent parameters; the
two introduced here, and two coeKcients that determine
the critical amplitudes. The other two parameters can be
avoided if values of the parameters co, ao, and uo are
known.

The reduced (dimensionless) susceptibility for T ) T, is
found from Eq. (2) to be

where

ir =(&A/uo)' [aors Y' "~ +(u /2)y Y'r '~~] .

'= [8 b, A /BP ] o= aors Y'~/=0 0+ (5)
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FICx. 1. Inverse susceptibility raised to the 1/y power as a
function of 1/T. The linear region near T, corresponds to pure
Ising behavior.

Note that this reduces to the correct mean-field form far
above T, . A fit of our previously published [10] suscepti-
bility data (rescaled to absolute units and then reduced to
the correct dimensionless form) with Eq. (5) is shown in
Fig. 2(a) as g ' vs 1/T. The solid line represents the glo-
bal fit with u =0.197 and A=0.09. The dashed line is
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the asymptotic mean-field fit that intercepts the 1/T axis
at T,'. The same quantities are redisplayed in Fig. 2(b) as
4 vs T. As an order-of-magnitude check, the parameter
u should be the same size as 3u*(2G)'~ (Ref. [1]),which
is around 0.11. As can be seen from Fig. 2, the fit of the
data is very reasonable.

The mean-field jump in the specific heat at constant
pressure is easily calculated from Eq. (1) to be

bC =(3ao/uo)(k~/Uo) .

For the blend under consideration, this is roughly 0.016
Jcm K '. Because the background specific heat is
roughly two orders of magnitude larger than this anorna-
ly, measurements of the critical contribution to C are
difficult. Using a new differential ac calorimeter, we have
recently achieved the level of resolution needed to reveal
a peak of this size. A sample of the same critical blend
used in the small-angle neutron-scattering measurements
of the susceptibility [10] was placed in the calorimeter

next to an off-critical sample (0.95 wt. % deuterated
polystyrene) prepared from the same materials. Both
samples were closely matched in thickness, which was
around 2.5X10 cm, and had matched gold resistive
heating films evaporated on the bottom of the sample
cells. Connected in series, an ac voltage with a typical
frequency of 0.4—0.5 Hz applied across the samples gen-
erated periodic heat pulses that were monitored on the
other side with a pair of thermocouples. The ac signals
from the two samples were connected to the differential
input of a lock-in amplifier and locked in with the input
signal, thus subtracting a large portion of the coherent
noise as well as introducing a large offset. Another ther-
mocouple was used to monitor the average temperature
of the critical sample, which was ramped through the
transition at a rate between 10 and 20 mK/min, after an
initial annealing period of several hours at a temperature
20 K above T, . The data was rescaled to absolute units,
and an anomaly of the expected size was observed in
three different samples, with an average peak tempera-
ture of 40.9'C. There was, however, considerable scatter
in the temperature at which the C anomaly was ob-
served (as much as 3 K) and the exact behavior was not
reproducible. Although this is not surprising, given the
fact that this is an unmixing transition and it is difficult
to ensure uniform mixing in the one phase region, this
problem remains to be resolved. Because of this, the data
shown here represent only a preliminary, order-of-
magnitude measurement of the singular part of the
specific heat.

Knowledge of the correct form of the crossover func-
tion Y allows us to calculate the expected global behavior
of C . From Eq. (2), the reduced (dimensionless) specific
heat C is given by
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where Cb is a background contribution. The free-energy
density in Eq. (2) can be expressed in terms of Yby elim-
inating P via the requirement that M, A/BQ=O, which
yields / =0 as the stable solution for T )T„and

y2 —~2 Y(2P—1)/5

I

CO

0—
50 60

( c)
70 80

FIG. 2. Reduced inverse susceptibility (a) as a function of
1/T with both the global (solid line) and mean-field (dashed
line) predicted behavior; (b) the reduced susceptibility as a func-
tion of T with both the global (solid line) and mean-field (dashed
line) predicted behavior; and (inset) the crossover function Y as
a function of ~ both above and below T, .

with Po= —(6ao/uo)r as the stable solution for T (T, .
The dependence of Y on ~ above T, is known from the fit
of the susceptibility. Below T„Y(r) can be found from
Eqs. (3), (4), and (7), with the parameters u and A fixed
from a fit of the susceptibility above T, . The crossover
function Y(r) is shown in the inset of Fig. 2(b). Far away
from the critical point, Y~1, while in the vicinity of the
critical point, Y~O. The first term on the right-hand
side of Eq. (6) can be calculated numerically to give the
predicted form of the singular part of the specific heat.

The heat-capacity data from one of the samples was di-
vided by k~/vo to reduce it to the proper dimensionless
form. A linear least-squares fit with Eq. (6) and a quadra-
tic background of the form Cb =B + AT+ CT is shown
in Fig. 3. The dashed line represents the same back-
ground with the predicted mean-field jump AC =3ao/Qo.
In Fig. 3, the data have been shifted horizontally to
achieve the best fit, thus introducing an additional pa-
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FICx. 3. Reduced specific heat in the vicinity of T, . The solid
line is the predicted global behavior, and the dashed line is the
background with the predicted mean-field jump at T, .

rameter to account for the scatter in the temperature at
which the heat-capacity jump appeared. A simultaneous
nonlinear fit of both 4 and C to determine u and A was
not attempted because of the level of resolution in the C
data. Although we are ultimately limited by polydisper-
sity effects, significant improvement should be possible
with modifications to the instrumentation and sample
cell. Efforts are currently under way to resolve the ap-
parent scatter in T, and achieve a higher level of repro-
ducibility.

In conclusion, we have used the "rnatch-point" solu-
tion of the asymptotic crossover problem to describe the

global critical behavior of both the susceptibility and
specific heat of a low-molecular-weight binary polymer
mixture. We report the observation of a critical anomaly
in the specific heat in polymer blends. We find that the
C data are in reasonable agreement with the behavior
expected from a fit of the susceptibility, but it would be
impossible to determine whether there is a crossover to
critical behavior based on this heat-capacity data alone,
as the size of the observed anomaly is the same size as the
predicted mean-field jump. This is consistent with the
fact that the susceptibility is the strongest measure of the
importance of critical fluctuations. Perhaps the best
measure of the width of the critical regime in this blend
can be found in the response to shear How as measured
with small-angle neutron scattering, which very strongly
suggests that critical fluctuations do not become
significant until roughly 5 K away from T, (Ref. [13]).
To see the effect of critical Auctuations in the specific
heat would require resolving the data within 200 mK of
T„which could be extremely difficult. Polymer blends
are an ideal system for studying this type of crossover
phenomena, however, and a rigorous test of the theory
will require precise measurements of more than one
quantity.
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