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Anomalous pulse delay in microwave propagation: A plausible connection
to the tunneling time
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Measures of pulse delay in microwave propagation, in open air and for short distances (not much
greater than 1 m), were made by using launcher aud receiver horns. When these are facing each
other we observe a delay time corresponding to a speed equal to c while, if the receiver horn is
shifted or tilted with respect to the launcher horn, the delay time decreases showing a superluminal
behavior. In other words the modulation phase shift, interpreted as a propagation time, turns out
to be surprisingly smaller than the one relative to the light speed. This eKect, which disappears
for longer distances, is here interpreted on the basis of the existence of a special kind of evanescent
waves (leaky waves). Just the presence of evanescent waves allows one to make a comparison with
the tunneling processes where superluminal transport properties have been theoretically predicted.

PACS number(s): 03.40.Kf, 73.40.Gk

I. INTRODUCTION

The problem of the tunneling time has not yet received
a definite explanation in spite of many efForts performed
thus far. The question is whether there exists a physi-
cal quantity, with dimension of time, which characterizes
the particle motion through the barrier. The general be-
lief is that there is not a fairly clear definition of such a
quantity: the several proposals run kom pure semiclassi-
cal to fully quantum mechanical models including or not
relativistic effects [1].

One remarkable feature of barrier penetration in quan-
tum theory is that a particle traversing a barrier appears
to do so in zero time but an actual check of this effect is
reputed impossible [2]. There are in fact considerable dif-
ficulties in performing a direct experimental test mainly
because of the very short times involved and of the com-
plexity of these kinds of experiments [3].

These complications can be partially surmounted with
a microwave setup where a sub-cutofF waveguide simu-
lates a quantum-mechanical potential barrier. This al-
lows us to make experiments in a very accessible tempo-
ral range and to compare the results with several mod-
els, suitably translated into the electromagnetic frame-
work [4]. The analogy between particle motion and elec-
tromagnetic wave propagation is based on the similar-
ity of the dispersion relation and on a close correspon-
dence of the wave equation, especially when relativistic
expressions are considered [5]. However, contrary to the
particle case where the measure of the arrival time is
a quantum-mechanical disturbing procedure, an electro-
magnetic pulse can consist of many photons and can be
probed in a noninvasive way [6].

In this manner it was possible to establish that among
the several models, the phase time one, already proposed
by Hartman [7], appears the most appropriate for de-

scribing the experimental results of pulse delay in a rel-
atively large range of parameter values (frequency, bar-
rier length). However, it was not possible to investigate
sufFiciently below the cutoff frequency for the severe lim-
itations due to the attenuation of the signal [8].

Recently [9] an extension of the measurements sen-
sibly below the cutoff has been achieved by a Fourier-
transform technique —based on the superposition princi-
ple of the linear Maxwell equations —applied to the same
microwave setup of Ref. [4]. The obtained results con-
firm the validity of the phase-time model [6,7] according
to which the delay is given by

7p

where Au( is the frequency variation and AP the phase
change which depends only on the boundary conditions
at the ends of the sub-cutoff section of the waveguide
and is independent of its length. This implies that for
sufFiciently long length —say 10 cm for a cutoff around
10 GHz —the tunneling in the barrier turns out to be
a superluminal motion. More precisely, since there is no
phase variation of the wave inside the barrier (evanescent
wave), the pulse transit through the barrier itself seems
to be instantaneous —a direct consequence of the results
of Ref. 9—perhaps "not in any clear sense a paradox"
[6], nevertheless, an interesting result.

Superluminal transport properties for electromagnetic
modes have been also predicted in some theoretical works
on optical tunneling [10]. Dealing with the microwave
simulation of tunneling, a theoretical interpretation was
modeled on the basis of a path-integral solution of the
telegrapher's equation, analytically continued to imagi-
nary time [11]. There, it was shown that in tunneling
processes the effective (imaginary) velocity turns out to
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be increased by dissipative efFects and can actually over-
come the light velocity c, contrary to the classically al-
lowed motion where the efFective velocity has c as upper
bound ([Eqs. (9) and (10) in Ref. 11]).

The fact that the tunneling motion can become super-
luminal creates a controversial question [12], which de-
serves a deeper understanding and, to this purpose, we
have extended the investigation with microwaves. How-
ever, due to the diKculties of signal attenuation sufB-
ciently below the cutofF with evanescent waves inside the
guide, we have tested evanescent waves in an "open-air"
transmission experiment. In such a way we can easily
measure the delay time of a pulse-modulated carrier and
deduce information about the signal velocity connected
with evanescent modes in strict analogy with tunneling.

In Sec. II we briefly describe such a microwave ex-
periment. The relative results of pulse delay are then
analyzed in Sec. III and discussed, in connection to tun-
neling, in Sec. IV. Some analytical details are reported
in the Appendix.
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II. PULSE-DELAY MEASUREMENTS
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where A is the &ee-space wavelength and 6 is the width
of the guide. Although the phase velocity is greater than
c, the signal propagates according to the group velocity
which for propagating waves, that is for A ( 26, is always
less than c. As a test of the apparatus we report in Table
I the results relative to L = 90 cm of waveguide in the X
band (6 = 22.86 mm), free-space delay L/c =3 ns, which
confirms a well-known behavior and not that of Ref. [13],
which reports signal velocity data in agreement with the

The appearance of a paper [13] dealing with mi-
crowaves which travel faster than the speed of light over
a distance of about 2 m, in a waveguide and open air,
attracted our interest and we decided to repeat the ex-
periments. The X-band Inicrowave setup is basically the
same as our previous measurements of delay time in a
narrowed waveguide [4]. A microwave signal like a step
function is supplied by a klystron (at a frequency vp 9.5
GHz) modulated by a pin modulator, whose fall time
(less than 10 ns) is suitable to measure delay times down
to less than 1 ns. First, the signals taken at two selected
points in the X-band circuit are sent to a high temporal
resolution oscilloscope (Tektronix 2440) able to measure
the delay with an accuracy of 0.1 ns. As known, the
phase velocity vz and the group velocity vg, for a TEO]
mode in a rectangular waveguide, are given by [14]

to
I (cm)

15

FIG. 1. Pulse delay in the transmission at 9.5 GHz as a
function of the perpendicular displacement l (in the H plane)
of the receiver horn while the length L = 21 cm is taken as a
constant. The distance D = 50 cm represents the separation
between the two detectors: when they are directly connected
by a waveguide of the same length, the delay is 2.2 ns. When
the waveguide is substituted by the two horns (Hare angle
of 50 ) facing each other and separated by 21 cm, the delay
decreases to 1.7—1.8 ns, as expected.

phase velocity in the waveguide.
Successively, in the open-air experiment, we employ

launcher and receiver pyramidal horns facing each other
and separated by a distance of the order of tens of cen-
timeters and we measure the pulse delay obtaining a
propagating speed equal to c, as expected. Then the
receiver horn is shifted transversely (Figs. 1—5) or the
launcher is tilted (Figs. 6 and 7). In both cases we ob-
serve a shortening of the delay time while the distance is
certainly not decreased, now in agreement with the re-
sults of Ref. [13]. This effect, observed over distances
from 10 cm to 100 cm, is more pronounced at lower
distances and is present either by varying the geometry
in the H plane or in the E plane. For greater distances

TABLE I. Comparison at two frequencies of the evaluated and measured pulse delay relative
to a waveguide in X band, mode TEoq, with a length I = 90 cm.

(GHz)

9
9.5

A = c/up
(cm)

3.333
3.158

vi, /c

1.461
1.383

vg/c

0.684
0.723

v- = L/vg
(ns)

4.383
4.149

&measur.

(ns)

4.3+ 0.1
4.1+ 0.1
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FIG. 2. Same as Fig. 1 with D = 90 cm and L = 61 cm. FIG. 4. Same as Fig. 1 with the launcher of a greater
aperture (flare angle of 40 ), D = 90 cm and L = 49 cm.

the effect becomes unobservable.
In Figs. 1—3 we report the results of delay time ob-

tained with two identical horn antennas (9 x 8 cm of
aperture) separated by a different length L as a func-
tion of the perpendicular displacement 1. We note that
the shortening of the delay time is more evident for the
shorter distance (L = 21 cm), it is still present for the
intermediate one (L = 61 cm), while it is practically ab-
sent at the longer one (L = 111 cm). In Figs. 4 and 5
we report the results obtained with a launcher consisting
of a horn of a greater aperture (13.5x10.5 cm ) for two
distances, L = 49 cm and L = 99 cm, and we observe an
analogous, more evident, effect. By considering the in-
volved quantities, it clearly emerges to be a superluminal
behavior especially at lower distances.

Results of delay time obtained as a function of the
tilting angle o. of the launcher are shown in Figs. 6 and 7.
Here we report directly the ratio r(n = 0)j7 (o.) so that
the points represent the signal velocity (v, ) relative to

the velocity for o; = 0, which we assume to be coincident
with the light velocity E15]. We note that the ratio v, jc
strongly increases by increasing the tilting angle o..

III. DELAY- TIME ANALYSIS

In this section we shall try to explain the "anoma-
lous" pulse-delay results reported in Sec. II. First we wish
to note that we are not dealing with normal long-range
propagation but rather with some local effect whose un-
derstanding would require analysis of the near Geld. This
suggests that we are concerned with evanescent waves
whose importance, with respect to the "normal" con-
tribution, tends to disappear suKciently far from the
launcher.

Let us assume that the radiated Geld from the launcher
can be expressed as that of a rectangular aperture hav-
ing the dimensions of the mouth of the horn launcher.
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FIG. 3. Same as Fig. 1 with D = 140 cm and L = 111
cm. FIG. 5. Same as Fig. 4 with D = 140 cm and L = 99 cm.
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FIG. 9. The original integration path C of Eq. (4) is de-
formed into the steepest descent path C' taking into account
the presence of the pole singularities. If these are situated into
the shaded areas the corresponding leaky waves have phase-
path velocity greater than c.

in the region of deformation of the path. Let us suppose
that there is a pole at the complex point P = P„+ iP;
(this assumption will be justified in the Appendix). In
this case the integral (4) can be expressed as

4 ) A(n) + 2vri res[A(z ~ P)] e'"

(6)

27riA(P) exp[ ikpcos(P„—n) coshP,
+kp sin(P„—n) sinhP;] . (7)

This represents a wave propagating in the P, direction
whose amplitude attenuates with increasing o. and p, as
sketched in Fig. 10, while for P, —? n (if P; —? 0), its
contribution may be the dominant one in (6).

These kinds of waves, which do not exist for o. su%-
ciently large (for P, P; this happens for n 0, see
Fig. 9) are named leaky waves [16,17]. As for the phase
factor we note that, recovering also the time dependence,
it exhibits a propagation velocity along a path with an
angle a (phase-path velocity)

1
k' k cos(P„—n) coshP; cos(P, —n) coshP,

(8)

which, depending on the position of the pole P and on
the observation angle o. , can be greater or smaller than
the light velocity c, the border line being given by Eq.
(5). We wish to note that in a nondispersive situation,
like that of our experiment (open-air propagation), rela-

where the first term represents the normal contribution
(a cylindrical wave) and the second, due to the pole, an
evanescent wave. By putting res[A(z ~ P)] = A(P) and
remembering that P = P„+iP, , the contribution due to
the pole can be written as

FIG. 10. The existence domain of the leaky waves (whose
amplitudes are sketched along the phase front) is practically
confined to angle values n such that —P & o. ( P, if P,.
0. With increasing P, this domain is reduced in the higher-
amplitude side, for P; P„ this happens around n = 0.

tion (8) can be assumed to hold also for the signal path
velocity. In these conditions, since (Aw/Ak) = (w/k),
Eq. (1) simply becomes

Lk'(a. , /3) P'(cr, P)
(9)

In this way we can obtain, for n ( P„, signal veloci-
ties apparently greater than c [18]. The results of signal
velocity reported in Figs. 6 and 7 can be interpreted
according to Eq. (8), which holds for both sides of the
angle o., as indicated by the straight lines which well fit
the experimental data with plausible values of P„and
P;. We note that the values of P„are roughly compara-
ble with one half of the Hare angle of the horn; that is,
the leaky waves appear to be in some way related to the
vertical walls of the launcher (in fact by using biconical
horns, vertically polarized, this "anomalous" effect is no
longer observable in the H plane). In addition, the val-
ues of P, comparable with P ones make the leaky waves
observable only for negative o. values, as expected.

IV. RELEVANCE OF THE RESULTS
TO THE TUNNELING

The "anomalous" pulse delay reported in Sec. II and
analyzed in Sec. III can be considered as experimental
evidence about the existence of a special kind of evanes-
cent waves the leaky waves —in the near field radiated
by horn antennas. Our interest lies particularly in the
delay-time behavior of a modulated carrier, intended as
an indicator of the signal velocity in the presence of
evanescent waves.

It turns out that the delay of the signal sensibly de-
creases when the observation angle o. is appreciably dif-
ferent from P; that is, the considered path is inclined
with respect to the direction of P„. The angle n can-
not be augmented much beyond the opposite side (—P );
that is, the maximum of the path slope is approximately
comparable with the flare angle of the launcher, where
we observe an increase of the signal velocity of the order
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of 40%. Nevertheless we can argue that the trend is cer-
tainly that of obtaining zero delay for paths tending to
be coincident with the wave front. In this limit, that is
for (P„—n) ~ n/2, Eq. (7) exactly gives infinite velocity,
hence zero delay [2]. This picture appears almost anal-
ogous to the tunneling one as realized by the microwave
simulation with a sub-cutoff waveguide where evanescent
waves are operating [4].

The only difference is that, in the case of a wave-

guide, dispersion is present. This fact makes the analysis
of the signal shape more complicated, for the spreading
of the wave packet, especially in a tunneling situation
where the forerunners strongly inBuence the time of ar-
rival of the signal [19]. However, in a typical situation
this is not considered too severe a limitation such that
without considering this effect the results are not signif-
icant [10]. We wish to recall that in both cases with
or without dispersion the upper limit of the signal ve-
locity, in classically allowed motions, is represented by
the light speed as demonstrated for wave propagation in
dispersive media in Ref. [20], and in electric lines in Ref.
[21]. However, such arguments do not appear clearly ap-
plicable to classically forbidden processes or evanescent
waves.

It seems therefore quite plausible that in tunneling
there are superluminal motions as evidenced in Ref. [9],
implicitly admitted also in Ref. [11], and supported by
the results here presented. A promising tool for a further
theoretical investigation of this problem still appears to
be the application of the telegrapher's equation, as out-
lined in Ref. [11],according to the developments of Ref.
[22]. In particular, we intend to investigate the proper-
ties of the distribution function of the randomized time
as it results from the superposition of "undisturbed" nor-
mal processes and "disturbed" ones, which in tunneling
situations behave as accelerated processes.

Noteworthy is also the fact that tunneling time could
be considered a practical case of a weak value observable
in the framework of the weak measurement theory [23].
In this case mean values, which would be strictly forbid-
den for any complete ensemble, can be obtained for a
subensemble.

Note added. After this work was completed, we re-
ceived a copy of an unpublished work by A.M. Steinberg,
P.G. Kwiat, and R.Y. Chiao dealing with measurements
of single-photon tunneling time. They also find an ap-
parent superluminal tunneling velocity but they do not
repute it as a genuine signal velocity, rather a case of
weak-value observable [23].

~(( ) A( ) (t cos z+zi sin z) d

A( i ik(( cos z~+q sin z~) dZ~ jC A (Al)

where the integer index n runs from —N to % and the
amplitude A(z ), relative to the nth zone, is given by

A(z„) = E(q„) e *"""""'"dr)„. (A2)

Here I" (rI ) is the field intensity, in the 2 plane, as-
sumed as constant across the considered zone and zero
elsewhere. By substituting (A2) into (Al) we have

I' (rj )e *"""""'"dr)„~

ik(( cos z +g sin z~) gLGZ~ o (A3)

An approximation usually made for evaluating (A3) con-
sists in inverting the order of integrations (before I dz
and then I dq ) and to factorize sin z, namely [24]

q N
——d/2 2/ii

N-1

integral of Eq. (3) contains a pole singularity at a com-
plex point P in the z plane. This assumption can be jus-
tified by analyzing the radiated field in a quasi-near-field
approximation, that is by abandoning the Fraunhofer ap-
proach and adopting something like the Huygens-Fresnel
one [24].

The geometry of our experiment, with a distance of
observation p —1/2 m, wavelength A —3 cm, and di-
mension of the aperture of the launcher d 10 cm, is
just intermediate between a far-Geld and a near-Geld sit-
uation; therefore, we shall try to model a suitable ap-
proach.

Let us consider the aperture in the E plane of Fig. 8
as divided into a number (2N) of horizontal zones (width
d/2N) as sketched in Fig. 11. The field in a point P((, q)
can be expressed by writing E((, rI) in Eq. (3) we omit
the time dependence as
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APPENDIX: ESTIMATE OF THE
AMPLITUDE FUNCTION

The analysis of the leaky waves of Sec. III is based on
the assumption that the amplitude function A(z) in the

FIG. 11. The aperture (width d) in the E plane is divided
into 2N zones and the 6eld in the point P is evaluated as a
superposition of the several contributions.
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,I A (z)

(A4)

and inverting g with f drl, we assume F(rl ) = F(rl),

s(g g) = f s(g)dg) f gkd * +(n n ) ' * Idz 0
Rez

(A5)

We proceed conversely by factorizing f dz in order to
recover a form like Eq. (A3): this procedure is acceptable
by considering that we are studying the field at relatively
large distances, p ) d ) A. So we obtain the approximate
result

s(g, ~) = f d(z).'~'- *+" "*~dz

F(rl„)e *"""""'"drl„i

FIG. 12. Field intensity in the proximity of the aperture.
The two peaks correspond to +pdv [Eq. (A9)].

By expressing the angle z = z —P and performing the
summation (crucial is the variation of the angle z as a
function of rl, see Fig. 11) we get the approximate result

ik(( cos z+g sin z) d

where the amplitude A(z) has become

(A6)

—ik ~ sin(z —P~)
A(sin z) =

2vr i k sin(z —P—tv)

xk ~& s1n(z+P~)

i k sin(z + P—tv)

(A9)

A(z) = ) F(rl„)e *""""""drl„. (A7)

A(sin z) = ) —ikgsinz d

ikg sin z

—zk sin z re —1

(AS)

Assuming for simplicity F(rl )—:F(rl) = const, the inte-
gration in (A7) is immediate and we obtain for A(z), or
more exactly A(sin z),

which shows a pole singularity for z = +Ptv, where
2P~ is the angle subtended by the aperture at the dis-
tance p (2@~ d/p). This justifies the assumption
made in Sec. III. We wish to note that for p )) d
(Fraunhofer approximation), P~ becomes negligible so
that Eq. (A9) reproduces the well-known result (cen-
tric) sin[k(d/2) sin z]/k sin z. In addition, as a test of this
model, we have veri6ed that the intensity of the field, as
a function of z in the proximity of the aperture, has a
shape in agreement with Eq. (A9) when complex values
of Ptv are considered; see Fig. 12.
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