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Spherical scattering of superpositions of localized waves
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We investigate, for purposes of remote sensing, the spherically backscattered spectra of acoustic reali-
zations of localized wave solutions to the homogeneous wave equation. The solutions represent broad-
band focused interference patterns whose focusing properties have been demonstrated to be superior to
those of equivalent monochromatic (i.e., cw) solutions, in the context of multi-time-derivative transmit-
receive systems. The interference patterns are acoustically launched with a synthetic hydrophone array.
The backscattered spectra of several different sized steel and aluminum spheres have been obtained.
Analysis indicates that the sphere radius can be readily extracted from these spectra.

PACS number(s): 03.40.Kf, 43.20.+g, 43.30.+m, 03.80.+r

I. INTRODUCTION

Over the past number of years, there have been various
works detailing localized wave (LW) solutions of the
homogeneous wave equation (HWE), the Klein-Gordon
equation, and the damped wave equation [1—9]. Authors
have shown how to launch these broadband wave forms
[3,6,7, 10-13] and have described how eff'ectively they re-
tain their localization properties [6,7]. The basic LW
HWE solution was discovered by Ziolkowski [2], using
the work of Brittingham [1], and is called a focus waue
mode (FWM). Although the FWM has infinite energy, it
possesses an arbitrary parameter, and one can form finite
energy weighted superpositions (over this parameter) of
FWM's. In particular, Ziolkowski considered the so-
called modified power spectrum (MPS) pulse, given by
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where s =p l[zo+i (z ct ) ]—i(z+ ct—), p =+x +y,
and zo, b, and B are free parameters. The MPS pulse is
shown, for particular values of zo, b, and B, in Fig. 1.

The superior focusing properties of the MPS pulse, as

compared with equivalent continuous wave (cw) pulses,
and in the context of multi-time-derivative transmit-
receive systems, has been demonstrated [6]. In this pa-
per, we predict and then acoustically measure the spheri-
cally scattered spectra of a MPS pulse in an attempt to
indicate the potential usefulness of LW pulses for remote
sensing applications.

In Sec. II we show how the spherical backscattered
spectrum of a FWM may be obtained by using a Fourier-
transform technique introduced by Donnelly and Ziol-
kowski [8,9]. We first derive an expression for the spheri-
cal backscatter due to an arbitrary incident plane wave.
We then obtain the spherical backscatter spectrum of the
FWM by using a weighted superposition of the plane-
wave spherical backscatter over the plane-wave (Fourier)
components of the FWM. The MPS spherical back-
scatter can then be obtained simply by using the same
technique (i.e. , weighted superposition) used to obtain the
MPS pulse from the FWM.

In Sec. III we show how the MPS spherical backscatter
spectrum can vary with the size and material composi-
tion of the sphere. We also discuss how the size of the
sphere may be extracted from the MPS backscatter spec-
trum. In Sec. IV we show how LW solutions of the HWE
may be launched using Huygens's reconstruction. In Sec.
V we explain how actual MPS acoustic backscatter exper-
iments were performed using ultrasonic hydrophones
placed in a large water tank. In Sec. VI we discuss the re-
sults of our acoustic experiments and our attempt at ex-
tracting the size of the spheres.
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FICx. 1. Surface plot of the HWE solution pulse
Re[PMps(p, z, t)] for the values t =0 s, z0=4.0X 10 m, b =750
m ', and B=300.

II. PREDICTED BACKSCATTERED SPECTRUM

e ik r —idiot (2)

In what follows we shall be suppressing an e '"' time
dependence on field quantities and, for reasons we shall
see, we shall assume that co(0. As such, if k denotes a
vector whose spherical polar components are (k, 8,y),
then the plane wave
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z axis with speed c and has a degree of focusing about this
axis which depends on P: for small values of /3,

behaves like a plane wave, whereas for large values of P,
gtr behaves like a particle. The Fourier transform of the
FWM solution in (12) is given by

2 it-2z /4p
4'p(k, co) = e ' 5(k, —(P K —l4P))

l

co/c =-k'z .

) E co/c

. co/c=kz

x5(co+c(p+K /4p)) . (13)

From (13) one can readily determine that the support of
V&(k, co) is a line lying on the surface (11), whose projec-
tion onto the (k„co/c) plane is a straight line, of slope
one, as shown in Fig. 3.

From Figure 3 we see that the temporal Fourier trans-
form of the FWM, 7, [t/&[ (r, co), will be an analytic signal
in that it contains only negative frequency components.
The signal that we attempt to launch is Re[i/r&](r, t),
which has the two-sided temporal Fourier transform

,' [2, [ i/ri3] (r, c—o)+( 2, [ i/rtr I (r, co) )*].
As already discussed then, the scattered field at the

point whose Cartesian coordinates are (0,0, r), due —to

FIG. 3. Projection of the support line of the HWE solution
Fourier transform domain function O'Mps( k et&), onto the
(k„co/c) plane. The projection is shown as the solid line seg-
ment.

an incident FWM of the form (12), will be given by a
weighted superposition of the expression (6), for a single
plane wave, over the plane-wave (Fourier) decomposition
(13) of the FWM, that is, the scattered field is given by

2 1 —~z /4p OO

A&(r, co)= f,dke 5(k, —(/3 K /4/3))5—(co+c(/3+K /4P)) g ) „h„' '(kr)P„(cos8),
ip (2') n=0

where f 3dk denotes the integral over the three-dimensional spatial Fourier transform domain.

The following identity, valid in the sense of generalized functions, is readily verified:

(14)

5(co+cp+cK /4p)—: u (
—co/c —/3)5[K &4PlP+co/c

l ],c&lp+co/c
l

where u, the unit step function, is needed to ensure co+cp(0. We may break the volume integral f 3 in (14) into
separate integrations over cylindrical polar coordinate variables as f 0 dcpf „dk, f o dK K. With the aid of the identity
(15) we may perform the K and g integrations to get

Air(r, co)= e f dk, 5[k, —(2P+colc)] g y„h„' '(kr)P„(cos6)l &&&~&+2LC IR
(16)

Care must be exercised with the remaining k, integral.
With K=&4plp+co/cl, we see that the remaining 5
function will set k„so that k becomes

k =(K +k, )' = [4PlP+colcl+(2P+colc) I'

where the last equality followed from the step function
u (

—co/c —/3) in (16). Similarly, we find that cos8
=k, /k ~2Pc /leo

l

—1. Thus (16) becomes

u ( —p —co/c ) ~,(O+~xc)
Aii(r, co)= e '

2LC

XXx. l =
n=0 le

We now make the observation that, as p is an arbitrary
positive parameter in (12), any weighted superposition

d I' &rt (18)

will also be a HWE solution. We can choose the weight-
ing F(p) so that the superposition (18) has finite energy
and desirable propagation characteristics [3]. In particu-
lar, we can choose the weighting

4~iBe ' ~ ' if P) b/B
0 if 0~p&b/B (19)

to get the so called modish-ed power spectrum superposi-
tion [3],given in (1).

With the wave form (1) incident on the sphere, the re-
ceived signal at the point (0,0—r) on the negative z axis
is given by
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where

cr = (B—zo),
2c B co

III. ANALYSIS OF BACKSCATTERED SPECTRUM

(22)

Cl r examination of (21) reveals that the predictedoser exam'
backscattered spectrum is a complicated function o
distance from the sphere r, the sphere radius a, an t e
sphere's material parameters p, and, = &„~p«.d c =1/~~ v . For
remote sensing purposes we should

'
h ld like to extract the ma-

teria parame ers
'

1 ters from the sphere's backscattered spec-
'us a. In Fi . 4 we il-trum, most notably the sphere radius a. In Fig. 4 we i-

lustrate the backscattered spectrum for varying sphere
radius. In this example, we use material parame ers
c, =3.0 X 10 m/s and p, =7.8 X 10 kg/m, similar to
those of mild steel. For this and all subsequent examples
and experiments we use MPS pulse parameters
z =4 OX10 m, B =300, and b =750 m ' such thatZO ~

the waist of the pulse is 4.0 cm.
The spectrum appears as a series of frequency peaks

and dips beyond approximately 30 kHz. The spectral

I

spacing o t ese ipf h di s changes with sphere radius; as t e
sizeo esp ef th s here increases, the spacing between a jacent
dips decreases. Hence we may be able to extrac e
sphere radius by examining the frequency of these spec-
tral peaks and dips.

However, the two variables c, and p, also appear in
(21); hence we should examine the effect these have on
the spectral dip frequencies as well. In 'g.n Fi. 5weshow
the backscattered spectrum for varying p, . In this exam-
ple we ave use eh d the parameters a=0.3 cm an c,

7.8 11.7)=3.0X10 m/s with three values of p, : (3.9, 7.8,
10 k /m . As this figure shows, a large change in p,

does not greatly affect the spacing of the spectra ips.1 di s.
In Fig. 6 we now show the backscattered spectrum for

rameters a=0.3 cm and p, =7.8X10 kg/m with three

figure shows that as c, increases, the spacing of the spec-
tral dips decreases.

It is notable that many metals and hard materials have
similar c values [15] (Table I). Hence, it should be possi-simi ar c, va ues
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FIG. 4. Magnitude plot of the predicted backscattered spec-
X10', A ( ) for r=150mm, c, =3000m/s, and p, =7.8

kg/m . Radius legend: a =50 mm (solid), a =40 mm (das e
and a =30 mm (dotted).

FIG. 5. Magnitude plot of the predicted backscattered spec-
tra, AMps(r, co) for «=150 mm, c, =3000 m/s, and a =30 mm.
Density legend: p, 3.9X10 kg/m (dotted), p, =7. X
kg/m (solid), and p, =11.7X10 kg/m (dashed).
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We should like to launch the MPS pulse in (1) into the

region z )0; the surface S' is therefore taken to be the
plane z'=0. This leads to the formulation

(24)
We may use (24) to reconstruct MPS pulses using point
source transducers whose impulse response is modeled by

0.0
0 20 40 60 80

Frequency (kHz)

100 120

FIG. 6. Magnitude plot of the predicted backscattered spec-
tra, AMps(r, co) for r =150 mm, a =30 mm, and p, =7.8X10
kg/m . Velocity legend: c, =1500 m/s (dotted), c, =3000 m/s
(solid), and c, =4500 m/s (dashed).

h (r, r', t ) =5(t —R /c)/4mR .

We are constrained to a finite number of transducers; as
the MPS pulse gati(r, t) in (1) is focused near the propaga-
tion axis, hopefully we can construct an approximation to
it using a finite number of transducers that are symmetri-
cally placed about the z axis in the plane z'=0:

ble to extract the sphere size from the backscattered spec-
trum with a small margin of error due to a variable c, . [D„x',y', t ]

4~R (26)

IV. LAUNCHING SUPERPOSITIONS
OF LOCALIZED WAVES

—g(r. , r')[iti]B„,IR j j . (23)

In (23), (3„ is the temporal diff'erential operator, 8„.is the
normal differential operator, integration is with respect to
the primed coordinates, g ( r, r') = I /4~R, R—:

~
r —r'

~

denotes the distance from the field point to the source (in-
tegration) point, and the square brackets around a func-
tion indicate that it is to be evaluated at the retarded time

TABLE I. Speed of sound c, =Qs,p, in various hard ma-
terials.

Material

Stainless steel
Aluminum (rolled)

Titanium
Nickel

MagnesiuIn
Cast iron

Pyrex glass

c, (m/s)

3100
3040
3125
3000
3050
2809
3280

In previous LW experiments, Huygens's reconstruction
formula [16] has been used to determine the array driving
functions [10,11]. In Ziolkowski's experiments, he used
Huygens's reconstruction formula [16] to launch super-
positions of the MPS pulse. This formula allows one to
generate any solution of the homogeneous wave equation
at a fixed point in a bounded region of space, provided
one knows the value of the solution, its temporal deriva-
tive, and its normal derivative at each point on the
bounding surface S' of the region. If the HWE solution
is t(iri, t), then if the field point r lies inside the region
bounded by S' we have

gati(r, t ) = —f dS /g(r, r')[B„.I hatt j ]—[B„g]B„,[g(r, r') j

where X is the number of transducers and A(n) is an
area weighting for each element, replacing dS' in (24).
For a uniform array of equally spaced elements, A(n) is
constant for all n.

If we fix the field point r, then the signals required at
each of the transducers D„are determined through (26).
When launching superpositions of I.W's so as to con-
struct, for example, the MPS pulse described above, one
usually chooses a field point r that is close to the propa-
gation z axis and far from the plane z'=0. This allows
for the approximation z/R =1 for each of the transduc-
ers in (26) such that the signal to be fed into each trans-
ducer reduces to D„( xy', t)=28, [ t( iixy', z'=O, t)j [6].

V. EXPERIMENTAL METHODOLOGY

In order to obtain spherical backscatter signals for
analysis, acoustic experiments were conducted in large
(3 X 4 X 5 m3) tank. Three steel spheres with radii
measuring 20, 40, and 60 mm and a single aluminum
sphere with a radius of 40 mm were used. The MPS
pulses were launched using the double hydrophone sys-
tem illustrated in Fig. 7.

The experimental setup is controlled using a personal
computer (PC) and an general purpose interface bus
(GPIB). Digitized signals are generated by the computer
and sent to an arbitrary wave-form generator and
amplifier. The MPS pulses are reconstructed synthetical-
ly, using superposition, by a single hydrophone (BkK
8103). A stepper motor is used to move the hydrophone
to the required positions along the synthetic transmit
aperture. The spheres are placed directly in front of the
transmit aperture in line with the array's z axis. Another
hydrophone (Reson TC4104) senses both the transmit
and rejected signals from the transmitting hydrophone
and the sphere, respectively. Received signals are relayed
back to the PC for further reconstruction and signal pro-
cessing.
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Arbitrary
Wave-form
Generator

Wave Tek 275

Power
Amplifier

B&K 2713 s~+
Motor

HP 9000
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Wave-form
Recorder Amplifier
HP5180A B&K 2636

Wire
Support

Steel(Iy
Sphere

Hydrophone:
B8iK 810;)

Hydrophone
Reson TC 4014

FIG. 7. Backscatter spectra measurement
system.

Stepper Motor
Controller

The axisymetric nature of both the MPS pulse and the
rejecting sphere allows us to reduce the number of ele-
ments in the transmit array by using discrete, equally
spaced annular sections. If the receiver hydrophone is
placed on the z axis (p =0) then, assuming a flat band sys-
tem transfer function, we may reconstruct the backscat-
tered signal using the formula

N
v Mps(r, t) = —g q„(r, t)A(n ) .

n=0
(27)

In (27), vMps is the reconstructed backscattered signal, q„
are the spherically reAected signals originating from each
of the N transmit elements, A(n) =2mp„hp, p„ is the ra-
dial location of the nth element, and Ap is the spacing be-
tween adjacent annular elements. Thus a complete aper-
ture can be synthesized by moving the transmit hydro-
phone to discrete positions along a single radius of the
transmit aperture corresponding to each discrete annular
region. For these experiments, 1V=30 and hp=4 mm;
hence the aperture has a radius of 116mm.

In order to obtain a variety of spectra, each sphere was
placed at the r distances 150, 250, and 350 mm. At the
distance r =150 mm, the spheres are located in the near
field of the transducer array [6]. In this case the near
field of the array simply refers to where the approxima-
tion z/R =1, discussed previously in Sec. IV, is invalid
(or where z is less than the size of the aperture).

+Mps( r~ ~ ) ~ ~ +Mps( r~ ~ ) (28)

in the range 0—110 kHz. For the MPS parameters
chosen, f,tt

=59.7 kHz.

1.0

Both hydrophones are essentially omnidirectional de-
vices and are constructed using rubber coated spherically
shaped piezoelectric material. The tip dimensions of
each device are 9.5 and 11 mm for the transmitter and re-
ceiver, respectively. The amplifiers and hydrophones
provide for a bandwidth of approximately 0—135 kHz.
Analysis of system TX-RX transfer function was per-
formed by inputting sine(2wt) pulses of bandwidth w into
the transmitter. A plot of the received signal from a
150-kHz sine pulse is shown in Fig. 8.

Below 110 kHz, the system transfer function H(rv) can
be approximated by the equation A co, where 3 is a con-
stant. In other words, the system is approximately a dou-
ble time differentiator in the 0—110 kHz band. Hence, if
the MPS pulse is designed such that the effective upper
frequency f,tt [6] of each driving function is below 110
kHz, then the backscattered spectrum AMps and the
Fourier transform of the reconstructed signal YMps are
approximately related by

1.0

0.8—

O
0.6—

0.4—

0.2—

0.0
'

0 20 40 60

Frequency, kHz

80 120

0.8—

O
0.6—

0.4—

0.2—
c5

0.0
0 20 40 60 80

Frequency (kHz)

120

FIG. 8. Magnitude plot of the double hydrophone system
transfer function H(co) (solid), and a least-squares-fitted
second-order polynomial, A co (dotted).

FIG. 9. Comparison of the reconstructed backscattered spec-
trum ~'f MPs ~

(dotted), with the predicted backscattered spec-
trum ~AMps "~ (solid) for a 40-mm-radius steel sPhere Placed at
r = 150 mm from the synthetic array.
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1.0 TABLE II. Sphere radii extracted from reconstructed back-
scattered spectra.

& 0.6

0.4

Actual
size (cm)

Distance
from array

(cm)

Steel

Estimated size
(cm)

Percent
error

0.2

0.0
0 20 40 60 80

f, Frequency (kHz)

120

FIG. 10. Comparison of the reconstructed backscattered
spectrum ~YMps "~ (dotted), with the predicted backscattered
spectrum AMps ~

(solid), for a 60-mm-radius steel sphere placed
at r = 150 mm from the synthetic array.

2.0
2.0
2.0
4.0
4.0
4.0
6.0
6.0
6.0

4.0
4.0

15
25
35
15
25
35
15
25
35

25
35

Aluminum

1.9941
2.0044
1.9975
4.0968
4.0939
4.1403
5.8445
5.7954
5.8632

4.1773
4.2610

0.3
0.2
0.1

2.4
2.3
3.5
2.6
3.4
2.3

4.4
6.5

VI. EXPERIMENTAL RESULTS

In the figures that follow, the reconstructed backscat-
tered spectrum YMps is compared to the predicted back-
scattered spectrum AMps. The predicted spectrum has
been weighted with the system transfer function
H(co) = Ace in order to account for two time derivatives.
In Figs. 9 and 10, we show predicted versus measured
spectra for steel sphere radii 40 and 60 mm, respectively.
In both spectra we see that both the predicted and mea-
sured spectra contain dips at similar spacings.
Differences in both spectra may be due to the approxima-
tion of the MPS pulse in the reconstruction and to
differences in material parameters.

Numerical analysis with predicted spectra has shown
that the spectral width of adjacent dips is inversely pro-
portional to the sphere radius. Using this relationship,
we have calibrated the numerical parameters based on
the three steel sphere spectra obtained at r =150 mm;
these numerical parameters are used in a sphere radius al-
gorithm that extracts the radii from other backscattered
spectra. Table II shows the extraction results for each of
the spheres at the indicated distances. The maximum er-
ror is 3.5% for the steel spheres and 6.5% for the alumi-
num sphere. The relatively high percent error for the
aluminum sphere is expected because of the difference in

c, between steel and aluminum. However, all errors ap-
pear to be within tolerable limits.

VII. CONCLUSIONS

In the context of multi-time-derivative transmit-receive
systems (such as that present in the forward propagating
section of our experimental setup), the superior focusing

properties of the MPS pulse over equivalent cw pulses
has been demonstrated [6]. It thus seems natural to try
to use the extended near-field characteristics of the MPS
pulse, coupled with its broadband nature, to extract in-
formation from backscattered signals; the broadband na-
ture of the signal allows for parameter extraction, while it
is the enhanced propagation properties of the LW pulses
that ensures that a relatively large amount of energy
reaches the target. Other broadband signals might not
have desirable propagation properties and more focused
monochromatic pulses would not have the desirable spec-
tral width.

We have successfully extracted sphere radii from the
MPS backscattered spectra of several different sizes of
steel and aluminum spheres, using a relatively naive algo-
rithm. In this algorithm, the speed of sound in the sphere
is assumed known (and is approximately the same for a
wide variety of metals) and the radius is extracted from
the spectrum. It may be possible to estimate both the
material properties and the radius from the backscattered
spectrum. Work on this is ongoing.
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