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Asynchronous states in networks of pulse-coupled oscillators
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We use a mean-field approach to analyze the stability of the asynchronous state in a population of all-
to-all, pulse-coupled, nonlinear oscillators. We determine the conditions that must be satisfied by the
time constants and phase dependence characterizing the coupling between the oscillators in order for the
asynchronous state to be stable. We also consider the effects of noise. This work complements results on
synchronous states in similar models and allows us to study the validity of firing-rate models commonly
used for neural networks.

PACS number(s): 87.10.+e, 05.90.+m, 03.20.+i

I. INTRODUCTION

Synchronization in systems of coupled nonlinear oscil-
lators is an interesting and well-studied phenomenon
[1—10]. Asynchronous states have received less attention
[11,12], although, in some situations, they may be of
greater importance. For example, in a healthy piece of
brain tissue, many neurons (which can be modeled as
nonlinear oscillators) can fire without the large-scale
synchronization characteristic of epileptic activity [13]
despite the large amount of excitatory coupling between
neurons. Inhibition undoubtedly plays an important role
in preventing large-scale synchronization [14]. However,
it is of interest to identify additional elements and mecha-
nisms that allow stable asynchronous firing.

Synchronization of oscillators has been studied in both
phase-coupled [1—7] and pulsed-coupled models [8—10].
Pulse-coupled oscillators are particularly prone to synch-
ronization [9] or near synchronization [15],although oth-
er firing patterns have been noted [16,17]. Pulse-coupled
oscillators are of greater relevance for neuroscience appli-
cations since synaptic coupling is often spike mediated.
We will consider a population of "integrate-and-fire" os-
cillators with all-to-all pulse coupling of various forms
and determine the conditions under which the asynchro-
nous state can be stable. Although the integrate-and-fire
model is not a very accurate representation of a neuron,
it does incorporate the pulse coupling typical of spike-
mediated synaptic transmission in neural systems. In the
analysis, we make use of mean-field techniques applied re-
cently to this problem by Treves [18].

Besides its general interest, there is another important
reason to study the asynchronous state. Most theoretical
work on neural networks uses the average firing rate of a
population of neurons as a basic dynamic variable
[19—23]. This approach assumes that the relative timing
of spikes is not important so that the average firing rate
provides an adequate description of the activity of the
neurons. A firing-rate model will work best if the popula-
tion settles quickly into an asynchronous state and would
be inappropriate if, for example, there is important tem-
poral structure in the spiking. To establish the domain of
validity of the widely used firing-rate models we need to
determine the conditions under which a population of

neurons will fire asynchronously and to compute the re-
laxation times for transients about this state.

II. MODEL

The model we consider consists of N identical oscilla-
tors with uniform all-to-all coupling. We work exclusive-
ly in the large-N limit. The state of an oscillator labeled
by the index i is described by a state variable x; that runs
between zero and one and satisfies the equation

8x; =F(x, )+G (x,. )E (t) .
dt

(2.1)

(et& —a, )N
(2.2)

with a, and a2 arbitrary constants except that a2 & a, . In
the limit 0,'2 —+a& =a this becomes the familiar Q.-function
response

2

E(t)~E(t)+ (t t,)e— (2.3)

If a2 —+ ~ the response becomes a single exponential de-
cay from an instantaneous step. Because N is large we do
not remove the self-coupling term in these equations (its
relative contribution is of order 1/N). This is equivalent

The function F characterizes the behavior of the oscilla-
tor in the absence of coupling and is an arbitrary
positive-definite function. 6 determines the dependence
of the coupling on x; and E(t) is a dynamic variable
characterizing the inputs coming from the other oscilla-
tors in the population. The sign of 6 determines whether
the coupling is excitatory or inhibitory.

Equation (2.1) determines the behavior of x; in the
range between zero and one. When x; reaches the value
one, it is immediately reset to zero. This resetting corre-
sponds to the firing of a pulse and results in a contribu-
tion to the coupling variable E(t). In order to consider
the effects of arbitrary rise and fall times in the coupling
between oscillators, we set the response for a single pulse
equal to the difference of two exponentials. If oscillator i
reaches x; =1 at time to, x; is reset to zero and E(t) is in-
cremented by an amount

1063-651X/93/48(2)/1483(8)/$06. 00 48 1483 1993 The American Physical Society



1484 L. F. ABBOTT AND CARL van VREESWISK 48

1 p& dx
Eo "o F(x)+EoG(x)

(2.5)

This equation always has a solution (for F)0) if F and G
are continuous with bounded derivatives unless G) 0 and

fodx/G(x) (1. We will study the stability of this solu-

tion.
To analyze the asynchronous state it is convenient to

make a change of variables, replacing x, by

x,. Eodx

o F x+EoG x
(2.6)

which varies between zero and one and satisfies the equa-
tion

to a mean-field approximation.
The asynchronous state we wish to study is character-

ized by a coupling function E(t)=Eo that is time in-

dependent corresponding to asynchronous pulsing. If we
assume that the oscillators pulse at a constant, single-
oscillator rate R (or, equivalently, a rate NR for the total
population) then, from Eq. (2.2), we havet, ]+2+ a&(t —t') a2(t —t')
E(t)=Eo= J dt' (e ' —e ' )=R .

(a2 —ai)

(2.4)

Thus Eo is the steady-state, single-oscillator pulsing or
firing rate. Integrating Eq. (2.1) over one period 1/Eo be-

tween firings we find that Eo must satisfy

ap as
Bt By

and, at the end points, the boundary condition

(3.3)

(3.4)

J(y, t)=Eo+j(y, t) . (3.5)

We will use the fiux J in our computations (in the absence
of noise) since the density p can be obtained from Eq.
(3.2) once J is known. To examine the stability of small
fluctuations about the asynchronous firing state we will
expand to first order in the quantities j(y, t) and c,(t). In
this limit, the continuity Eq. (3.3) becomes

Bj I-(y) de E 8
Bt dt By

(3.6)

and the coupling variable s(t) is determined by the equa-
tions

dc
CXiE, +A

dt
(3.7)

expressing the fact that once an oscillator pulses or fires it
is reset instantaneously to zero. The quantity J(l, t) is
just the average single oscillator firing rate and p(y, t)Ay
is the fraction of neurons with y, lying between y and

y +Ay at time t.
The asynchronous solution described in terms of the

variable y has p(y)=1 and J(y)=Eo. To investigate
whether the asynchronous state is stable we expand
around this solution, writing

i =Eo+ I (y; )s(t)
dt

where

(2.7) and

dh = —a2h +a,a2j (1,t) . (3.8)

and

(2.8) It is straightforward to verify that Eqs. (3.7) and (3.8)
reproduce the coupling response of Eq. (2.2).

EoG (x)
F (x)+EoG (x)

(2.9)

The description in terms of the variable y is completely
equivalent to the original version. In fact, the equations
involving y could equally well be taken as defining the
model.

III. DENSITY-FUNCTION DESCRIPTION

(3.1}

and

We will begin our analysis by considering the behavior
of a system of all-to-all coupled oscillators in the absence
of noise. Later, in Sec. IX, we will include the effects of
noise. To describe the state of the full population, we use
a density function and Aux defined by

IV. STABILITY OF THE ASYNCHRONOUS STATE

where

e(t)A, Jy, , &y /&, i,y/z,

Eo . o
(4.1)

(4.2)

The eigenvalues are determined by substituting this solu-
tion into Eqs. (3.7) and (3.8) giving

Eo(e ' —l)(A, +a, )(A, +a2)

To study the stability of the asynchronous state, we
look for solutions of the linearized equations with the
time dependence of j, c,, and h given by exp(A, t). This will
allow us to compute the spectrum of eigenvalues I, of the
stability matrix [18] (similar methods are used in Refs.
[12], [24], and [25]}. Solving the first-order continuity Eq.
(3.6) with the boundary condition (3.4) gives

J (y, t) = [Eo+I"(y )s( t) ]p(y, t) . (3.2)
=a, a2A, J dy I (y)e (4.3)

In the range 0&y&1, these satisfy the continuity equa-
tion This result allows us to determine the stability properties
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and relaxation time constants of the asynchronous state.
Equation (4.3) has an infinite number of solutions giv-

ing the full spectrum of eigenvalues of the infinite-
dimensional stability matrix. Finding the eigenvalues is,
in general, a difficult problem, but if the coupling func-
tion I is independent of y they can be found easily. We
will use this as the basis for various perturbation expan-
sions. If I (y) is a constant, there is a set of imaginary ei-
genvalues given (for integer n) by

=2~, inEo, n %0 . (4.4)

[Note that for these eigenvalues C2 is not given by Eq.
(4.2), but is determined instead by Eqs. (3.7) and (3.8).]
Since these are pure imaginary, the asynchronous state
with y-independent coupling is at best marginally stable.
In addition to these imaginary eigenvalues, there are ei-
genvalues

&= —
—,'(a]+a2)+ —,

' [(a]—a2)'+4a]a2r]' ' . (4.5)

In order for the y-independent case to be marginally
stable, we must have I & 1. A special case of y-
independent coupling is no coupling at all, I =0, in
which case these eigenvalues become simply A, = —a, and

CX2.

V. WEAK-COUPLING EXPANSION

We can use the eigenvalues obtained for zero coupling
to construct a weak-coupling perturbation expansion for
the case of small I (y). As we have seen, the zero cou-
pling case is marginally stable with the imaginary eigen-
values A, =2minEo. Small coupling adds a real part to
these eigenvalues determining the stability or instability
of the asynchronous state. Therefore, we will focus our
attention on these imaginary eigenvalues. Since these al-
ways come in complex conjugate pairs, we will consider
only the eigenvalues with n) 0. To first order in I, we
find that the eigenvalues that were purely imaginary at
lowest order become

G(0) F(0)
G(1) F(1) (5.5)

In the limit o,2
—+a, =a, if we assume that B„&0 for all n,

we obtain the stability conditions

a (2nnEO I ( 2„/B„)+[1+( A„ /B„) )' (5.6)

and

F(x)=k (xo —x)

G (x)=g (x~ —x)

(5.7)

(5.8)

where k, g, xo, and xz are constants with xo greater than
one. A large population of such oscillators has an asyn-
chronous state firing at a rate given in the weak-coupling
limit by

E =k ln
Xp

o 1
(5.9)

which can be obtained from Eq. (2.5). For this case,
3„/B„=—k/2~nEo and in the weak-coupling limit the
asynchronous state is stable if

XE )XO (5.10)

which ensures that B„&0 and

a,a2 (47T Eo k(a&+a2)

In the limit a2~u, =a this gives

a ( k +(k2+4~2E2 )1/2

(5.11)

(5.12)

We will address the implications of these results in Sec.
VIII.

In many situations, the bound with n =1 will be the most
restrictive.

As a specific example, we consider a case that is widely
used as a simple model neuron,

a,a2( 2„+iB„)
A, =2~inEo 1+

(2vrinEO+a &)(2ainEO+ a2)
(5.1) VI. BEYOND WEAK COUPLING

where

2„+iB„=f dy I (y)e (5.2)

Stability of the asynchronous state requires that the real
parts of these eigenvalues be negative or, equivalently (for
n) 0),

B„(a&a2—4m n Eo)) 2rrnEOA„(a&+a2) . (5.3)

For large n we find that B„~1/n and A„~ 1/n for non-
pathological functions I (y). From this we see that for
large n we must have B„&0, which, from standard
theorems on Fourier transforms [26], implies under quite
general conditions that

gEO gkEO(x~ xo ) «y/~I (y)= + e
K XOK

(6.1)

We can determine the stability of the asynchronous
state for the model of Eqs. (5.7) and (5.8) when the cou-
pling constant g is not small either by using another ap-
proximate calculation or by numerical computation. We
begin with the analytical approach by noting that when
xz =xo, Eq. (2.9) gives a y-independent I . If xz is close
to xo, we can expand in the small quantity xz —xo to
compute the corrections to the imaginary eigenvalues
k=2~inEo for the y-independent case and determine the
stability properties as in Sec. V.

If x~ x o is small we have

r(1)) r(0) .

This is algebraically equivalent to the condition

(5.4) where K =k +gEO ~ From this we can compute the
relevant eigenvalues to lowest order in xz —xo using Eq.
(4.3),
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FIG. 1. Boundaries between regions where
the asynchronous state is stable and where it is
unstable. The stable region is above the lines.
(a) The dependence of the coupling time con-
stant 1/a (measured in units of k) on g for
various values of xp with x&=2.0. (b) The
dependence on xp for various values of g with
x+=2.0. (c) The x axis represents a normal-
ized coupling strength chosen to hold the in-
tegral of 1/G constant. Various values of xE
are shown with xp = 1.3.

2vrina&azgkEp(x~ xp)K xp (e —1)
~/ p

k =2~inEo+
[a&azk/v 4vr n—E p+Z~inE p( a& +a2)](v+2ninEp)

(6.2)

k
k +gE

(4~ Ep —(k+gEp)(a)+aq) . (6.3)

When a2~o.
&

=a we get the stability condition

~4 4w Eo~e( — + +
k

1/2

(6.4)

In the limit of small g, these results go over to the weak-
coupling case considered in Sec. V.

VII. COMPUTER SIMULATIONS
AND NUMERICAL SOLUTION

We have also investigated the stability of this model by
numerically computing eigenvalues of the stability ma-
trix. The results for the model of Eqs. (5.7) and (5.8) are

From this result, we find that the asynchronous state will
be stable if xz )x p as in (5.10) and if

shown in Fig. 1. For simplicity we plot the case
a&~a, =a. The vertical axis in Fig. 1 is k/a, which is
the coupling time constant measured in units of the oscil-
lator time constant. The lines in the figures indicate the
boundary between parameter ranges where the asynchro-
nous state is stable (above the line) and where it is unsta-
ble (below the line). Various parameter values and depen-
dences are shown. In the case where we consider
different values of xE we have divided the coupling con-
stant g by ln[xz /(xz —1)] so that the integral of 1/6 (x)
from zero to one is held fixed as xE is varied for fixed po-
sition on the x axis.

In Fig. 2 we compare the mean-field results with a
computer simulation of a population of 100 integrate-
and-fire oscillators. We estimate the density function
from a finite population of N oscillators by using the dis-
tribution of x values in the following way. Suppose a
given oscillator has the value x, . From all the oscillators
in the population with x )x, , we find the oscillator in the

p(x) p(x)
th=109.4

1,0-

0.0—
0.0 0.5

x
1.0

p(x)
th =0.0

1.0—

(b) k/o=0. 05

1.0—

0.0
0.0

p(x)

1.0—

0.5
x

1.0

1.0-

0.0 '

0.0

p(x)

1.0—

0.5
X

FIG. 2. Comparison of theoretical predic-
tion with results obtained by simulating 100
integrate-and-fire oscillators. The time of each
plot is indicated in units of 1/k. (a) The value

1'0 of a was chosen so that the asynchronous state
is stable and the simulation results (solid line)
rnatch the theoretical prediction (dashed
curve). (b) a is larger so that the asynchronous
state is unstable. The simulation diverges from
the predicted curve for the asynchronous state
and the population ultimately goes over to a
synchronous firing state. For this figure
xE =2.0 and xp =1.5 and g=0.28.

0.0
0.0 0.5

X
1.0

0.0
0.0 0.5

X
1.0

0.0
0.5
x

1.0
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population that has its x value nearest to x, . Similarly we
find the oscillator closest to x, from below. Labeling
these two neighboring x values x;+ &

and x; &, the
amount of x space occupied by the oscillator with x =x;
is (x;+,—x;, )/2. We therefore identify the density at
the point x; as

phenomenon. It does not represent noise in the sense of
Sec. IX, but rather indicates the presence of modes with
high n values that have not yet decayed to zero.

IX. INCLUDING NOISE

p(x;)= 2

N(x;+, —x;, )
(7.1)

We can study the effects of noise on the system of oscil-
lators by including in Eq. (2.7) a randomly fiuctuating
term g;(t),

This is compared with the predictions of the mean-field
calculation for both a stable and an unstable situation in
Fig. 2. In Fig. 2(a) we have used a value of k/a for
which the asynchronous state is stable and the density
function from the simulations (solid line) accurately
matches the predicted function (dashed hne). In Fig.
2(b), we chose k/a in the unstable range and as time
progresses the observed density function (solid line)
diverges from the theoretical curve for the asynchronous
solution (dashed line) as the instability grows. From the
last panel in Fig. 2(b), it is clear that the system has gone
into a synchronous firing state and the system is right in
the middle of firing. Further simulations of the type
shown in Fig. 2 have convinced us of the validity of our
results for the boundary between regions where the asyn-
chronous state is stable and where it is unstable.

i =E0+I (y;)E(t)+g;(t)
dt

(9.1)

satisfying

(9.2)

and

(9.4)

(9.3)

where ( ) indicates an expectation value. The parameter
D determines the magnitude of the noise. In this case,
the continuity equation (3.3) becomes the Fokker-Planck
equation, which is identical to (3.3) except that J is now
given by

VIII. DISCUSSION OF RESULTS

Before considering the effects of noise, we will briefly
discuss some of the interesting features of our results to
this point. For the model of Eqs. (5.7) and (5.8), we have
found that xz must be greater than x0 in order for the
asynchronous state to be stable. This restricts the types
of excitatory coupling that can produce asynchrony and
also means that inhibitory interactions (which would typ-
ically have xz ~0) cannot stabilize the asynchronous
state even if they are time delayed, a rather surprising re-
sult. Such anti-intuitive effects of inhibitory and excitato-
ry coupling have been noted before. Work on model
thalamic networks by Wang and Rinzel [27] has revealed
that time-delayed inhibitory interactions can lead to a
synchronous state. The reverse effect has also been seen,
excitatory, resistive coupling can in some cases produce
antiphase synchronization [28]. The other conditions we
found for stable asynchronous states such as (5.11) or
(6.3) indicate that both a finite rise and fall time are im-

portant to stabilize the asynchronous state. In the limit

a2 —+ ~, our interaction function becomes a single ex-
ponential with instantaneous rise and exponential fall.
Our results indicate that such a model has no stable asyn-
chronous state in the absence of noise.

Note that for large n the real part of the eigenvalues
given by Eq. (5.1) or (6.2) is

rather than by (3.2). Noise can push y; below zero so the
Fokker-Planck equation is now satisfied in the range y & 0
and 0&y&1. Boundary conditions are imposed at the
excluded points y=0 and 1. The value of y cannot be-
come arbitrarily negative so

p( —~, t)=0 . (9.5)

When an oscillator fires after reaching y, =1 it returns to
y, =0 as before. This means that, although p is continu-
ous at the pointy=0,

p(0, t) =p(0+, t), (9.6)

An additional boundary condition must be imposed at
the point y=1. In the presence of noise, all firing is due
to noise. In other words, as y ~1 the probability that the
noise term will cause the oscillator to fire approaches one.
As a result

p(l, t)=0 . (9.8)

Despite this condition, there is firing at a rate given by

its derivative is discontinuous at this point. The Aux
through the point y =0+ consists of the Aux coming from
negative y and that coming from y= 1 due to resetting.
Thus

(9.7)

n
(8.1)

( )
Bp(1 t) (9.9)

The factor of 1/n implies that the modes with high n

will decay very slowly. Thus fluctuations that are of
short wavelength in y will be long lived. The "noise"
seen in the simulations of Fig. 2 is a result of this

The density function for the asynchronous firing state
can be found by solving the time-independent Fokker-
Planck equation dJ/dy=O with J given by (9.4) and im-
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0.6

0.4-

k/cx

x]p 5

x1p —4

x10

Eo(e ' —l)(A, +a, )(A, +a2)
1 Ay /Eo=a,a2A J dy po(y)I (y)e (9.13)

Sec. IV. Equation (9.11) is solved subject to the boundary
conditions listed above and this result is substituted into
(9.12) giving

0.0
0.00 0.25 0.50 0.75

with

A= [( I+4DA, /E )' —1]
E
2D 0 (9.14)

FiG. 3. The effect of noise on the boundary between stable
and unstable asynchronous states. The plot is similar to Fig.
1(a). As the noise level increases the boundary gets lower and
shifts to the right. xz =2.0 and xo = 1.1.

p(y, t) =po(y) =

The stability of this state can be determined, as before, by
expanding around this solution, considering Auctuations
with exponential time dependence, and computing the ei-
genvalues. If we let 5p(y, t) represent a small fiuctuation
in p(y, t) about the static solution po(y), then 5p must
satisfy the linearized Fokker-Planck equation

B5p 8 5p B5P ~(~PO)

Bt By
2 By By

and the eigenvalues are determined by

(A, +a, )(A, + az)E = —a,a2D
a5P(l, r)

By

(9.11)

(9.12)

which arises from Eqs. (3.7) and (3.8).
The computation of the eigenvalues of the stability ma-

trix with noise is similar to the calculation presented in

posing the boundary conditions listed above. We find
that the Aux is equal to the firing rate as before,
J(y, t) =Eo, and that

Eo /D Eo(y 1 )/D
e ' —e, y&0

&o(y —
& )/D

1 —e ', 0&y &1.
2~jnE0 4~ n (9.15)

Thus noise stabilizes the asynchronous state as we would
expect. Note that modes with large n are more strongly
stabilized by noise than those with small n.

Figure 3 shows the effect of various levels of noise on
the boundary between the stable and unstable regions for
asynchronous firing. As in the preceding figures the
model of Eqs. (5.7) and (5.8) is used in the limit
uz ~a&=o. and the region above the line is stable and
below the line unstable. Noise lowers the boundary line
and creates a region at small coupling where even instan-
taneous coupling allows stable asynchronous firing.

We have seen that in the absence of noise there is no
stable asynchronous state with inhibitory coupling or
indeed whenever xE &xo. This is because modes with
higher n are increasingly less stable in the inhibitory case,
and it is impossible to stabilize all of them. However, the
situation is different when noise is present. We see from

This equation replaces (4.3) when noise is included. Note
that when D —+0, we recover (4.3) from (9.13) since A~A,
and po=1 for 0&y& 1 while po=0 for y&0 in this limit.

It is interesting to examine the effect that noise has on
the marginally stable asynchronous state that we found
for zero coupling. From (9.13) we find that in this case
the eigenvalues are given by A, = —a„A,= —a2, and
A=2minEO, which gives

12.0-,

0.0
0.0

(c)
12.0-

n/k
4.0-

0.0
0.0

0.5

0.5

1.0 1.5

1.0 1.5

---------- n=2

(b)
12.0-

n/k
4.0-

' ~.'.
~

0.0
0.0

(d)
1.5-

1.0-

0.5-

0.0
0.0

Il=1
---------- Il=2
———————I1=3

0.5 1.0 1.5

1.50.5 1.0
10 D/k

FIG. 4. Stability of the asynchronous state
with inhibitory coupling and noise. In (a) —(c)
the vertical axis is a/k, which is proportional
to the inverse of the coupling time constant in
units of the oscillator time constant. (a) Stabili-
ty boundaries for the first three modes with in-
hibitory coupling and no noise. (b) The re-
gions inside the three curves indicate parame-
ter values for which the n = 1 —3 modes are un-
stable in a model with inhibitory coupling and
noise. (c) The region inside the boundary show
where the n= 1 mode is unstable when more
noise is added stabilizing the second and third
modes. (d) Upper and lower critical values of
the coupling strength g as a function of the
noise level (in units of 1/k). To the left of the
solid line, the modes indicated are unstable.
To the right of all lines the asynchronous state
is stable for all values of a/k. For these
figures xo =2.0, and x& = —0.5 so the coupling
is inhibitory.



48 ASYNCHRONOUS STATES IN NETWORKS OF PULSE-COUPLED. . . 1489

Eq. (9.15) that noise has a more stabilizing effect when n

is larger. Figure 4(a) shows the boundary lines between
stable and unstable regions for the first three modes. In
this case the vertical axis is cz/k, but the stable region is
once again above the lines. Note that as n increases the
lines of stability get higher and higher. However, in the
presence of noise it is possible to stabilize the high n

modes. Figure 4(b) shows such a situation. The n =1—3
modes are only unstable inside the three regions shown.
Outside the regions where the low n modes are unstable,
the asynchronous state is completely stable. Figure 4(c)
shows that at even higher noise levels the regions where
the n =2 and 3 modes are unstable have vanished and the
n=1 mode is only unstable in a small region. Equation
(9.15) shows that noise will always stabilize the asynchro-
nous state if the coupling is weak enough. In addition,
the unstable regions in Figs. 4(b) and 4(c) do not extend
beyond a certain critical value of the coupling strength g.
Therefore, for g greater than one critical value or less
than another critical value, the asynchronous state will be
stable for all values of cx/k when we have inhibitory cou-
pling and noise. The upper and lower critical values are
plotted for the first three modes in the right panel of Fig.
4(d). To the right of all three lines in Fig. 4(d) the asyn-
chronous state is stable for all values of a/k.

X. IMPLICATIONS FOR FIRING-RATE MODELS

dR =ao[RO(E) —R ]dt
(10.1)

It is interesting to see whether the asynchronous state
we have been analyzing can be described by a firing-rate
model. We can use our results to compare the behavior
of transients about the asynchronous state in the full
model using the density p(y, t) to describe the population
and in a simpler model where the population is described
solely by the average firing rate R (t)=J(l, t) and the de-
tailed distribution over y is ignored. Under what condi-
tions is this valid? Our results indicate that for the par-
ticular asynchronous state we have studied this is a fairly
subtle question.

To construct a firing-rate model [22], we first deter-
mine the single oscillator firing rate as a function of the
coupling variable E(t) in the static case when E(t) is a
constant. We will call this static firing-rate function
Ro(E). In the simplest models, the dynamic firing rate
R (t) is determined by the equation

where ao is a constant. E is given by equations similar to
those of the spiking model except that R (t) replaces
J(l, r),

dE = —aiE+H (10.2)

with

dH
d

e H +a&a2R .
dt

(10.3)

By construction Ro(ED)=ED so the firing-rate model
has an asynchronous solution identical to that of the full
model. What about the transients about this solution?
The full description has an infinite number of transient
modes while the firing-rate model has only three with ei-
genvalues given by

( A + cx0 )( A + tx i )( A + txp ) = cxo(x i cx2R 0 (E0 ) (10.4)

where R 0 is the derivative of R o. The best strategy might
be to match these eigenvalues to the longest lasting
modes of the full model ignoring the more rapidly dying
transients. Clearly this will only work for parameter
values allowing a stable asynchronous state but even so
there is a complication. Figure 5(a) shows the real part of
the first four eigenvalues for the full model of Eqs. (5.7)
and (5.8). Note that as n increases the real part of the ei-
genvalue tends to become less negative. Indeed, as we
have noted, the real part of the eigenvalues for large n is
proportional to —1/n . Therefore, we cannot simply
match the eigenvalues of the firing-rate model to the
modes of the full model with the least negative real parts.

We can argue that the firing-rate model provides a
coarse-grained description so that transients of p(y, t)
with rapid variations in y are irrelevant. In this case we
would match the eigenvalues of the firing-rate model to
the longest wavelength modes of the full model. Howev-
er, we might still worry about the effect of the higher
modes since they are not damped quickly. To apply the
firing-rate description we must be assured either that
these high n modes will not be excited or that they will
have no important effects. The situation is much less
murky when noise is present. Noise makes the real parts
of the high-n modes more negative. If the noise level is
high enough, a situation can arise, as in Fig. 5(b), where
the n=1 mode is the longest lasting mode. In this case,
the justification of a firing-rate description is more
straightforward.

(~)
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k
—0.04-

n=l
n=2
n=3
n —4
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0.04-

0.00

se(x„)
k
—0.04-

n=l---- n=2
———n=3—n=4

5.0

FICx. 5. The real parts of the eigenvalues for
the first four modes as a function of a/k. (a)
No noise is present and through most of the
range the n=1 mode has the most negative
real part. (b) When noise is added at the level
of D /k = 10, the n = 1 mode has the least
negative real part through most of the range.
Here xz =2.0, xo = 1.1, and g =0.28.
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In summary, the population of oscillators we have
studied can be described using a simpler firing-rate model
either if (I) sufficient noise is present to rapidly remove
the higher modes that are ignored in the firing-rate
description or (2) the initial conditions are restricted so
that the higher modes with long lifetimes are not excited.
Otherwise, the higher n modes, not described by the
firing-rate model, will be present and they will not quick-
ly be damped away.
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