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The propagation of a soliton in a nonlinear optical fiber with a periodically modulated but sign-

preserving dispersion coefficient is analyzed by means of the variational approximation. The dynamics
are reduced to a second-order evolution equation for the width of the soliton that oscillates in an
effective potential well in the presence of a periodic forcing induced by the imhomogeneity. This equa-
tion of motion is considered analytically and numerically. Resonances between the oscillations in the
potential well and the external forcing are analyzed in detail. It is demonstrated that regular forced os-
cillations take place only at very small values of the amplitude of the inhomogeneity; the oscillations be-
come chaotic as the inhomogeneity becomes stronger and, when the dimensionless amplitude attains a
threshold value which is typically less than 4, the soliton is completely destroyed by the periodic inho-

mogeneity.

PACS number(s): 42.81.Dp, 42.81.Ht, 03.40.Kf

I. INTRODUCTION

Propagation of solitons in nonlinear optical fibers is a
challenging physical problem with very promising practi-
cal applications [1,2]. As is well known, the evolution of
an envelope of electromagnetic waves in a monomode
fiber is described, with high accuracy, by the nonlinear
Schrodinger (NLS) equation

iu, +-,'u„+ ~u~'u =O,

where z is the propagation distance and t is the so-called
reduced time [1,2]. It is also well known that the NLS
equation is exactly integrable by means of the inverse
scattering transform [3], so allowing construction of a
number of exact solutions in explicit form. Nevertheless,
since not all the physically interesting solutions can be
found explicitly, less rigorous methods have been
developed to describe the required solutions approxi-
mately. Among these methods, the simplest and Inost
elegant is based upon the Lagrangian representation of
the NLS equation [4]. The technique is particularly use-
ful since it can be applied to perturbations of Eq.(1)
which are not exactly integrable, such as arise for inho-
mogeneous fibers.

The general idea underlying this approximation is well
known: one presumes a certain ansatz for the shape of
solution sought, but leaves in the ansatz a set of free pa-
rameters which may evolve with z. Next one evaluates
the full Lagrangian of the NLS equation when the ansatz
is inserted. When doing this, all z differentiations which
appear in the Lagrangian are applied to the above-
mentioned free parameters. Eventually, one finds the La-

grangian as a function of the free parameters and their
first derivatives. The resulting variational equations for
this effective Lagrangian then become a system of ordi-
nary differential equations (ODE).

The most important exact particular solution to the
NLS equation (1) is the soliton

u»&(z, t) =a 'sech(t ja )exp( ,'ia z)—, (2)

where the arbitrary parameter a measures the soliton
"width. " Expression (2) shows that the amplitude a
and wave number —,'a of the soliton are determined by
a. An interesting and practically important question is,
how will a solitary pulse initially having a sech profile as
in Eq. (2) evolve if its initial amplitude A and width a do
not satisfy aA =1? From inverse scattering theory the
answer is well known: as z —+00, the pulse will evolve
into a soliton with different amplitude and into quasilin-
ear dispersive waves (radiation). The relevant "scattering
data" were first given in Ref. [5]. However, in reality, the
asymptotic stage of the evolution may arise only at very
large z, while in an intermediate region the actual dynam-
ic behavior may be quite different. To describe these in-
termediate dynamics approximately, the variational tech-
nique was applied in Ref. [6] with trial wave form (an-
satz) [cf. Eq. (2)]

u(z, t)= A(z)sech[ t/a(z) }expIi [y(z)+b(z)t ] j . (3)

The meaning of the parameters A (z), a(z), and y(z) is
obvious. The parameter b (z), the so-called chirp, charac-
terizes the dependence of the carrier frequency on posi-
tion within the soliton. The set of evolution equations
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arising when the ansatz (3) is inserted into the full La-
grangian for (1) may be reduced [6] to a single second-
order equation for a (z). Formally, that resulting equa-
tion may be regarded as the equation of motion for a
mechanical particle in a smooth potential well with an
infinitely high wall at a =0 and vanishing potential as
a ~~. If the "particle" initially has positive energy, a
escapes to infinity, corresponding to complete decay of
the pulse into radiation [although the radiation degrees of
freedom are not included in the ansatz (3)]. Alternative-
ly, if the initial energy is negative, the "particle" is
trapped within the potential well and oscillates. These
oscillations correspond to periodic oscillations of the
shape of the pulse (3). Of course, within the framework
of the full NLS equation (1), the oscillations will be grad-
ually damped due to radiative losses so that eventually
the particle falls to the bottom of the well (which itself
becomes shallower due to radiation). The rest state of the
"particle" corresponds to the exact soliton solution (2).

In the present work, we use the above technique to
study the evolution of a sech-shaped pulse in an inhomo-
geneous fiber. Note that usually nonlinear fibers operate
in a spectral region near the zero of the dispersion
coefficient [the coefficient of —,'u«which has been scaled
to unity in Eq. (1)], to allow competition between disper-
sion and the weak Kerr nonlinearity of silica [1,2]. Since
the total dispersion coefficient, being the sum of material
dispersion of the silica and of geometric dispersion, is
rather small, it can be quite sensitive to small changes
due to inhomogeneity. Recent works [7—9] have ana-
lyzed some effects arising near a point where fiber inho-
mogeneity causes the dispersion coefficient to change
sign. These effects include the decay of a soliton passing
from an anomalous-dispersion domain [such as described
by Eq. (1)] to a normal-dispersion domain (with negative
coefficient of —,'u«) where solitons cannot exist [7]; devel-

opment of modulational instability of a continuous wave
traveling in the opposite direction in either a monomode
or biinodal fiber [8]; and formation of a soliton from an
initial localized pulse passing from a domain of normal
dispersion to one of anomalous dispersion [9]. In this pa-
per, we concentrate on the case of a dispersion coefficient
which is periodically inhomogeneous but always positive,
so that the fiber exhibits anomalous dispersion every-
where.

The underlying physical idea to be developed is that
oscillations of the soliton shape may resonate with the
periodic inhomogeneity of the fiber. We show that, when
the soliton is close to resonance, a relatively small ampli-
tude of the inhomogeneity is sufficient to completely des-
troy a soliton which otherwise would be stable. [For the
particular inhomogeneity profile given by Eq. (11)below,
the threshold amplitude e for fiber inhomogeneity above
which the soliton is completely destroyed is typically
below —,'.] At smaller values of the inhomogeneity ampli-
tude, a resonantly driven soliton exhibits, in most cases,
chaotic shape oscillations.

Results in Ref. [6] show that a typical length scale for
the natural oscillations of soliton shape in a homogeneous
fiber are comparable with the so-called "soliton period, "
which is inversely proportional to the square of the soli-

ton width. This period may be hundreds of kilometers
for picosecond solitons [1,2], but up to eight orders of
magnitude smaller for femtosecond pulses. Since this is
comparable with typical inhomogeneity periods, the reso-
nance effect can be practically important in the fem-
tosecond range.

The problem outlined and the results obtained, besides
having considerable methodological interest, may find
two practical applications: (i) in determining how possible
inhomogeneities within the fiber can affect propagation
conditions for optical solitons: and (ii) in exploiting the
strong interaction of a soliton with an artificially formed
periodic inhomogeneity within soliton-based optical logic
elements.

With regard to artificial periodic inhomogeneity, much
work exists concerning solitons in fibers with periodically
inhomogeneous refractive index (see, e.g., the recent pa-
pers [10], and references therein). The model to be con-
sidered here differs from those considered previously,
since it includes dispersion, which is usually ignored in
those models. However, our model omits Bragg coupling
between counterpropagating waves, which was the cen-
tral point in Refs. [10]. Nevertheless, periodic modula-
tion of the refractive index is apt to generate, at least as a
byproduct, a parallel modulation of the dispersion
coefficient, so that the effects to be analyzed here are
relevant to that work.

The paper is organized as follows. In Sec. II we outline
the derivation of the evolution equations for the parame-
ters in (3), omitting some details since the derivation is
essentially similar to that developed for a homogeneous
fiber in [6]. As in Ref. [6], the final form of the effective
evolution equation is equivalent to the equation of motion
for a particle in a potential field, the coordinate of the
"particle" being the soliton width a. However, the poten-
tial changes periodically in "time" and, additionally, the
"particle" is subject to a "friction force, " with "friction
coefficient" also periodic in "time. " In Sec. III we ana-
lyze the three most interesting cases in which resonance
between the shape oscillations and the inhomogeneity
might be expected. This analysis follows classical non-
linear resonance theory [11],being based upon expansion
in powers of the perturbation in a and small detuning
from resonance. Last, in Sec. IV we display results of
direct numerical simulations of the above-mentioned
effective equation of motion. We first consider small os-
cillations under near-resonant conditions, showing that
oscillations may become chaotic (quasiharrnonic locally
but irregularly modulated) at fairly small values of the in-
homogeneity amplitude. We then consider in some de-
tails the way in which inhomogeneity can completely des-
troy a soliton —corresponding in the "particle" analogy
to escape to infinity from the potential well. Using simu-
lations, we concentrate on finding the threshold charac-
teristics. Concluding remarks are gathered in Sec. V.

II. EVOLUTION EQUATIONS
FOR PARAMETERS OF THE SOLITON

In an inhomogeneous fiber with a z-dependent disper-
sion coefficient a(z), the underlying equation is the
variable-coefficient NLS equation:
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iu, +—,'a(z)u«+ ~u~ u =0 .

The Lagrangian density which gives rise to Eq. (4) is

L =
—,'i(u, u' u—,'u ) ——,'a(z)[u, ) + —,'~u

~

(4)

0 a
0

the asterisk denoting a complex conjugate. As in Ref. [5]
one inserts the ansatz (3) into the Lagrangian density (5)
and then calculates the total Lagrangian J L(z, t)dt,
where z differentiation is applied to the parameters occur-
ring in (3). Performing the integration and then taking
variations of the resulting Lagrangian with respect to all
the parameters yields a system of evolution which proves
to be a straightforward generalization of the equations
derived in Ref [6] for the case a(z) = 1:

U, -8-
min

0.05 0.2

A a =N =const,
1

b =—a'/aa,
2—a 5N

(6)

(7)
FIG. 1. The shape of the potential (10) when a=1. The

minimum value U;„=—
2 N is attained at a =a =E
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2
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.2
(9) (12) is

qo =N (13)
Here, the prime denotes d/dz and N is an integration
constant which measures the intensity of the initial pulse.
Without loss of generality, the z scale may be chosen so
that a(z) has period 2n. Then, writing

a =(2ao/m. )'~ a(z), N=(mao/2)' N,
a(z) =aoa(z),

where ao is the mean value of a(z), transforms Eq. (9) to

&"—(a'/a)a'=a a Naa—
Dropping the tildes finally yields the equation

U(a, a)= —,'a a aN a—
(10)

which as mentioned earlier corresponds to a mechanical
equation of motion with "time"-dependent potential (see
Fig. 1) and periodic friction coeKcient.

We assume that the spatial inhomogeneity is weak and,
for simplicity, take it in the sinusoidal form,

a(z) = 1+e sinz .

b"+Nsb (cosz )b—'=N6e sinz+3N' b 6N' b—
—4N e(si )nbz. (14)

Resonance between the free oscillations and the small
driving force in Eq. (1) is expected when the wave num-
ber (12) is commensurate with the driving wave number
[1, for a(z) taken in the form (11)],i.e., when q = m/n for
some integers m and n. Of course, only small values of m
and n are of practical interest. In the analytical work
within Sec. III, we shall concentrate on small-amplitude
oscillations for which qo =N" and consider the simplest
resonances which occur for N close to —,', 1, or 2. This
analysis is based on the equation of motion (10) with a(z)
in the form (11) and with a expanded in powers of
b(z)=a(z) a, w—here a =N is the location of the
bottom of the well for e=O. As is well known from the
classical theory of nonlinear resonance [11], in this ex-
pansion nonlinear terms should be retained up to order

3b . Consequently, the appropriate approximation ob-
tained after simple algebra is

q =(2~E~ ) /N (12)

This corresponds to the wave number of the spatial oscil-
lations of soliton shape. The bottom of the well (see Fig.
1) corresponds to E= —

—,'N, so that for small oscilla-
tions the limiting (maximum) value of the wave number

In the limit a=0, Eqs. (10) show that the "energy"
E=

2
(a') + U(a, 1) is conserved. This allows explicit in-

tegration, so giving z as a function a. In particular, if the
energy E is negative, the frequency q of anharmonic oscil-
lations of a particle in the potential well is

III. ANALYSIS OF RESONANCES
FOR SMALL-AMPLITUDE OSCILLATIONS

A. The resonance near N =—'
2

First, we consider the case when the second harmonic
of small-amplitude oscillations resonates with the small
driving force. According to Eq. (13), this occurs for

N'= ,'(1+k), k «1, — (15)

k being a small detuning from resonance. In this case, we
seek a solution to Eq. (14) in the form
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IV. NUMERICAL SIMULATIONS
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value @=0.25 seems to lie sli htl above
h ho ld [Fi 6(

0 ' 705
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0 ' 69
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Since so iton destruction represented

' tin erms of Eq.
) by a ~ oo (escape from a potential well)

ortant for
en ia we, is very irn-

p or apphcations to optical fibers add' '

analysis of the e
ers, a itional

e escape has been undertaken. We fixed
N =2, @=0.01, and a' 0 =
t e initial value a (0

=0, but gradually decreased
), so that the initial "energy" of the

oscillations in the potential well increased. It should
ig. that, for unforced oscillations (homo-

geneous fibers& bounded oscillations occur onl for

Recall that the initial value a(0)=1/&2
in

correspond-
g to Eq. (37) yielded, with a=0.01 the

ions shown in Fig. 6(a). For a(0)=0.6571, irregularly
modulated oscillations arise [Fi . 7(a)]
sma amp itude so that each cycle appears quasiharmon-

we find strongly anharmonicic. For I2 (0)=0.4000
arge-amplitude oscillations which also dis la i

modulation ~Fi . 7 b
a so isp ay irregular

n [ ig. ( )]. The strong anharmonicity is due
to the marked as m
amplitudes. At

ymmetry of the potential well at th
p . t the still smaller value a(0)=0.3750,

a ese

similar irregular oscillations with a maximum f
'ne an with minima of a at z spacings =40. Final-

of soliton destruction, the threshold value lies in
(I2 0) (0.3750 and so slightly exceeds the

value ao ——0.3536 relevant in the absence of inh
ty (@=0). We conclu

ceo in omogenei-
e conclude that the weak inhomogeneity be-

ing considered here (@=0.01) sl' h 1

within whi
s ig t y narrows the range

wit in which the disturbed soliton of E . (3)o q. remains
u remark that if the amplitude of the inhomo-

geneity exceeds the threshold value e ' "' h
an =

—,
' lies near 0.25, see Figs. 4(c) and 6(c)]

the soliton completely loses its stability.

V. CONCLUSION
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No conspicuous emission of radiation or a r

ese o servations agree with those found
'

analysis for a periodically inhomoogeneous bimodal no-

comprises two coupl d NLS q
'

s for pe equations for
'

ns. e variational a ropp oac to describ g the
'

s o a two-component soliton in
bimodal fiber h

i on in a homogeneous
er as been developed in Refs. 13 .

that two-component s 1't
e s. . It shows

of oscillation associ t d
nen so itons possess an additii ional mode

components. Thus such
ocia e wit relative mo

'
tion of the two

ties for resonance bet
us suc a mo el contains mor e possibih-

~ ~ ~

e e ween internal modes of a solita so iton and

[14] A h 1'
mogeneity. T is work is n

e pre iminary results obtained
tainly noteworthy is th

'ne t ere, cer-
is e sp itting of a two-corn

iton into simple soliton
mponent sol-

sponding internal m d h
so i ons ue to resonance ofo t e corre-

patial inhomogeneity.mo e wit thes
no er interesting development wo

i a ran om inhomo eneit
modes might rresonate with a suitable s ec

g i y, in which internal

of th do hm in omogeneity.
The present analysis is confined to the ca

1 d ffii u e su ciently small that th
coefficient in E . (11)

at the dispersion
q. never becomes ne ativ

1 obl o ldb
1' 1

e to analyze the d
s in a me ium with periodic

sign of the dispersion coeKcient.
Finally, it is remarked th t h

apply not only to o t' 1 fib
a t e results obta

~ ~

op ica ers, but also to ot
ained here

1' 'd dar gui e wave pro a ation
linear internal

'
n, e.g., to non-

wave c annels in eo
dynamics [7].

geophysical hydro-

PDE whiwhich is equivalent to E s. (4 an
d

' R f. [1 '„'n e . 2~. For relativel wea~ '
og

at s ape oscillations of the s
11 'h o

'
brmonic, ut, over longer intervals
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, irregu ar.

ACKNOWLEDGMENT

One of the authors (B.A.M. ) appreciates the
of the Department f M h
U of Ed b h

'Author to whom thee correspondence should be addre
Electronic address: ma].omed - l

. Hasegawa and Y. Kodama, IEEE J. quantum
tron. QE - 23, 510 (1987).

. P. Agrawal, Nonlinear Fiber 0 ti2 G. P.. P. ,
' r i er ptics (Academic, Orlan-

York, 1984).
a ion: onsultants Bureau, New

[4] A. Bondeson, D. Anderson, and M.. Lisak, Phys. Scr. 20,

[5] J. Satsuma and N. Yajima, Pro . Th
284 (1974)

. Anderson, M. Lisak, and T. Reichel6 D. pt S

[7] B.A. Malomed and V. I. Shrira. Shrira, Physics D 53, 1 (1991).
. A. Malomed, Phys. Scr. 47, 311 (1993)

alomed, Phys. Scr. (to be published)

0] C. M. de Sterke and J. E. Si e Ph s.10
(1989); 42, 2858 (1990 ' D(1990); D. N. Christodoulides and R. I.
Joseph, Phys. Rev. Lett. 62, 1746 (1989);A. B.Aceves

pp . ys
'

z, and T. G. Brown, ibid. 60

0 . L . 17 1566 (1992).
11 L.

M 1972) (E
1976)~

nglish translation: Pergamon, Oxford,

[12] E. Ryder and D. F. Parker, I. M. A.e, . . . J. App ~ Math. 49,

[13]D. Muraki and W. L. Kath P~

' . . ath, Phys. Lett. A 139, 379 (1989)7, 3 (1990)9 T.
(1990), 8 A

[14]B.A. Maiomed and N. F. Smyth (unpublished).


