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Closed-form solution for inverse problems of Fermi systems
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A series of applications of a theorem relating the Dirac 5 function to the Fermi distribution [Chen,
Phys. Rev. A 46, 3538 (1992)] are presented in this paper. In particular, the inverse problem for deter-

mining the density of states of Fermi systems, the determination of relaxation-time distribution from
dielectric function spectra, and the inverse isotherm problem for the adsorption energy distribution
function are treated with closed-form general solutions. The present method is not only simplified

significantly relative to all the previous work, but also has the merit of not making a priori assumptions
about the solution of the integral equation; hence it is a direct way of evaluating the density of states.

PACS number(s): 05.30.Fk, 82.65.My, 02.30.—f, 02.70.—c

I. INTRODUCTION

Recently, Chen has proposed a relationship between
the Dirac 5 function and the Fermi distribution [1],
which provides a powerful tool to solve a group of in-
tegral equations which are important to fermion systems
and other branches in applied physics. The present work
will explain the method in detail with a series of applica-
tions. Essentially, once a relation between the 5 function
and the kernel of the integral equation is given, the gen-
eral solution of the equation can be obtained immediate-
ly.

II. AN EXPRESSION OF THE 5 FUNCTION

It is well known from the elementary generalized func-
tion theory that [2,3]
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Introducing the translational operators e'
and e ' " y', which represent the translations of ~
and —m. along the imaginary axis in a complex plane ex-
tended from the y axis, an expression of the 5 function is
given such that

where P indicates the Cauchy principal value. Therefore,
it is given as
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Notice that the appearance of the above translational
operators is equivalent to requiring the extension of y
from the real axis to the complex plane z with the cut
(
—~,0). In other words, the real function 1 —e

defined on y has been extended to a complex function
1 —e ' defined on the z plane with the cut ( —~,0), and
the corresponding argument of the complex function is

I

restricted to ( vr, ~) Based —on this. understanding, Eq.
(3) can be expressed simply as
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Executing Taylor's expansion, we have
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III. A GENERAL SOLUTION
OF THE INVERSE PROBLEM

FOR THE DENSITY OF STATES
OF FERMI SYSTEMS

From a variety of applications and the above understand-
ing, one may use the Eqs. (4—6) without hesitation. For
some problems with a "quasi"-Fermi-distribution, a simi-
lar relation is needed:

Now we give an example that applies Eq. (6) to a Fermi
system. According to Eq. (6), the temperature-dependent
density of states (DOS) near the Fermi level g (E~, T) can
be expressed as
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where n (E~, T) represents the carrier density, i.e.,

n(E~, T)= f dEg(E, T) ~z z ~&k
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Notice that for the second expression in Eq. (8), we have
considered Ez) 0. Therefore, Eq. (8) is a closed-form
solution of the integral equation (9). In other words, one
can determine the density of states of a fermion system
based on the measurable carrier density and Fermi level.
In fact, the first three approximate solutions can be ex-
pressed as

Y(r)dr
1+(cor)

e (co) —=Z(co), (13)

where e,' is the low-frequency (in the limit, static) permit-
tivity of the material, and the high-frequency (optical)
limit.

The traditional method of solving the above integral
equation is to construct an expression of Y(r) from gen-
eral arguments with some parameters determined by ex-
periments [4] based on Eq. (13). Thus, the form of the
unknown function has to be decided before doing the cal-
culation. A new technique to calculate the spectra Y(r)
has been proposed by Ligachev and Filikov [5] recently,
but the method is related to both the Mellin transforma-
tions, as well as modified Bessel function of the third
kind, and so on. Also, their fitting function is restricted
[5]. By using Eq. (8), we show a simple and general solu-
tion for this problem.

Denote that

r =e and co =e (14)
then we have

27 dt=e dX (1&)

Substituting Eqs. (14) and (15) into Eq. (13), it is given
that

In principle, the above expression is suitable for metals
controlled by doping impurities.

IV. A GENERAL CLOSED-FORM SOLUTION
FOR RELAXATION- TIME SPECTRA

In general, the relaxation-time distribution Y(r) of a
material and the measurable properties such as the com-
ponents of the complex permittivity e(co) =e'(co)+e"(co)
at frequency co, can be expressed by [4]
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The above expression is a general closed-form solution
for Eq. (13). Now, let us check the result of Ligachev and
Filikov [5] for the case of
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Let us only consider one term in Eq. (18), i.e., Based on Eq. (17), we then have
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This is just the same result as that of Ligachev and Fili-
kov [5], but the present deduction is much simpler and
uses only elementary operations.

V. DISTRIBUTION FUNCTIONS
WITH A LANGMUIR KERNEL

B,(P, T)= f [1+P 'a (T)exp( E/RT—)] 'p(E)dE .
0

Let

P 'a(T)=ey or P=a(T)e
and
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where E( ~0) is the adsorption energy [6], and P and T
are the pressure and temperature, respectively.

In general, it is assumed that the local isotherm OL is
the well-known Langmuir isotherm [6]

The concept of adsorption on heterogeneous substrates
can be traced to the pioneering work of Langmuir who
proposed an expression for the total isotherm. Given the
experimentally determined total isotherm 0, and a
theoretical local isotherm OL, it is necessary to evaluate
the distribution function p(e, T), which satisfies

O, (P, T)= f Oz(P, T;E)p(e, T)dE, (20)
0

and
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Equation (23) then becomes
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A. Generalized Freundlich isotherm

This phenomenologica1 law can be expressed as

O, (P, T)=[1+P 'a(T)] ', 0&c &1 .

Notice that, unlike [1+e" y] ' in Eqs. (4)—(6), we are
now facing [1+ey ]

' in (26). This is the reason why a
minus sign appears as in Eq. (7).

0 (P, T; E) = [1+P 'a( T)exp( —E/R T)], (22) From Eqs. (33) and (34) and

where the meaning of a(T) is clear from a statistical
derivation of the Langmuir isotherm [6]. The integral
equation (20) now becomes
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This result agrees completely with that of both Sips [7]
and the Wiener-Hopf method [6], in which a much more
complicated procedure was performed. Notice that the
transform (29) is necessary since (1—e~)' is meaningless
for y & 0. If one deduces the procedure as shown in Eqs.
(1)—(3), the same result can be obtained with much more
confidence.

A:B—(RT) and C=ln[P&/a (T)],
we obtain that

(32)

where Po is the saturation vapor pressure of the adsorbed
gas at the ambient temperature AT, and B is a constant.
Defining

B. Dubinin-Radushkevich isotherm

The Dubinin-Radushkevich isotherm is given by

O, (P, T)=expI B[RT—ln(Po/P)] ],
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(31) Using our method, we have
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which is identical to the result obtained by the Stieltjes
transform technique [7], but here only a very simple
operation is applied.

VI. CONCLUSION AND DISCUSSION

The present general method for solving some inverse
problems for Fermi system and other systems is present-
ed systematically in this report, but the previous workers
[5,6] spent much more effort to obtain the similar piece-
meal (sometimes incomplete) results. It can be expected
that these new relations might be useful for different
physical problems, such as for semiconductor or nuclear
systems. Notice that all the differentiations in Eq. (8) are
taken at the original Fermi level of the system, and one
only needs the data near the initial Fermi level in prac-
tice. If the function n (E~) is smooth enough, one may
obtain the density of states g (E) with any value E by us-
ing the translation operator, which will be discussed in
detail in another paper. Notice that for a numerical cal-
culation with a different fitting technique, the above solu-
tion is unique but not a stable one, since the integral
Equation (9) essentially is an ill-posed equation. But
there is no cause for disappointment since what we have
obtained is the most important information near the Fer-
mi level. It should also be indicated that Eqs. (4) —(6) can

1
Fz (E,EF ) (E E)—
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where A, is the degenerate factor. The corresponding ex-
pressions should be
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Finally, we would like to mention that the above
method would also be suitable for the boson system,
which will be uncomplicated and which we will present in
another work.
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I

be modified for application to the degenerated Fermi sys-
tem, which obeys
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