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The successful application of neural-network algorithms for prediction of protein structure is stymied

by three problem areas: the sparsity of the database of known protein structures, poorly devised net-

work architectures which make the input-output mapping opaque, and a global optimization problem in
the multiple-minima space of the network variables. We present a simplified polypeptide model residing
in two dimensions with only two amino-acid types, A and B, which allows the determination of the glo-
bal energy structure for all possible sequences of pentamer, hexamer, and heptamer lengths. This model
simplicity allows us to compile a complete structural database and to devise neural networks that repro-
duce the tertiary structure of all sequences with absolute accuracy and with the smallest number of net-

work variables. These optimal networks reveal that the three problem areas are convoluted, but that
thoughtful network designs can actually deconvolute these detrimental traits to provide network algo-
rithms that genuinely impact on the ability of the network to generalize or learn the desired rnappings.
Furthermore, the two-dimensional polypeptide model shows sufficient chemical complexity so that
transfer of neural-network technology to more realistic three-dimensional proteins is evident.

PACS number{s): 87.10.+e

I. INTRODUCTION

The application of neural networks as a computational
tool is rapidly expanding into the physical sciences [1],
engineering [2], mathematics [3], and even managerial [4]
studies. However, their successful use is often hampered
by the lack of rigorous proofs that specific network archi-
tectures (neuronal connections and biases) are optimally
designed for a given pattern-recognition or memory-
recall task. The utilization of neural networks for direct
predictions of protein structure [5—20] provides an exam-
ple of this difficulty. The objective in this case is to con-
vert the information about the primary structure (the
amino-acid sequence) into predictions about the secon-
dary structure [5—15] (local chain-folding preferences)
and tertiary structure [15—20] (overall protein-folding
pattern). Until recently, the best network designs for
secondary-structure prediction did somewhat better than
other non-network statistical methods [20—24], but did
not seem able to improve beyond an average of 65%%uo

overall predictive capacity. Recently reported statistical
methods [25,26] are now in fact competing effectively
with -65% prediction accuracy. Furthermore, certain
types of secondary structure are predicted much less well
than this average, such as P turns, where the best net-
work predictions were 26% [11]. The prediction of terti-
ary structure [15—20] has also been tried, but with limit-
ed success when compared to sequence-homology
methods [15].

Three possible sources of error exist for neural-network
prediction of protein structure. First, the experimental
database of known protein structures is extremely sparse
compared to the entire family of possible proteins with

comparable degree of polymerization; this alone suggests
that network training using some or all of the database
would be insufficient. Second, the network topologies
themselves may not permit effective learning strategies,
so that the network is unable to adaptively predict, or
generalize to, a new data set of sequence-structure rela-
tionships. Finally, neural networks from a
mathematical-optimization standpoint are known to
suffer from their own multiple-minimum problem, so that
optimal solutions are not easily attainable.

Furthermore, these three fundamental problems, which
are in themselves quite formidable, further exacerbate
poor neural-network predictive capacity by their convo-
lution. Database sparsity is thought to be responsible for
the observation that hidden layers do not improve secon-
dary structure predictions because there is simply not
enough higher-order information (representative interac-
tions between two or more amino acids) to exploit the full
power of such neural-network topologies [13,14]. In this
case, neural networks would be confounded by the dis-
tinction between sequences for which a specific substitu-
tion (mutation) leaves the folding pattern unchanged,
from those that experience profound folding changes re-
sulting from the same specific substitution. Information
that is present in the database may be lost for neural-
network topologies with too many free parameters and
arbitrary training criteria. The network in this case has
simply "fit" the data in a nonlinear least-squares sense so
that the network performs exceptionally well on the
training database, but is overtrained so that generaliza-
tion to the testing set is impossible [19]. The multiple
minima problem, whereby "converged" neural network
weight and bias parameters define a local minimum, re-
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suits in the trapping of the training process into network
solution minima which are not optimal [10].

The present work tries to address the three stated
inadequacies, and their deconvolution, by designing net-
works which perform perfectly for a database complete
up to a given sequence size that describes small, two-
dimensional "polypeptides, " and to infer what neural-
network topologies may be required for longer polypep-
tides in three dimensions with full sequence diversity.
Needless to say, the prediction of protein secondary and
tertiary structures is a highly complex problem. With 20
commonly occurring amino acids and polypeptide sizes
ranging from 10 to 10 residues, the diversity of plausi-
ble protein structures is vast. Because the interactions
that give rise to the native tertiary structure are not well

understood, and which in fact define the problem of pro-
tein folding, we have chosen to strip away a great deal of
this complexity in order to tackle best the problem of op-
timal neural networks. The two-dimensional model po-
lypeptides that we have studied are composed of only two
amino-acid types, and the size regimes we have con-
sidered thus far extend from trimers up to heptamers.
This simplification permits several advantages. First, we
are able to enumerate and specify structures for the full
sequence space for the polypeptide sizes considered here.
This is certainly not plausible theoretically, let alone ex-
perimentally, for polypeptides of greater lengths com-
posed of 20 or more amino acid types. Second, we have a
much better chance of identifying the global energy
minimum for each of these small two-dimensional po-
lypeptides; in three dimensions the global energy
minimum is thought usually to be synonymous with the
native structure. We present what we hope are convinc-
ing arguments that we have found the "native" structures
for all amino-acid sequences and for all polypeptide
lengths considered. Having compiled a complete data-
base we are then free to design networks which reproduce
perfectly a structural feature of interest, internal coordi-
nates, or residue-residue contacts. We define optimal net-
works as those with a minimal number of network vari-
ables (weights and biases) which predict the structural da-
tabase exactly. We emphasize at this point that, although
the model polypeptides we use are quite simple, they
show a wide variety of native structures which may be
described loosely in terms of the three-dimensional pro-
tein structural categories of linear, sheet, helix, and glo-
bular once polypeptide lengths of at least pentamer size
are reached. Thus in this paper we focus strictly on the
length regime of pentamers through heptamers.

In Sec. II we present the two-dimensional model
potential-energy function, the procedure used for finding
global energy-minimum structures, and the protocols
used to eliminate symmetries in the sequences and global
energy minimum structures. Section III describes the
neural-network architectures which we believe optimally
reproduce the residue-residue contacts of all amino-acid
sequences for a given polypeptide length ranging from
pentamer to heptamer. We provide a discussion in Sec.
IV of what is required for extending perfect network
designs to more realistic protein systems and ideas
currently being pursued.

II. MODEL DESCRIPTIONS

A. Potential-energy function

+4 g g [r, ' +f(g;, g )r,
i =1 j=i+2

(2.1)

Here the amino-acid monomers have been numbered
sequentially along the bond backbone. Angle 0 mea-
sures the bend away from linearity for the two bonds
impinging on monomer j. The distance between mono-
mers i and j has been denoted by r, . Monomer species
are indicated by parameters g„.. . , g„, with value +1
for A and —1 for B. The function f (g;, g~ ) may be writ-
ten as follows:

(2.2)

it equals —1 for an AA pair, —
—,
' for a BB pair, and + —,

'

for an AB pair. In all of the calculations reported below
the bend force constant K has been assigned the value —,'.

For the purpose of numerical computation it is useful
to define a laboratory fixed coordinate system to measure
orientation angles for the bonds. Let these be denoted by
a1, . . . , u„1, as shown in Fig. 1. By convention coun-
terclockwise rotations will be taken as positive. If amino
acid 1 is assumed to remain at the origin, then the Carte-
sian coordinates of the other n —1 particles are given by

i —1 i —1

x, = g cos(aj), y, = g sin(a, ) .
j=l j=1

Also

J 1 j—1

r,~
= g cos(ak ) + g sin(ak )

2

(2.3)

(2.4)
k=i k=i

and

FIG. 1. The laboratory fixed coordinate system to measure
orientation angles a; for bonds. By convention counterclock-
wise rotations will be taken as positive and al is zero.

Our model polypeptides consist of linear strings of
structureless "amino-acid" monomers that can be either
of two types, A and B. The bonds connecting neighbor-
ing monomers have fixed unit length, but successive
bonds can change direction by a bend degree of freedom
at each nonterminal monomer. This family of model
molecules resides in two-dimensional Cartesian space.

The potential-energy function for the general n-mer
polypeptide is

n —1

@=K g [1—cos(8 )]
J =2

n —2 n
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0, =a, ,
—a, (2~i ~n —l) . (2.5) A A

We adhere to the convention displayed in Fig. 1 where
u, =O. Derivatives with respect to orientation angles a
can be easily obtained for use in minimization algorithms.

A A
2

B

B. Amino-acid sequences and protocols

While native polypeptides have natural directionality
by the fact that they have an N terminus and a C ter-
minus, our model peptides have no such directionality;
sequence AABB, for example, is the same for all purposes
as BBAA. Although these sequence degeneracies can be
lifted by placing groups C (N terminus) and D (C ter-
minus) on the polypeptide ends, such a scheme would add
unwanted complexity to our peptide model at this point.
We instead have chosen the following convention for el-

iminating symmetries in sequence space: directionality is
defined by taking the sequence with the larger string of
A's as scanned from left to right (i.e., alphabetical order).
Thus, in the example given above, only AABB is retained
while BBAA is eliminated from consideration. Formally
for any polypeptide of length n, we can then enumerate
all possible remaining sequences: for the case of the
(2m)-mer we have 2 '(2 + 1) possible sequences, while
there are 2 (2 + 1 ) possible sequences for the (2m + 1)-
mer.

In addition, a second convention is required in order to
decide among structural alternatives when geometric
multiplicities are found for the global energy minimum of
certain sequences. For example, Fig. 2 shows two ener-

A A B

getically equivalent global energy structures for the ami-
no acid sequence AABBAA; these structures are mirror
images and only differ in their specific contacts, o.; . In
such cases, we choose one among the n-fold energy de-
generates by invoking the convention that the conformer
which minimizes the sum of contact labels i and j is the
desired structure:

min g g —,
' [(i +j)(o., + l ) ] (2.6)

where n is the number of residues and o., =1 or —1 for

FIG. 2. Two energetically equivalent global energy structures
for the amino-acid sequence AABBAA; these structures are
mirror images and only dier in their specific contacts, o.;j. In
such cases, we choose one among the n-fold energy degenerates
by invoking the convention that the conformer which minimizes
the sum of + 1 contact labels i and j is the desired structure.

TABLE I. Sequence and structural database for 2D pentamer. All sequences studied are given in the
first column. The columns denoted by a; together specify the orientation angles in a laboratory fixed
frame for the global energy structure of each sequence, where o.&=0 by convention (see Fig. 1). The
columns denoted by o.,k indicate the nonbonded contacts which are present (+ 1) and those which are
not (

—1) for the global energy structure of each sequence.

Sequence

AAAAA
AAAAB
AAABA
AAABB
AABAA
AABAB
AABBA
AABBB
ABAAB
ABABA
ABABB
ABBAB
ABBBA
ABBBB
BAAAB
BAABB
BABAB
BABBB
BBABB
BBBBB

(deg)

8
112
54

111
8

60
30
0

112
111
111
86
44

350
353

0
350
103

18
17

(deg)

120
172
113
102
120
172
117

0
172
120
98

171
144

52
104

0
101
163
121
119

(deg)

180
160
225
101
180
74

202
0

160
231

98
146
189
153
97
0

92
211
179
180

1
—1

1

—1
—1

1

1

1
—1
—1

1
—1
—1

1
—1
—1

1
—1

1
—1

1
—1

1
—1
—1

1
—1
—1

1
—1
—1
—1
—1

1

1

1

—1
—1

1

1
—1
—1
—1
—1
—1
—1

1
—1

1
—1

1
—1

1

1

2s

1
—1

1
—1

1
—1
—1
—1
—1
—1
—1

1
—1
—1
—1
—1

1

1

3s
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contact or noncontact.

C. Global energy search procedure

The potential function described above is simple
enough so that Monte Carlo searches can be reasonably
exhaustive and also chemical "intuition" for the structure
optimality can be invoked. We have used both pro-
cedures to determine the global energy minimum for each
sequence of each polypeptide length n ~7. The Monte
Carlo and minimization procedure involved heating a
given n-mer sequence to reduced temperature 2 X 10 and
sampling configurations every 1 X 10 steps during a
5X10 step run. The resulting 50 configurations were
minimized by a Broy den-Fletcher-Goldfarb-Shanno
(BFGS) minimization algorithm. To provide a check on
the Monte Carlo search results, we also minimized alter-
native structures derived from chemical intuition, where
the possibility of a larger number of favorable contacts
was found or where angle strain was not as great as that
found by the Monte Carlo procedure. Rarely did we find

structures in this way which were lower in energy than
that found with the Monte Carlo —minimization scheme.
Tables I—III lists the sequences investigated by the global
energy search described above (see convention definitions
defined above) and the global minimum bond angles a;
and contacts o.;. for polypeptide sizes n =5, 6, and 7.

D. Structural diversity displayed by peptide model

It is obvious from Eq. (2.1) that 4 includes two types
of interactions, backbone bend energy and Lennard-Jones
interactions between nonbonded monomers. These types
come into convict in establishing the global energy
minimum for any sequence; only by bending the back-
bone is it possible to attain substantial energy lowering
through attractive nonbonded pair potentials. Changing
the sequence of A's and B's shifts the balance between
competing N contributions and can produce a diversity
of minimum-N structures.

Figures 3 —6 provide global energy structures for
di6'erent sequences which are representative of the

TABLE II. Sequence and structural database for 2D hexamer. See Table I caption.

Sequence
CX2 CX3 CX4 Q5

(deg) (deg) (deg) (deg) 0 13 c714 o15 0 16 24 ~25 26 35 ~36 ~46

AAAAAA
AAAAA8
AAAABA
AAABAA
AAAABB
AAABAB
AAABBA
AABAAB
ABAAAB
BAAAAB
AABABA
ABAABA
AABBAA
AAABBB
AABAB8
ABAABB
BAAABB
AABBAB
ABABAB
BAABAB
AABBBA
ABABBA
BAABBA
AABBBB
ABABBB
BAABBB
ABBABB
ABBBAB
ABBBBA
BABABB
BABBAB
8BAABB
ABBBBB
BABBBB
BBABBB
BBBBBB

60
112

1

111
53

109
60

112
340

1

112
29

111
60

112
28
29

112
19
17

111
348

2
111

3
17
45

1

333
0
0

349
102

16
16

59 171
172 180
172 173
61 173

172 161
113 225
92 176

172 180
171 225
91 151

113 121
114 173
117 201
98 95

172 69
171 161
139 170
117 201
120 231
79 190
67 164
92 177
18 105

353 54
10 309

3 4
13 270

144 189
99 164
11 318
86 171
0 0
4 105

161 212
120 178
117 180

179
168
285
181
161
124
265
164
210
170
232
285
181
96
12

161
197
100
180
169
208
264
190
154
262

3
208
157
190
290
171

0
168
254
182
181

—1 —1
—1 1

—1 —1

1 1
—1 —1

—1 —1
—1 —1

—1 —1

1 —1

—1 —1
—1 —1

—1 —1
—1 —1

1 —1
—1 —1
—1 —1

1 —1
—1 —1
—1 —1
—1 —1
—1 —1
—1 —1
—1 —1
—1 —1
—1 —1

1 1
—1 —1
—1 —1

—1 1

1 —1
—1 1
—1 1
—1 —1

1 —1
—1 1

1 —1

1 —1
—1 1
—1 1
—1 1

1 1
—1 —1
—1 —1
—1 —1

1 1

1 —1

1 —1
—1 1
—1 1
—1 1
—1 —1
—1 —1
—1 —1
—1 —1
—1 —1

1 —1
—1 1

1 1
—1 1
—1 —1
—1 —1

1 1

1 1

1 1

—1 1 1

1 —1 —1
—1 —1 —1
—1 1 1
—1 —1 —1
—1 1 —1
—1 —1 —1

1 —1 —1
—1 —1 —1

1 1 —1

1 —1 —1
—1 —1 —1
—1 1 —1
—1 —1 —1

1 —1 —1
—1 —1 —1

1 —1 —1
—1 1 —1
—1 —1 —1
—1 1 —1
—1 —1 1
—1 —1 —1
—1 —1 1
—1 —1 —1

1 1 1
—1 —1 —1
—1 —1 —1

1 —1 —1

1 1 —1

1 —1 —1
—1 1 —1
—1 —1 —1
—1 —1 1
—1 —1 —1

1 1 —1

1 1 —1

1 —1 —1
—1 —1 —1
—1 —1 1

1 —1 —1
—1 —1 —1

1 —1 1
—1 1 —1
—1 —1 —1
—1 —1 —1
—1 —1 —1

1 —1 1
—1 —1 1
—1 —1 —1
—1 —1 —1

1 1 —1
—1 —1 —1
—1 —1 —1
—1 —1 1

1 —1 1

1 —1 —1

1 —1 —1
—1 1 —1
—1 1 —1
—1 1 1
—1 —1 —1
—1 —1 —1

1 1 —1
—1 —1 —1
—1 —1 —1
—1 —1 —1
—1 —1 —1
—1 —1 —1

1 1 —1
—1 —1 —1
—1 —1 —1
—1 —1 —1
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TABLE III. Sequence and structural-database for 2D heptamer. See Table I caption.

Sequence
CXp

(deg)
CXg

(deg)
CX4

(deg) (deg)
(Xg

(deg) N ~g &4 ~16 17 ~24 25 ~as z~ ~s ~36 37 46 47 ~57

AAAAAAA
AAAAAAB
AAAAABA
AAAABAA
AAAAABB
AAAABAB
AAAABBA
AAAABB8
AAABAAA
AAABAAB
AAABABA
AAABBAA
AAABABB
AAABBAB
AAABBBA
AAABBBB
AABAAAB
AABAABA
AABABAA
AABAABB
AABABAB
AABABBA
AABABBB
ABAAAAB
ABAAABA
ABAAABB
ABAABAB
ABAABBA
ABAABBB
BAAAAAB
BAAAABB
BAAABAB
BAAABBB
AABBAAB
AABBABA
AABBBAA
AABBABB
AABBBAB
AABBBBA
AABBBBB
ABABAAB
ABABABA
ABABABB
ABABBAB
ABABBBA
ABABBBB
BAABAAB
BAABABB
BAABBAB
BAABBBB
ABBAAAB
ABBAABB
ABBABAB
ABBABBA
ABBABBB
BABAABB
BABABAB
BABABBB

107
352

61
307

61
359

53
249

0
0

308
0

53
249

52
111

8
60
50
60
0
0

60
112
248
111
112
112
248

17
18
6

331
331
333
26
30
19
19
6

248
112
111
248
248
249
332
340

17
3

86
86
92

353
324

21
330
30

353
241
172
306
172
248
105
188
352
300
307
331
113
257

74
103
120
172
299
172
248
112
172
172
188
172
172
113
189
26
79

313
221
243

58
345
117
66
21

349
240

61
120
270
276
351

32
281
348

6
172
173
172
48

336
270

81
141

293
180
180
247
180
239
134
201
240
188
195
244
225
255
119
119
180
180
291
180
240
92
70

226
135
225
173
142
201
137
190
253
191
159
145
244
202
166
120

3
129
173
231
184
234

11
144
169
260
348
203
203
159
149
78

210
89

174

239
180
181
134
169
128
222
197
181
180
187
159
122
252
219

59
181
180
179
167
129
176

9
277
134
214
285
229
202
197
170
141
162
179
123
198
98

208
183
106
127
181
128
99

134
109
151
188
176
51

254
190
267
168
136
189
198
198

184
192
293
127
168
230
306
194
180
224

75
179
64

262
263
316
180
292
179
166
230
263
322
264

22
214
187
314
206
169
196
239
117
192
234
179
40

108
209
167
131
292

70
175
88

116
169
163
277
151
246
190
189
190
146
160
175
246

—1
—1

1
—1

1
—1
—1

1
—1
—1
—1
—1
—1
—1
—1
—1
—1

1
—1

1
—1
—1

1

1

1

1

1
—1

1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1

1

1

1
—1
—1
—1
—1
—1

—1

1

1
—1

1
—1
—1
—1
—1
—1
—1
—1

1
—1
—1
—1

1

1
—1

1
—1
—1
—1

1

1

1
—1
—1
—1
—1
—1
—1

1

1
—1
—1

1
—1
—1
—1

1
—1

1
—1
—1
—1
—1
—1
—1
—1

1

1
—1
—1
—1
—1
—1

1

1
—1
—1
—1

1
—1
—1
—1

1
—1
—1

—1
—1
—1
—1

1
—1
—1
—1

1
—1
—1

1
—1
—1

1
—1
—1
—1

1
—1

1

1
—1
—1
—1

1
—1
—1

1
—1
—1

1
—1
—1
—1

1
—1
—1

1
—1

1
—1
—1

1
—1

1

1

1

1
—1

1

1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1

1

1

1

1

1

1

1
—1
—1
—1
—1
—1
—1
—1
—1
—1

1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1
—1

1
—1
—1
—1
—1
—1
—1
—1
—1
—1

1

1

1

1

1
—1
—1
—1
—1
—1
—1
—1

1
—1
—1

1
—1
—1
—1
—1

1
—1
—1

1

1
—1

1
—1
—1
—1
—1
—1
—1

1
—1

1
—1
—1
—1
—1
—1
—1
—1
—1

1
—1

1
—1
—1
—1

1
—1

1
—1
—1
—1
—1
—1
—1
—1

1

1
—1

1
—1
—1
—1
—1

1

1
—1

1
—1

—1 —1
—1 —1

—1 —1
—1 —1

—1 —1

1 1

—1 —1 —1 —1 —1

1
—1
—1
—1

—1 —1

1 1 —1 —1
—1 —1 —1 —I
—1 1

1 —1
—1 —1 —1 —1 —1

1 —1 —1 —1 —1
—1 —1 —1 —1 —1

1 1

1 —1

1 —1

1 —1

1 1

1 —1

1 1 —1

1 —1 —1

1 —1 1

1 —1 —1

1 1 1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 1

1 1 —1

1 —1 —1

1 —1 —1

1 —1 —1

—1 —1

1 —1
—1 —1

1 1

1 —1

1 —1

1 —1

1 1

1 1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1

1 1

1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1

1 —1

1 1

1 —1

1 —1

1 —1

1 1

1 1

1 —1

1 —1

1 —1

1 —1

1 —1

1 1

1 1

1 —1

1 —1

1 —1

1 —1 —1

1 1 —1

1 —1 1

1 —1 —1

1 —1 1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 1

1 —1 —1

1 —1

1 1

1 —1

1 —1

1 —1

1 —1

1 —1 —1 —1 —1 —1 —1
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TABLE III. (Continued. )

Sequence
A2 0.'3 A'4 CX5 a6

(deg) (deg) (deg) (deg) (deg) CT13 O 14 %15 o 16 17 ~24 o 25 26 o 27 o 35 36 o 37 o 46 o 47 o 57

BBAAABB
BBAABBB
ABBBAAB
ABBBABB
ABBBBAB
ABBBBBA
ABBBBBB
BABBABB
BABBBAB
BBABBBB
BBABABB
BBABBBB
BBBABBB
BBBBBBB

348
10
48

350
2

25
11

101
8

103
347
346

1

359

15 126 158
292 210 175
146 190 213
352 52 153
100 165 189
41 143 202
12 309 206

103 119 223
325 224 181
162 212 257

15 126 158
242 183 177
345 241 184

62 163 180

184 —1

180 —1

205 —1

172 —1

88 —1

190 —1

193 —1

281 1

189 —1

302 1

182 —1

134 —1

178 —1

180 —1

1 —1 —1

1 —1 1

1 1 1

1 —1 1—
1 —1 1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 1 1

1 —1 —1

1 1 1

1 —1 —1

1 —1 1

1 —1

1 —1

1 1

1 —1

1 1

1 —1

1 —1

1 —1

1 —1

1 —1

1 —1

1 1

1 —1

1 —1

1 1 1

1 1 —1

1 —1 —1

1 —1 1

1 —1 —1

1 1 —1

1 —1 1

1 —1 —1

1 1 —1

1 —1 —1

1 1 1

1 —1 —1

1 1 1

1 1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 1 1

1 —1 —1

1 1 —1

1 1 1

1 —1 1

1 —1 —1

1 —1 —1

1 —1 —1

1 —1 —1

1 1 —1

1 —1 —1

1 —1

1 —1

1 —1

1 —1

1 —1

1 —1

1 —1

1 1

1 —1

1 —1

1 —1

1 —1

1 —1

1 —1

structural diversity present in our peptide model. Using
the hexamer polypeptide length as an example, the
lowest-energy conformer for sequence BBAABB is linear
(Fig. 3), sequence AAABAA has as its lowest energy
structure a "P-sheet" motif (Fig. 4), sequence AABABB
may be classified as "helical" (Fig. 5), while sequence
AAABAB provides an example of a lowest-energy struc-
ture which is globulelike (Fig. 6). These representative
structures reveal more clearly the roles of amino-acid
types A and B in mixed sequences using the parlance of
protein chemistry. Due to the stronger A-A attraction as
compared to B-B, residue type A is more likely to form
secondary structure "hydrogen bonds" (such as the P-
sheet structure in Fig. 4 and the helix in Fig. 5) or to be
more hydrophobic (by "maximizing" a "hydrophobic
core" as in Fig. 6). Due to its comparatively weaker in-
teraction, amino-acid type B is found to be analogous to
the glycine residue in that it is usually found at a turn
(Fig. 4) or on the polypeptide exterior (Fig. 6) in mixed
sequences. The reasonable structural diversity present in
our simple polypeptide model and the associations which
exist with real protein chemistry provide sufficient im-
petus for defining neural-network architectures which
perform perfectly for these small model systems in order
to provide insight into models for larger and more realis-
tic polypeptide models.

III. NEUTRAL-NETWORK DESIGNS

Neural-network approaches for performing learning
functions such as pattern recognition are motivated by
the fact that the central nervous system is known to excel
at such tasks [1]. In application to the protein-folding
problem, neural-network algorithms are required to pre-
dict patterns of local and global chain-folding preferences
of the native protein (neuronal output) from the amino-

E=g g(0,' —0,')
i =1 j=l

(3.1)

where M is the number of output units, N is the number
of presented input patterns, 0, is the observed structure
output, and 0, is the calculated output. The calculated
output is usually determined as follows:

L
A,'J= g w, &I/+bj

k=1

with an output response of

0,' = I /[ 1+exp( 2,' ) ] .

(3.2)

(3.3)

In this study, we have used the discontinuous response
function

A
4 P

A

acid sequence (input to the network). The common to-
pology of neural networks often used to predict these
conformational preferences is known as feedforward-back
propagation networks with or without hidden layers [1]
(Fig. 7). In this case, each amino acid of a protein se-
quence is represented by a small set of input channels
which are directly connected, or fed into, hidden neurons
which in turn connect to output neuron(s) representing a
secondary or tertiary-structure classification. The input
channels generally correspond to both the amino acid
whose most likely secondary or tertiary structure is being
predicted, while the remainder supply a context (or win-
dow) of n amino acids preceding and succeeding this ami-
no acid along the backbone. The learning, or training,
phase of the neural-network algorithm involves minimiz-
ing the function

B B A B B A A A

FIG. 3. The lowest-energy conformer for sequence BBAABB
is a linear structure.

FICx. 4. The lowest-energy conformer for sequence
AAABAA is a "P-sheet" motif.
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FIG. 5. The lowest-energy conformer of sequence AABABB
may be classified as "helical. "

~ ~ ~ o

Qwmn

~ ~ ~ ~ ~

0,' =sgn(A, '
) (3.4) FIG. 7. A generic feedforward neural-network architecture.

BE
Awp

GM .
k

BE
Ab, = —y

J

(3.5)

(3.6)

where y is a damping, or "learning, " factor.
In previous applications of feedforward neural net-

works for predicting secondary [5—15] and tertiary
[15—20] protein structure, the sources of error described
in the Introduction may have contributed to their dimin-
ished predictive accuracy: database incompleteness,
nonoptimal network topologies, and mathematical optim-
ization problems. Our approach, involving a much
simpler chemical model, will ultimately allow us to
deconvolute these debilitating attributes in order to assess
their impact on optimal neural networks for predicting
three-dimensional proteins with full sequence diversity.
As described in Sec. II, we have eliminated the problems
of database degradation altogether by finding the global
energy structures to the limit of numerical precision for
all possible sequences of polypeptides composed of two
amino-acid types with lengths ranging from trimer to
heptamer. In this section, we will demonstrate the ex-
istence of optimal topologies which specify whether two

B ~ -..6
4

A

A-.. "A
3

A

FIG. 6. The lowest-energy conformer for sequence
AAABAB provides an example of a globular structure.

where L is the number of input units, Ik is the input, u k

is the weight of the connection between the upstream
neuron k, and the downstream neuron j, and b. is the
bias associated with the output neuron j. When a con-
tinuous response function such as Eq. (3.3) is employed, a
steepest-descent algorithm is often used for minimizing
the function in Eq. (3.1) with respect to the free parame-
ters m k and b . The parameters m.I, and b are updated
(or "backpropagated" through the network from output
to input) by the following derivative expressions:

residues are in contact (a distance of 1.34 times backbone
bond length, or less) for the full sequence database for
each polypeptide length. The perfect prediction of the
binary amino-acid contact matrix for each sequence in
turn defines the tertiary structure perfectly.

We design network topologies which reproduce with
complete accuracy whether two amino acids are
(o.;.=+1) or are not (o;.= —1) in contact for all possi-
ble sequences for a given individual amino-acid pair.
This is accomplished, individually, for all possible non-
bonded i,j pairs, where i +2~ j ~n. This approach is to
be contrasted with the simultaneous solution of all con-
tact pairs for all sequences. The latter method likely in-
volves a nonintuitive network architecture which can
only be found by exhaustive Monte Carlo searches. The
parameter spaces searched in this latter case ~ould in-
volve two multiple minima problems: (1) the determina-
tion of the optimal number of hidden layers and number
of hidden neurons within a layer, and (2) given a certain
number of hidden layers and neurons, the search for the
optimal solution using a starting architecture in which all
possible connections (input~ hidden, hidden ~ output,
and input ~ output) are present. The benefit of the form-
er tactic is that network topologies can be designed "by
hand" with specific Boolean functions [1], which we dis-
cuss below. In this case, given an appropriate Boolean
function, it is easy to derive the remaining architecture to
optimally reproduce the observed contacts. The multiple
minimum problem then reduces to a search for the best
Boolean function which, together with its remaining ar-
chitecture, reproduces the observations with the smallest
number of network variables with absolute accuracy.
Therefore we have avoided some aspects of the
mathematical optimization problems usually encountered
in conventional applications of neutral networks to pro-
teins structure prediction. Furthermore, our hand-
designed architectures make obvious the network topolo-
gies which may successfully be applied to neural-network
predictions of tertiary structure for proteins with the usu-
al sequence diversity.

We have considered three network architecture types
to predict all individual contact values for all possible se-
quences of the pentamer, hexamer, and heptamer po-
lypeptide lengths. They are distinguished from one and
other by a Boolean function which initially di6'erentiates
between on (+1) and off ( —1) contact values, using the
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discontinuous response function in Eq. (3.4). These func-
tions are presented in Figs. 8 —10 using the notation con-
vention in Ref. [I]. In Figs. 8 and 9, the Boolean func-
tion involves the direct connections between inputs i and

j with the output neutron k, the latter which describes
the value of contacts i,j. Figures 8 and 9 differ only in
the assigned weights m; and w k, which are both +1 in
Fig. 8 and both —1 in Fig. 9. Thus the network defined
by the Boolean function in Fig. 8 (Fig. 9) yields a
2,'k = +2 value if the input neurons of i and j are both A
(B) residues, A,'k =0 if the input neurons are A and B or
B and A, and A,'k = —2 if both input neurons are B (A)
amino acids. Figure 10 corresponds to a Boolean func-
tion that discourages predictions of favorable A and B or
B and A contacts ( 3,'k = —4), but encourages like-like in-
teractions ( AA and BB) with a value of A,'k =0. The use
of a discontinuous output response function with a —1

bias value would give a+ 1 output value for Fig. 8 (Fig. 9)
for AA (BB) interactions, and —1 value otherwise; for
the central Boolean function described in Fig. 10, a
discontinuous response function with a bias of + 1 would
predict all AA and BB favorably and disallow AB and
BA contacts. However, our interaction potential de-
scribed in Eqs. (2.1) and (2.2) does not produce such a
simple relation between sequence and structure as these
individual Boolean functions would alone indicate. In
the case of network types described by the Boolean func-
tions in Fig. 8 (Fig. 9), not all A,.A (B,.B ) contacts are
favored, nor are all B,B (A;A ) contacts forbidden. The
remaining network architecture must then turn on and
turn off those sequences whose contact values are not pre-
dicted correctly by that central Boolean function. For
networks described by the Boolean function in Fig. 10,
not all A;A and B;B pairs are favored, so that the
remaining architecture in this case must (only) turn off
those sequences where A;A or B,B. are not in contact.
The benefit of these Boolean function types is that they
correctly categorize a large portion of the sequences into
on and off contact values using only two or five weights
and at most one hidden neuron. Additional architecture
is then required to correct the individual Boolean func-
tion results on a much smaller subset of the sequence da-
tabase for a given contact value. For notational conveni-
ence we will refer to the network type in Fig. 8 as NN1,
that in Fig. 9 as NN2, and that in Fig. 10 as NN3. Table
IV provides an explicit architecture for the optimal net-
work solution for the there network types for the full se-
quence database of the heptamer o.» contact predictions.

FIG. 9. Central Boolean function for neural network 2.

Tables VIII —XXXV, provided as supplementary material
[33] or obtainable from the authors, supply optimal net-
work solutions for the three network types for the full se-
quence database for all contacts for polypeptide sizes
ranging from pentamer to heptamer.

Tables V —VII incorporate a synopsis of the number of
network variables required to reproduce the entire con-
tact database for each contact o. ; of the three network
architecture types —NN1, NN2, and NN3, for the penta-
mer, hexamer, and heptamer, respectively. The next to
last entry row indicates the number of variables which
should be subtracted from the sum of previous entry
rows, which are the number of hidden neurons and their
input connections shared by contacts o. , and o.k&. For
example, a comparison of NN3 in Table IV (o. ,3) and
Table XXIV (o,4) would show that these two networks
share one hidden neuron with input connections from in-

puts 1 and 6. The net result, tabulated in the last row en-

try in Tables V —VII, indicates which network architec-
tures perform optimally (all reproduce the database per-
fectly). The total number of network variables (sum of all
weights and biases for all contacts) is consistently 50% of
the number of contact observables (number of possible i,j
contacts times the number of sequences) regardless of se-
quence length. There is quite a large spread around the
50% average when individual contacts are considered,
and we return to this point in Sec. IV.

The relative performance of the three networks can be
attributed to the interaction potential, the polypeptide
length under consideration, and the convention of our re-
taining sequences with a larger number of A's when scan-

FIG. 8. Central Boolean function for neural network 1. FIG. 10. Central Boolean function for neural network 3.
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TABLE IV. Network architectures for heptamer contact o 13. Table rows refer to the entire network
architecture when using the central Boolean functions in Fig. 8 (NN1), Fig. 9 (NN2), and Fig. 10
(NN3), respectively. Columns denoted by "Weights" refer to the weight variables found for the optimal
network for connections between the input channels and hidden layer neurons (i~h), hidden neurons
to output neurons (h ~0), and input channels connected directly to the output neurons (i —+0). The or-
dering of weights for the i~h and i ~0 columns imply weight subscripts w», w», m3j etc., where the
numerical values refer to the first, second, third, etc. , amino acids of a sequence as scanned from left to
right, and j is the hidden or output neuron of interest. The columns denoted by bI, and b, are the value
of the bias for hidden neurons and output neurons, respectively.

NN1

Weights (i~h)
0,0,0,1,0,—1, —1

0, —1,0, —1, 1, —1,0—1, 1, —1, —1,0, —1,0

+2
+2
+3
+3
—4

Weights (h ~0)
+1
+1
+1
+1
+2

Weights (i~o)
1,0,1,0,0,0,0

&0

1,0,0, —1,0,0,0
1,0,0,0, —1,0
1,1,0,0,0,0,0

1, —1, 1,0,0,0,0
0,0,0,1,1,1,1

1,0, 1,0, —1, —1, —1

1,0, 1, —1, —1,0, —1

+1
+1
+1
—2
—3
—4
—4

+ 1

+1
+1
+2
+2
+2
+2

—1,0, —1,0,0,0,0

1,0,1,0,0,0,0
1,1,0,0,0,0,0

1,0,0,0,0, —1,0
1,0,0, —1,0,0,0

0, —1,0, 1,0,0, —1

—1, —1,0,0, —1,0, 1

0, —1,0, —1, 1, —1,0

—1

+1
+1
+1
+2
+2
+2
+3
+3

+4
+1
+1
+1
+1
+1
+1
+1
+1

—2,0, —2, 0,0,0,0

ning left to right (see Sec. II). Between these three archi-
tectures, NN2 is clearly the least optimal of all networks;
this is most certainly due to the interaction potential [Eq.
(2.1) and (2.2)] whereby A;AJ contacts are more highly
favored then B;B~ contacts, so that the Boolean function
which characterizes NN2 incorrectly disables the more
prevalent positive value contact and overenables the

more unlikely B,.B interaction. For this reason NN1
performs optimally for the case of the pentamer and hex-
amer and quite well for the heptamer. However, NN3
performs optimally as the polypeptide length increases to
the heptamer length. The convention of retaining a par-
ticular sequence direction results in the greater success of
NN1 for predicting contacts at the beginning of the se-

TABLE V. Summary of network variables for NN1, NN2, and NN3 for the 2D pentamer. A sum-
mary of the number of weights and biases for perfect network architectures for NN1, NN2, and NN3
(see text). The row denoted "shared" indicates the number of hidden neurons and their input connec-
tions which are redundant between two or more o.;, contacts. The row denoted "total" provides the to-
tal number of network variables required to predict the tertiary structure of all sequences.

Pentamer

contact

O&4

&s
~Z4

~vs
~3S

Weights

10
8
9

13
10
17

NN1

Biases Weights

16
12
10
15
12
14

NN2

Biases Weights

12
11
10
17
11
16

NN3

Biases

Shared

Total 60

14

65 14 64 14
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TABLE VI. Summary of network variables for NN1, NN2, and NN3 for the 2D hexamer. See Table
V caption.

Hexamer

contact

~i4
~&s

~Z4

~2s
0z6
3s

~46

Weights

11
17
19
15
25
20
26
23
11
17

NN1

Biases Weights

19
25
23
15
28
24
24
20
11
14

NN2

Biases Weights

14
20
18
15
24
21
22
22
12
16

NN3

Biases

Shared

Total

35

149

10 16

167

quence, such as 0», because a larger pool of A, A3 se-
quences are present at this i,j position (see Tables I—III).
NN2 predicts contacts optimally at the other end of the
chain (o 3~ in the pentamer case, for example) because of
the greater number of 8„28„sequences for this contact.
NN3 becomes the optimal network as the polypeptide
length increases suf5ciently to minimize end effects, so
that the number of A,.A and 8;8 sequence possibilities
for interior i,j contact position are equal, or nearly so.
NN1 still competes effectively with NN3 for network op-
timality of a small number of intermediate heptamer con-
tacts due to the greater number of positive A;A - contacts
relative to the number of positive 8;8 contacts, due to
the interaction potential described in Sec. II. However,
when summed over all contacts, NN3 is superior.

The polypeptide lengths which we have considered
here are much smaller than those conventionally seen in
real protein databases. However, the heptamer length is

sufhcient for establishing the network topology trend to-
ward large polypeptide sequences, and the Boolean func-
tion in Fig. 10 is clearly the optimal of the three networks
considered in the limit of large sequence length. We note
that a combination of network topologies is optimal for
the pentamer and heptamer by strict definition (i.e., a
minimum in the number of network variables by choos-
ing NN1, NN2, or NN3 for each contact). However,
NN3 is competing effectively with the combination net-
work at the heptamer length and will likely become op-
timal in the length limit due to a greater number of
shared hidden neurons between contacts. Furthermore,

TABLE VII. Summary of network variables for NN1, NN2, and NN3 for the 2D heptamer. See
Table V caption.

Heptamer

contact

~i4
ops

24
02s
026
~27
~3s

~46

~sr

Weights

26
20
36
41
15
32
44
54
32
36
43
27
34
34
38

NN1

Biases

5

4
7
7
4
6
9

10
6
7
8
5
6
6
6

Weights

32
32
44
39
14
41
49
59
39
33
47
32
27
30
30

NN2

Biases

7
7
9
8
2
9
9

12
9
7

10
7
6
6
7

Weights

36
23
33
26
17
39
40
51
27
38
39
26
29
27
32

NN3

Biases

8
6
8
5
4
9
9

10
6
8
9
7
7

8

Shared

Total

34

478

20

528 108

32

451

13

98
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the potential function described by Eqs. (2.1) and (2.2)
may be somewhat exaggerated in its interaction strength
between residues relative to that in real proteins. NN3
should have a greater chance of success as more subtle in-
teractions are introduced into a force field, since it does
not discriminate between degrees of attractive interac-
tions, but instead differentiates on commonly observed,
and ultimately transferable, physical-chemistry traits of
attractive versus repulsive interactions. Based on the
above analysis, we believe that the architecture of NN3 is
the most robust for transfer to larger polypeptides in two
dimensions and ultimately to real protein studies of in-
terest.

IV. RESULTS AND DISCUSSIDN

In addition to the highly desirable trait of neural-
network predictive accuracy, insight into the means by
which neural networks learn the higher-order informa-
tion in sequence-structure correlations, i.e., the chemistry
of amino-acid interactions, would be equally valuable. It
has been a well-documented fact that "good" training on
a database may actually result in overtraining so that
generalization by the associative-memory algorithm is
lost [1,8, 15]. In regard to the protein-folding problem,
this loss of generalization results in the inability of the
network to recognize chemical relationships between se-
quence and structure. We believe that the optimal neural
networks presented in the preceding section for our two-
dimensional polypeptides indicate that insightful learning
is possible and may provide clues as to how networks can
be devised and trained to predict the mapping between
sequence and tertiary structure for more realistic po-
lypeptides and proteins. In this section we comment on
the traits that optimal neural networks should satisfy in
order to bring to fruition both prediction accuracy and
genuine learning strategies. As concluded in the preced-
ing section, we believe that NN3 (Fig. 10) is the best gen-
eral architecture for neutral-network predictions of pro-
tein structure, and it is on this network which we base the
following discussion.

The central Boolean function depicted in Fig. 10 alone
recognizes a very important relation between sequence
and structure. The potential-energy function defined in
Eqs. (2.1) and (2.2) strongly favors interactions between
A;A residues, and to a lesser extent, B;B residues, while
A;B (B;A ) interactions are unfavorable. The recogni-
tion of this particular sequence-structure relationship re-
sults in 74—78 % contact prediction accuracy for NN3
before correction. However, the representation of the in-
put is crucial for exploiting the architectural feature just
described. Our input representation of amino acids A
and B of + 1 and —1, respectively, would be indicative of
a chemical feature of self-attraction, such as interaction
between two hydrophobic groups, which naturally arises
in the interaction potential described in Eqs. (2.1) and
(2.2). Given the appropriate input representation, the ar-
chitecture of NN3 exploits this relevant "second"-order
information [13] by succinctly encoding the nonbonded
interaction into the central Boolean function.

In addition, long-range sequence information is re-
quired to predict even local contacts. The dedicated neu-
ron indicated by 1,0,0,0,0,—1,0 input weights for the o. ,3

contact for the heptamer in Table IV provides such an
example, where an amino acid far removed from the pair
under consideration dictates quite strongly the fold out-
come. Recent neural-network applications which use
"windows" of amino acids, i.e., local sequence informa-
tion, for predicting distance matrices [19,20] of realistic
polypeptides and protein structures would be deficient in
two respects. First, prediction accuracy is lost to some
significant extent. We have found that many corrections
to the central Boolean function are possible with only one
hidden neuron with input from at least this one impor-
tant amino acid; this is due to common sequence informa-
tion among a number of sequences which signals a fold-
ing outcome. Second, insight may be lost as well. It is
quite plausible that amino acid(s) outside the window
may be an especially important residue marker for signal-
ing a particular fold, as in the u&3 example exhibited by
our two-dimensional (2D) polypeptides described above.
In a related vein, shared hidden neurons between contact
outputs may have special significance: particular amino
acids (those whose weight connections to that neuron are
nonzero) may be lynchpin residues which determine com-
pound structural features. For example, in the case illus-
trated by the heptamer contact o.

&3, amino acid 7 deter-
mines whether contacts 13, 14, and 15 are on or off, as
well as simultaneous signaling different spatial regions
(contacts 13 and 46) of the native state. The propensity
of shared neurons for NN3 increased with polypeptide
size.

We have also found that a small change in sequence
can result in significant changes in fold (in our model as
to whether a contact is on or ofI) and that networks do
indeed have more trouble with this case. We find that a
dedicated hidden neuron with virtually full input connec-
tivity is required in this case to correctly predict the fold
outcome. We have found that elimination of problem se-
quences (the necessity of having one dedicated neuron to
predict one contact of one sequence correctly) does not
degrade overall performance significantly. For NN3 the
total number of incorrectly predicted sequences is 5 out
of 120 for the pentamer, 13 out of 360 for the hexamer,
and 31 out of 1080 for the hexamer. Thus the acceptance
of some performance degradation such as this may be
desirable in a pragmatic sense, where we find a 33%
reduction in the number of hidden neurons and the num-
ber of weights with only 3—4% performance loss.

Another more subtle aspect of the interplay between
network design and genuine learning is the number of
hidden layers which optimally (fewest number of network
variables) and accurately predict all contact values for all
sequences. Although we have explored network designs
with two hidden layers, never did we find such an archi-
tecture which was more optimal than those presented in
Tables IV —XXX, i.e., architectures containing only one
hidden layer. This seems to be consistent with the net-
work complexity required by our model with only two
amino-acid types; only with greater sequence diversity
should additional hidden layers be important. By the
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same token, we rarely found cases where corrections to
the central Boolean function involved direct connectivity
from the input to the output, indicating that our 2D po-
lypeptide model is not grossly oversimplified.

The networks devised for tertiary structure prediction
of 2D polypeptides may also provide some guidance in
overcoming the well-appreciated multiple-minima prob-
lem in the space of the network variables [1]. In general,
backpropagation algorithms are preferred in spite of the
fact that only local minimum solutions are found. While
researchers may train networks several times with
differing initial guesses to address this deficiency of back-
propagation optimization, the initial neural-network to-
pologies are always fully connected (all weight and bias
variables started with nonzero values), and network vari-
ables which become zero during optimization are not
"pruned out" as sometimes suggested [1]. Our optimal
networks (close to a network global solution) indicate
that sparse input-hidden neutron connections (some
weights equal to zero) are often successful at predicting
the contact outcome correctly for many sequences, while
dense input-hidden neuron connectivity only predicted
the contact correctly for one, or a very small number, of
sequences. These network-design results indicate that
weights which are initially zero, or become so during
backpropagation, should remain so in order to avoid
unprofitable regions of network variable space.

In summary, the construction of neural networks for
our 2D polypeptides with two amino-acid types indicates
that genuine learning strategies are present in the net-
works. It is evident from the above observations that the
central Boolean function described in Fig. 10 successfully
maps a basic sequence-sequence structure relationship—
namely the nonbonded interaction potential in Eqs. (2.1)
and (2.2). When the central Boolean function (or non-
bonded interaction) is not sufhcient for accurately
describing the contact value, additional hidden neurons
are then required to understand the interplay between the
nonbonded interactions and connectivity portions of the
potential. In these cases, the additional hidden neurons
may provide insight into the more general aspects of the
protein-folding problem. The degree of network connec-
tivity necessary between the input and these additional
hidden neurons and how many sequences are affected by
these dedicated neurons provide a means for refining the
protein folding problem as one of strong or weak
sequence-structure mappings [27]. The networks present-
ed here for our simple 2D model have demonstrated that
very few contacts rely on strong sequence-structure rela-
tionships, as indicated by the small degradation in perfor-
mance when dedicated neurons which correctly predict
one contact value for one sequence are eliminated. Hid-
den neurons with sparse input-hidden neuron connectivi-
ty which aid in the correct contact value prediction for
many sequences imply that good network designs might
be able to reveal important residues which dictate the
folding outcome. Finally, thoughtful neural-network
design may deconvolute the problem of multiple minima
in the space of the network variables by isolating the
relevant region with informed initial guesses for weights
and biases.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The successful application of neural networks for a
particular pattern recognition task is stymied by three
problem areas: the poor quality of the database on which
the networks train, network architectures and input rep-
resentations which are improperly chosen, and the
mathematical optimization difficulties faced in finding the
best solution in a multiple-minima network solution
space. The prediction of protein sequence-structure
correlations provides a perfect example of a neural-
network application which incorporates these three detri-
mental traits. In this work we have chosen to take a step
back from more ambitious attempts [5—20] at protein-
structure prediction by defining a simplified polypeptide
model residing in two dimensions with only two amino-
acid types. This allows us the advantage of determining
the native structure for all possible sequences in order to
define a perfect and complete database, at least for po-
lypeptides ranging up to heptamer lengths. With this
complete database we have determined network architec-
tures which both accurately and, we believe, optimally
(fewest number of network variables) reproduce the ob-
served database of sequence-structure relationships. In
this remaining section, we discuss how the insight gained
in this model study might impact on neural-network pre-
dictions of proteins in three dimensions with full se-
quence diversity.

One of the most positive conclusions to be derived
from this work is that genuine neural network insight
into sequence-structure mappings is possible when archi-
tectures are thoughtfully designed. In fact, the nonbond-
ed interaction mathematically described in Eqs. (2.1) and
(2.2) has been encoded into the central Boolean function
(Fig. 10) of our most robust network design of our 2D
model chemistry. We emphasize that the representation
of the sequence input is particularly important for ex-
ploiting this design feature fully. When transferring this
particular architecture to the full complexity of real pro-
teins, an ordering of the 20 amino acids on a hydrophobic
scale [19] ranging from +1 (most hydrophobic) to —1

(least hydrophobic) may be useful. In this case, the cen-
tral Boolean architecture will at least distinguish between
the unlikely hydrophobic-polar contacts from the polar-
polar and hydrophobic-hydrophobic contacts, so that
other hidden neurons can address the subtleties of the rel-
ative nature of the attractive nonbonded interactions
such as hydrogen bonding and salt-bridge formation. If a
different representation is chosen where interactions are
repulsive (net electrostatic monopole assignments of the
amino acids, for example), then the topology of the
Boolean function would still be used, but with the weight
assignments depicted as in Fig. 11.

The suggestion [13,14] that full exploitation of hidden-
layer architectures is not possible due to a scarcity of ex-
amples in a sparse protein database may be unduly pes-
simistic until alternative input representations and archi-
tectures are thoroughly explored. Our simple chemical
model required a neural network with one hidden layer to
successfully predict its structure. Recent predictions of
secondary structure using neural networks have shown
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FIG. 11. Central Boolean function for neural network 3,
which best exploits an "opposites attract" potential-energy in-

teraction.

[8] that hidden-layer architectures perform better than
architectures with no hidden layers and appear to be
abstracting higher-order correlations which can be un-
derstood from a chemical point of view. Demonstrating
that the central Boolean function discussed above actual-
ly has some impact on improving neural-network
tertiary-structure prediction would also be necessary to
further enhance this point.

In our model, further corrections to the central-
Boolean-function prediction are required when the back-
bone bend portion of the potential plays as an important
role as the nonbonded interaction in determining the na-
tive structure. The model suggests that additional hidden
neurons which provide these corrections may also pro-
vide important insight as well. When many corrections
are possible with one hidden neuron, then the amino-acid
positions connected to this neuron may be an important
signal for the fold outcome, analogous to known cases
where certain amino acids signal initiation or termination
of secondary structure [28] for example. Whether new
sequence-structure signals can be ultimately uncovered
by neural networks in protein structure prediction
remains an exciting possibility.

The self-contained model presented here permits
several obvious future pursuits in the area of protein
structure prediction by neural networks. First, we can
systematically investigate the impact of database degra-
dation on the design of optimal neural-network predic-
tions. This is a particularly insidious problem in the
protein-folding area since virtually all prediction methods
[5—26,29,30] rely to some or significant extent on learn-
ing examples; it is painfully clear that homology model-
ing, statistical methods, and neural-network applications
perform best when applied to protein structural classes
[10,29,30] or to structures with strong sequence homolo-
gies [19,20]. The polypeptide model and neural-network
model architectures described here should allow a sys-
tematic exploration of what degree of prediction accura-
cy is possible when particular structural classes or se-
quence homologies are exploited in the database and to
what degree either representation is useful. The effect of

finite polypeptide length input "windows" can also be in-
vestigated with our simple model database of pentamers,
hexamers, and heptamers.

The neural-network solutions for our simplified protein
model also provide fertile ground in which mathematical
optimization techniques can be devised for determining
optimal neural-network solutions [31,32]. One such op-
timization problem is the slow convergence exhibited by
the backpr op agation algorithms for neural-network
learning; the other, and more difficult, problem is the
multiple solutions available in the space of the network
variables given a network architecture. While it is clear
that steepest-descent algorithms are inferior for quick
convergence to a local minimum, what particular
second-order methods are optimal can be explored with
our simplified polypeptide neural-network model. Simi-
larly, simulated annealing methods for addressing the
global minimization problem rely on the determination of
an optimized cooling schedule for converging to the glo-
bal minimum; the search for such a cooling schedule
should be more feasible with our stripped-down model.
In both cases we believe our model shows sufficient com-
plexity so that optimization methods developed for this
case are transferable to a more realistic 3D model. In re-
lation to this last point, the network topologies derived
from our 2D model may also overcome the deficiencies of
backpropagation training of real proteins, by providing
good initial guesses of the network variables that con-
verge to a local minimum that is "near" the global solu-
tion.

Ultimately, the goal of this continued neural-network
study is to apply the principles learned for this simplified
version of neural-network predictions of 2D structures to
the genuine prediction of tertiary structure in three di-
mensions with full sequence diversity, given the accom-
panying limitations of the database. The accurate deter-
mination of even the residue-residue contact values in
this case would provide a reasonably robust protein-
structure prediction method. While we believe that fur-
ther important enhancements to straight network struc-
ture predictions are still feasible (and necessary), it is un-
likely that complete and accurate structure prediction by
neural networks alone is possible. Nonetheless, we are
prepared for this outcome with an optimization method
[5] which incorporates neural-network predictions into
empirical protein force fields as guidance for smoothing
the complex protein hypersurface to retain only the
native-structure minimum. Frustrated interactions re-
sulting from the interplay of the protein potential-energy
function and constraints representing the neural-network
predictions serve to aid the search for an optimal struc-
ture determined with full atomic resolution. A pilot
study of the method applied to melittin [5] showed that
the deficiencies of neural network predictions can be
redressed by their incorporation into an empirical protein
force field to provide predicted structure in excellent
agreement with the crystal structure. To what extent de-
gradation of neural-network performance is permissible
for robust protein tertiary-structure prediction of globu-
lar proteins is the topic of future studies in the further de-
velopment of constrained optimization.
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