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Application of the Fokker-Planck equation to particle-beam injection into e storage rings
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Nonlinear forces in the longitudinal accelerating field —or in the transverse magnetic fields —lead to
filamentation of the injected emittance and to the decoherence of the center-of-mass motion. The dy-

namics of the particle distribution function in the presence of synchrotron radiation is governed by the
Fokker-Planck equation. We derive the time evolution of the distribution function after injection as an

approximate solution to the Fokker-Planck equation. The approximation assumes the injected emit-

tance to be considerably larger than the equilibrium emittance, which is fulfilled for a certain class of
storage rings, e.g. , damping rings. In the limit of no quantum excitation, this distribution function will

then be an exact solution. Higher moments of the distribution can be expressed in combinations of ele-

mentary functions and agree very well with multiparticle simulations.

PACS number(s): 41.75.Ht, 29.27.Ac

INTRODUCTION

Injection of a bunched beam into the periodic structure
of a storage ring may lead to the formation of filaments in
phase space [I]. It is generally assumed that, after some
relaxation time, this filamentary structure can be de-
scribed by a smoothly varying distribution function that
gradually approaches equilibrium.

In Ref. [2], the time evolution of the distribution
function —after mismatched (the betatron functions of
the injection beam ellipsoid and the lattice are different)
or off-axis injection —was analyzed by means of the
Vlasov equation. The influence of nonlinear fields was
approximated by an averaged Hamiltonian that depends
only on the action variable. Using this Hamiltonian, the
Vlasov equation could be solved exactly.

In order to describe the effects of injection transients
for a larger time period than a small fraction of the
damping time, the effect of synchrotron radiation on the
beam has to be taken into account. In this paper we
derive the time evolution of the distribution function as
an exact solution of the Fokker-Planck equation in the
cases of (a) only linear fields; and (b) nonlinear fields and
damping, but no quantum excitation.

In addition we discuss an approximate solution to the
Fokker-Planck equation where nonlinear fields, damping,
and quantum excitation are taken into account. The ap-
proximation assumes the injection emittance is much
larger than the equilibrium emittance —this assumption
is typically fulfilled in damping rings.

Due to the relatively simple form of the distribution
function, first and second moments may be derived in
closed expressions. These relations are then compared to
results of multiparticle simulations, where radiation
damping and the effect of quantum excitation were in-
cluded.

I. TIME EVOLUTION OF THE DISTRIBUTION
FUNCTION NEGLECTING NONLINEAR FIELDS

In this section, we study the time evolution of the dis-
tribution function in phase space after mismatched or

off-axis injection into a periodic structure. Neglecting
nonlinear fields, the single-particle motion may be de-
scribed by the Hamiltonian

Ho(g, g)= (f +rl ) .

The transformation to the measurable transverse (x,p)
and longitudinal (E,z) coordinates is given by

Longitudinal
1/2

nR (Xz

~SO

1/2
&SO

aR
~SO

1/2

1/2

Transverse

ax +Pp

where o, , o., denote the bunch length and the energy
spread at equilibrium, and a in the longitudinal plane
denotes the momentum compaction, whereas a,P in the
transverse plane are the Twiss parameters at a fixed posi-
tion in the ring [3]. The tunes in the longitudinal and in
the transverse plane are denoted by v, o and v„o. It is use-
ful to be able to work with action-angle variables. We in-
troduce

ii=&2I cos(P), g=&2I sin(P) .

With these variables, the Hamiltonian reduces to

(2)

Ho(I) = I .
R

Electrons receive energy from the accelerating cavities,
and lose it again due to synchrotron radiation. To de-
scribe this fluctuating radiation process, a stochastic term
has to be added to the equations of motion leading to a
set of stochastic differential equations [4]. The dynamics
of the phase-space particle distribution %(Q,I, t) is then
described by the Fokker-Planck equation. From Ref. [5],
we have
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1
r%, =2%+2(I + cr )O'I +2o I%'tt —rcoo+p+ ,' o——q't p,

(3)

parametrize the distribution function at injection. We as-
sume a Gaussian distribution both in longitudinal and in
transverse phase space. Figure 1 displays the phase-space
portrait of three different distributions at injection.

Longitudinal Transverse

O~~Oz~
~uO zo op ~xo

(4)

In analogy to o, we introduce o.p, the corresponding term
at injection. Before we go on to investigate possible solu-
tions of the Fokker-Planck equation, we want to

where the subscripts denote partial differentiation. The
oscillation frequency coo is equal to the tune times 2m di-
vided by the revolution time; ~ is the damping time; and
o. is related either to the transverse equilibrium emittance
or, in the longitudinal case, to the product of bunch
length and energy spread:

A. Mismatched beam injected on axis

For the moment, we consider the case shown in Fig.
1(a): the centered distribution function where the center
of mass of the distribution coincides with the origin of
phase space.

In the transverse measurable coordinates (x,p), we
parametrize the mismatched injected distribution as an
ellipse with ao, Po, e„o. In the longitudinal case, we as-
sume for simplicity that the injected ellipse is upright;
i.e., the major axis of the ellipse is aligned with one of the
g, rI axes. Then the injected longitudinal ellipse is de-
scribed sufficiently by the bunch length o.,p and energy
spread o~ of the incoming beam. Using Eq. (1), at the
moment of injection we obtain the distribution function
in the variables (g, rt) (see also Ref. [2]) as

27To po ~

Longitudinal

I
—Cog +2AO(g+Boq I /2a OcT~

e

Ox~Os
OxoO e~

0

OzoO e~

Oz~Ou

%0(t =0)

Bp

Ao

Cp

Transverse

Cog +2 AORS&+ BOY/ I /2E'~o
e

27TExo

0 p
Ap+1

Bo

where a,P denotes the Twiss parameters of the ring at
the injection point. With g =1, the longitudinal distribu-
tion appears circular in phase space. For example, the
longitudinal distribution of an electron bunch injected
into the Stanford linear collider (SLC) damping ring is

described by g= —,', . With Eq. (2), the injected distribu-
tion function in action-angle variables is given by

Vo(t =0)= exp[ I[ho+coco—s(2$ —2P)]], (6)
2mdo

with

Longitudinal

O uOzo

(g + I)/(2go, oo~)
(I —g') /(2go, oo )

tan(2$ ) —-

do

bo

Cp

Transverse

—2AOBO/(1+ A 0
—Bo)

&xo

(1+A 0+Bo )/(2Boe„o)
+b o

—I /—e„o

with

'Po(t) = exp [
—I[b(t)+c(t)cos(2Q) ]],1

2nd t
(8)

We expect the injected ellipse to start to rotate in phase
space. From this point of view, we extrapolate from Eq.
(6) the assumed time evolution of the distribution func-
tion:

Q =p
—coot —p,

where the unknown functions d(t), b (t), and c (t) have to
be determined from Eq. (3). We realize that we may rear-
range the exponent of the distribution function and write
Eq. (8) as

0'0(t)= exp[ —I[u(t)cos (Q)+U(t)sin (Q)]],1

2nd(t)
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differentiation, and order the resulting equation in terms
of the canonical variables and their combinations:

(c)

FIG. 1. (a) Mismatched beam injected on axis. (b) Matched
beam injected off axis. (c) Mismatched beam injected off axis.

Constant: rd—'( t ) /d ( t ) =2 —2cr b ( t ),
I: —rb'(t) = —2b (t)+2o.(b'(t)+ c'(t) ),
I cos(20): rc'—(t) = 2c—(t)+4crb(t)c(t),

cos(2Q): 0= 2c—(t)o +2c(t)o,
I cos (2Q): 0=2c (t)0.—2c (t)0, .

where the prime denotes differentiation with respect to t.
The fourth and fifth of the relations in Eq. (11) are al-

ready fulfilled. The first relation follows from the second
and third relations using normalization condition Eq.
(10). The remaining set of two differential equations in
b (t), c (t) can be solved by introducing the functions u, v

defined in Eq. (9):

with

u u
=2

U V
20 (12)

u(t)=b(t)+c(t), v(t)=b(t) —c(t) . (9)

J f dgdI 4=1=)d(t)=
+b'(t) c'(t)—

1

&u (t)v(t)
(10)

We introduce Eq. (8) into Eq. (3), perform the partial

The function d (t) has to be determined by the normaliza-
tion condition of the distribution function. This is done
in Appendix A:

These two equations are of Riccati's type. The solution is
given by

Q(t)= 1

(1—uoexp I 2t /r J
)—o

v(t)= 1

(1—voexp I 2t /rI )cr—
(13)

where uo and Uo are integration constants. We use the
initial condition for b (t =0)=ho and c(t =0)=co in Eq.
(7) and determine uo, vo as

Longitudinal

1 —o.,o/o. ,
1 —o /o, „

uo—
Transverse

1 —I/(&x-bo —
&x +bo —I/Exo)

1 —I/(e„„ho+a „Qbo —1/e„o) (14)

These relations are more transparent in the longitudinal
phase space since we restricted the initial distribu-
tion to an untilted ellipse in phase space. For
a.,o/o. ,„=o.~/o. ,„or g =1, the functions u (t), v(t) be-

come equal and the distribution function no longer de-

pends on the angle variable P.
Using Eqs. (13), (14), and (7), we obtain in the trans-

verse plane the necessary condition for c (t) =0:

bo = =-1=1=
~xO

po p p =P, . (15)

The combination of Twiss parameters on the right-hand
side, p, , is known as the p-magnification factor [6—8].

The functions u (t), v (t) approach the same equilibrium

I

value: u(taboo), v(t~ca)=1/o. Furthermore, it fol-
lows that u (t) is monotonic, increasing (decreasing) if uo
is negative (positive). The same statement holds for v (t)
The function c(t) =(u —v)/2 will therefore tend to zero,
and the distribution function at equilibrium becomes in-
dependent of the angle variable P.

B. Mismatched beam injected off axis

Up to this point we have assumed that the center of
mass of the distribution is injected at the origin of the
phase space (on axis), and will remain there throughout
the damping process. From Fig. 1(c), it is clear that the
off-centered distribution induces an additional angle P
dependence in the distribution function which will persist
even if the injected beam is matched.

We denote the position of the injected center of mass
by (eo, zo) or (xo,Po). In Phase sPace (g, i)), we obtain the
position of the injected center of mass as
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Longitudinal

eo+aR /v, o

zo+v, o/aR
g(t =0)
rI(t =0)—

Transverse

xo/&P
(axo+Ppo)/V'P

(16)

A natural way to take into account the off-axis injection
is by shifting the canonical variables

&I cos(Q)~&I cos(Q) —+I(t) cos(Po —P),
v'I sin(Q)~i/I sin(Q) —i/I(t) sin(po —p),

(17)

where Q is defined in Eq. (8), and I(t) and the constant Po
are related to the initial values of [g(0),g(0) ],

I(0)=
—,
' [g '(0)+iI '(0) ] and tan(po) =g(0)/rI(0) .

(18)

We introduce the substitution rules of Eq. (17) into the
distribution function Eq. (9)

g~g —g(t),
where the functions g(t) and g(t) have to satisfy the
damped oscillator equation associated to the Fokker-
Planck equation (3), with the initial condition given by
Eq. (16). The corresponding substitution in action-angle
variables might look like

II. DISTRIBUTION FUNCTION
IN THE PRESENCE OF NONLINEAR FIELDS

v(I)=R =v (1 pI) . —dH (I)
dI

(21)

In the longitudinal plane, p originates from the expansion
of the rf wave with respect to the longitudinal position, in
the transverse case from octopole fields. From Ref. [15],
we have

Longitudinal Transverse

h a/8Rv, o =p =- —(1/16v m)f ds f3 (s)K3(s)

Nonlinear fields will induce a tune spread in the bunch
population and, as a consequence, cause the injected em-
ittance to filament [10]. When injected off axis, the
center-of-mass position observed with a beam position
monitor will be seen to decohere [11]. This effect is not
particular to the injection of electron rings. Decoherence
was used in proton rings to study the influence of higher-
order multipole fields on the beam [12,13].

A convenient way to deal with nonlinear fields is to in-

troduce action-angle variables and to average the pertur-
bation over the fast-evolving variable [14]. This averaged
Hamiltonian is now a function of the action variable
only, and the tune depends on the action variable:

(22)

%0( t ) = exp [
—u ( t )[&I cos( Q )

—+I( t) cos( Qo) ]2nd(t).
v(t)[&I si—n(Q) VI(t) sin(QO)] }—,

(19)

with

where h denote the harmonic number, and K3(s) contains
the distribution of magnetic octupoles around the ring.
The Fokker-Planck equation is given by

r%, =2%+2(I+o)%~ =2o.I+tt res(I. )4~+ ,' o— 4~~, —.—1

(23)

Q=p cot —p, —Qo=po —p .

I(t) =I(0)exp[ 2t /r}, — (20)

and I(0) is given by Eq. (18). The normalization function
d (t) and the functional dependence of u (t), v (t) remain
unchanged with respect to the case of on-axis injection,
and are given by Eqs. (10), (13), and (14). A result similar
to Eq. (19) has been obtained by Chandrasekhar in the
analysis of Brownian motion bounded by a quadratic po-
tential [9].

The distribution function in Eq. (19) has to satisfy Eq. (3).
Following Sec. IA quite closely, we perform the partial
differentiation in Eq. (3), and order the result in terms of
canonical variables and their linear-independent com-
binations. Thus we obtain the functional dependence of
I(t):

0'(t) = exp[
—I[b(t)+c(t)cos(2Q)] },1

2~d(t)
(24)

with

Q=P+h (t)+f(t)I
Note that Q now contains the action variable, and h (t)

with u(I)=2~v(I)/To, where To denotes the time for
one revolution and o as defined in Eq. (4). Using the
Hamilton-Jacobi perturbation method, one may derive an
additional contribution to p that originates from the sex-

tupole distribution around the ring. In this case, the
action-angle variables have to be transformed from (Q,I )

to (P', I' ) [16,17]. However, the treatment of the
Fokker-Planck equation in the canonical variables (P', I')
would be a great deal more complicated.

We consider on-axis injection, and try to approach the
solution with a test function that is very close to Eq. (8):
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I sin(20)c(t)[~h'(t)+re@0 6—of(t)], (25)

I~sin(20)c(t)[ rf '(t—)+7cu~+2f (t) 4o—b(t)f'(t)],
(26)

and f (t) are yet unknown functions. We next insert Eq.
(24) into Eq. {23), and order the resulting equation in
terms of canonical variables. We obtain the same set of
differential equations that had been derived for the linear
case of Eq. (11),plus five additional terms; c(t)-

b(t)-
I—

Injection

1/o o
1/o. p

op

Equilibrium

0
1/o.

(30)

of' c(t), b (t), and I, which will be difFerent at injection
than at equilibrium:

I sin(4Q)oc (t)f(t),
I'sin (20)o.c'(t)f (t),
I cos(20)crc(t)f (t),

(27)

(29)

We are able to estimate the magnitude of the different
terms in Eq. (26):

rf'(t) 2f (t—)+4o b(t)f (t)=re~,

where b (t) and c(t) are given by the corresponding func-
tions of the linear case in Sec. I. We will now show that,
under certain assumptions which apply for a damping
ring, the terms in Eqs. (27)—(29) are small compared to
the other terms. We mentioned in the discussion at the
end of Sec. I A that the function c (t) goes to zero as t ap-
proaches infinity. The initial value c(t)=co is known
from Eq. (7) to be in the order of 1/o. u, and oo was
defined previously in Eq. (4). We estimate the magnitude

where all terms on the left-hand side contribute with the
same magnitude and f (t) will be of the order of the
right-hand side: f (t) reaps—-p. In the case of Eq. (25)
we have

rh'(t) = woo —6of(t—),
and h (t) is in the order of rcuo-1. For the five terms in
Eqs. (25)—(29), we may summarize their order of magni-
tude:

I
I2

o.I
o.I
o.I

sin(2Q )

sin(2A)
sin(4Q)
sin (2Q)
cos(20)

c(t)~h'(t)
c(t)rf'(t)
c'(t)f(t)
c'(t)f '(t)
c(t)f (t)

Injection

1

o pP
op

o poP 2

o poP 2

Equilibrium

Damping rings operate by definition in the regime
o.p)) o.. With this assumption, we keep only terms of the
orders 1 and po.p, and neglect all other terms of the or-
ders up and o.po.p . Since we ignored only terms con-
taining po. , it is clear that the solution will be exact in the
limit of no quantum excitation. Furthermore, the solu-
tion will reproduce the distribution function of the linear
problem with p=0.

The functions f (t) and h(t) are thus given by the

I

differential equations

&
f'(t) 2f (t)+4ob(—t)f(t) =rcpt~. , (31)

~h'(t) = —rcoo . (32)

Both functions have to satisfy the initial condition
h (0)=f(0)=0. As a solution for f (t), we find

exp[2tlr] —2(uo+uo)t/~ —uouoexp[ 2t /r] —1—+uouof(t) =
—,'couuw

exp[2tlr] —uo uo+uou—oexp[ 2t/r]— (33)

with uo and uo defined in Eq. (14). By integrating Eq.
(32), we find h (t) = coot, and Q—in Eq. (24) is given by

0=P coot +f( t )I—P . — (34)

A particularly important role will be played by the func-
tion f (t), since it is the driving term for the filamentation
process. Shortly after injection, i.e., t «r, f (t) behaves
like capt and increases linearly with time. Then, after the

damping process, f (t) approaches the limit, for no quantum excitation . (35)

f(t~~)=cops/2 The funct. ions b(t), c(t), and d(t)
are tied via Eqs. (9) and (10) to u (t) and u(t), which are
given in Eqs. {13) and (14). We mentioned previously
that the distribution function in Eq. (24) is an exact solu-
tion to the Fokker-Planck equation, if we neglect quan-
tum excitation. In this limit, up, vp goes to inanity, and
the function f (t) becomes

f(t) =
—,'canus(exp[2t/r] —1),
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It should be stressed that the distribution function in Eq.
(24) will lose its phase dependence in the limit of t ~ oo as
c(t) approaches zero. Furthermore, it follows from Eq.
(30) that the equilibrium distribution will be Gaussian
and independent of p. On the other hand, it is well
known that nonlinear fields will affect the equilibrium dis-
tribution. This was shown, for example, in Ref. [5] using
the canonical variables g, i) and solving the Fokker-
Planck equation with %', =0.

In our approach, which is based on action-angle vari-

I

ables and an averaged Hamiltonian, we lose this asymp-
totic characteristic of the distribution function. This is
probably the price we have to pay in order to obtain the
explicit time dependence of the distribution function.

So far, we have considered the injected distribution to
be centered on the closed orbit. In a similar way, we may
derive an approximated solution to the Fokker-Planck
equation for an off-axis-injected distribution. The distri-
bution function

%(t)= exp[ —u (t)[&I cos(Q) —+I(t) cos(QO)] —U(t)[&I sin(Q) —+I(t)sin(QO)] j,2~d(t) (36)

with

Q=p cot+—f(t)I —p, Qo=po —p,

—2tI(t) =I(0)exp

and f (t) given by Eq. (33) satisfies the Fokker-Planck
equation, if we again neglect terms of the order po. . The
functions u (t), U(t) and the normalization function d(t)
are defined in Sec. 1(a), and are not affected by the non-
linear terms in the Hamiltonian. This is not surprising:
the normalization function d (t) corresponds to the area
of the beam ellipsoid, which should remain constant in
the absence of damping and quantum excitation, as re-
quired by Liouville s theorem. Hence, nonlinear terms in
the Hamiltonian cannot affect the area of the evolution of
the injected beam ellipsoid.

III. VARIOUS MOMENTS
OF THE DISTRIBUTION FUNCTION

By virtue of the relatively simple algebraic form of the
distribution function, we may evaluate first and second

I

moments. In Appendix A, the different moments of the
mismatched and centered distribution function are de-
rived. It turns out that the odd moments will vanish be-
cause of the symmetry: %(I,P, t)=%(I,Q+m, t). We
want to compare the analytic formula of the second mo-
ment (z ) with multiparticle simulation.

First we discuss the multiparticle simulation. The
one-turn map in longitudinal phase space includes radia-
tion damping and quantum excitation (QE), and consists
of three steps:

Az= —ae, over the ring

be = —(e V„„/Eo ) [sin[/, —(b /R )z ]—sin(P, )j,
rf cavity;

b,e= A.e+cr, +—I —XQ, damping + QE,

where P, denotes the synchronous phase, Q is a random
Gaussian variable with unit standard deviation, and the
damping coefficient is defined by A, =exp( 2TO/r) [18—].
One damping time corresponds to about 15000 revolu-
tions, 3000 particles were tracked over 20000 turns, and
the second moment was calculated after every three
turns.

From Appendix A and Eq. (1), we obtain the time evo-
lution of the second moment:

(z ) = (b(t) c(t)[cos(2cuot—+2/)Re[Z ~ (t)]+sin(2coot+2$)lm[Z ~ (t)]j),o., [b (t) —c (t)]

with

(37)

Z(t) =1 i4f(t)b(t)+ f'(t)
b'(t) —c'(t)

The comparison between the analytic result and the simulation is shown in Fig. 2. The pictures on the bottom and on
the top display data belonging to the same run. On the top picture we see a fairly good agreement within the first 1000
turns. A slight disagreement shows up as a "wiggly" pattern after 2000 turns (bottom pictures). However, this pattern
does not originate from the approximations done in Sec. II, since it persists in the case without quantum excitation,
where the above equation is an exact solution of the Fokker-Planck equation.

The Hamiltonian formalism is based on differential equations and assumes the rf cavity to be spread over the ARC,
whereas the mapping used in the simulation consists of difference equations. This might be the actual source of the
small discrepancy in the bottom pictures of Fig. 2.
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Matched beam injected o6' axis

The phase portrait of this distribution function at injection is displayed in Fig. 1(b). A matched beam implies
c (t) =—O~u(t) =U(t), and the distribution function in Eq. (36) simplifies to

'P(t) = exp{ b(t)—[I+I(t) 2+—II(t) cos{P cot—+f(t)I Po—] ]],
277

with

(38)

I=I(0)exp { 2t I—7 ] .

A sufficient condition for the beam to be matched to the lattice in the transverse plane is P,s= 1 or, equivalently,
bo = I /e o. In the longitudinal plane, g = 1 is required. In Appendix B, we derive the erst and second moments for the
general case of a mismatched and off-centered injection. From Eq. (B3) we obtain, with c (t)=0, A =b(t) and Qo=Qo,

(g) = exp — .[(1—8 )sin(@, )
—28cos(@,)],+2I(t) O'I(t)b (t)

(1+8 ) 1+8

(g) = exp — [(1—8 )sin(4&, )+28sin(N, )],+2I(t) O'I(t)b (t)
( 1 +8 ) 1 +8

(39)

with

f (t) OI(t)b(t)8= and C& i
=~oot +0ob(t) 1+0

From the discussion in Sec. II, we realize that 8 behaves shortly after injection as 8(t «r) =cr~cot, and will increase
with time. The quantity 0 might be extracted from a given set of beam-position measurements over successive turns
after injection. Thus the injected emittance may be measured if the nonlinear perturbation p is known. The denomina-
tor in Eqs. (39) grows with time and causes the decoherence of the center-of-mass motion. After a sufficient number of
damping times, 8 approaches the limit 8(t ))r) =creator/2 At t.hat time, the center-of-mass motion approaches zero,
due to I(t~ ~ ) =0. The second moments are obtained from Eq. (B4)

(g ) = +I(t) 1 — [(1—128 )cos(2@2)+(68—88 )sin(2@2)] . ,b (t) (1+48')'

( ')= +I(t) 1+ "" [(1—128') (2C )+(68—88') (2e )] .
b (t) (1+48')'
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At this point, we want to compare the analytic relation
for the second moment in the longitudinal plane,
(z ) —(z ), to multiparticle simulations which were
done with 3000 particles. The data of the first 2000 turns
in the pictures on the bottom of Fig. 3 are expanded in
the top picture of Fig. 3. The analytic expression is in
good agreement with the simulation result. A small devi-
ation within the first synchrotron oscillation is a conse-
quence of the Hamiltonian in action variable H (I), which
was obtained by averaging over the phase terms. The
bottom pictures show the initial growth of the bunch
length due to filamentation. After turn 2500, the bunch
length starts to decrease due to radiation damping, and
slowly approaches the equilibrium value o, (t) lcr, = 1.

IV. SUMMARY

In Sec. II we presented an approximate solution to the
Fokker-Planck equation that describes the injection pro-
cess into a storage ring under the inAuence of nonlinear
fields. The explicit time dependence of the first and
second moments on the approximate solution of the
Fokker-Planck equation was derived, and compared well
to results obtained from multiparticle simulations. These
simulations included radiation damping and the effect of
quantum excitation on the particle trajectory. The ana-
lytic result for the first moment of the particle distribu-
tion may be used to extract the injected emittance from a
set of beam-position measurements over successive turns
after injection.
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APPENDIX A: HIGHER-ORDER MOMENTS
OF THE CENTERED DISTRIBUTION FUNCTION

4'(t)= expI I[b(t)+c(—t)cos(20)]I,1

2rrd (t)

with

(Al)

0=P coot +f( t)I—
It is important to notice the symmetry
%'(I, g, t)=%(I,Q+m, t), which refle. cts the invariance of
the distribution function under the transformation
(g, il)~( —g, —i)). As a consequence, all moments of
odd order will vanish. What remains are the moments of
even order, which will be treated in action-angle vari-
ables:

(gz ) =f f g dgdrt=2 f f I sin (P)dI dP,

and

(g' )=f f rI' dgdi)=2 f f I cos' (P)dIdg .

Let us evaluate first the expression (i) ). We use the
above expression for the distribution function and obtain

(g ) = f dI expI Ib I R (I), —
27Td 0

with

R (I)= f exp I Ic cos(20) ) cos (P—) .
0

(A2)

In this appendix, we derive higher-order moments of
the distribution functions discpssed in Secs. I and II:
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Next we use the identity [19]

2m 2m
cos (P) = g k cos(2/m —2/k ) .

k=0
(A3)

277 2m 2m
(I)= g k J „(iIc)

2 k —0

Xcos[2[coot f—(t)I+/]), (A4)

We introduce this expression in the definition of R (I),
integrate with respect to Q, and obtain the result in terms
of Bessel functions:

where i denotes the imaginary unit. Equation (A2) can
now be integrated, and the result contains hyper-
geometric functions [19]

( 2 ) (2m)! ~ 1

2d(t) ( o (m I)!I!(1+5(0)
—c(t)

2

i+m+1 l —mexp[2il [coot+/] JF
2 '

2
~l + l~ z2/

[p2 (t) 2(t)]1+m+1

' +c.c.

where c.c. denotes the complex conjugate of the preceding term.

p, (t) =b(t)+ilf(t), z, = c (t)
p', (t)—c'(t)

and 5& 0 is the Kronecker 5. A similar expression may be derived for the other canonical variable

(A5)

(~2 ) (2m)! ~ 1

2d(t) ( o (m —l)!I!(1+5(o)
—c(t)

2

i+m+1 l —m
exp [2il [coot +P] ) F 2 '

2 , l +1, z2)

[p2 (t) —c 2(t) ]I+m +1
' +c.c.

where a minus at c (t) is the only dift'erence from the previous relation. For m =0, we obtain the normalization condi-
tion that was used earlier in this paper:

1=(vP) =0 1 1 1= &d(t)=
d (t) +b'(t) —c'(t) V b '(t) c'(t)— (A6)

The second moment for m =1 describes the evolution of the bunch length, energy spread, or beam size. After some
rearrangements, we obtain

(7} )= (b(t) c(t)[cos[—2(coot+/)]Re[Z ~ (t)]+sin[2(toot+/)]Im[Z (t)]) ),1

b'(t) —c'(t)

(g ) =
~ 2 (b(t)+c(t)[cos[2(~ot+P))Re[Z (t)]+sin[2(coot+/))Im[Z ~ (t)]) ) .b'(t)+c'(t)

(A7)

(A8)

These expressions contain the real and the imaginary part
of the following complex function:

Z(t)=1 i4f(t)b(t)+ f(t)'
b (t) c(t)—

As mentioned before, the function f (t) will increase
shortly after injection linearly with time, and Z(t) will
act like a damping term. Later, when the beam ap-
proaches equilibrium, t ~ oo: Z(t) will also approach a
limiting value. With b (t —& oo ) =1/cJ and c(t~ oo ) =0,
we find

APPENDIX 8: FIRST AND SECOND MOMENTS
OF THE OFF-CENTERED,

MISMATCHED DISTRIBUTION FUNCTION

This is the general case shown in Fig. 1(c). Analytic
expressions for the first and second moments can be com-
pared to beam-position or beam-size measurements after
injection. These expressions are of practical interest in
order to understand and optimize the injection process.
It turns out that the integrals involved cannot be solved
directly by means of integral tables [19,20], and the solu-
tion can only be given in a power series containing hyper-
geometric functions. We start with the distribution func-
tion given by Eq. (19):

Z(tab oo )=
1 i 2~os, vo ——(tofu r .o. /4) exp[ —u [&I cos(Q) {/I cos(QO)]-

27T

The contribution of Z (t) to the beam size scales with c (t)
and will be small as c (t) approaches zero, after a couple
of radiation damping times. with

—v [v'I sin(Q) —!/I sin(Q0)] ),
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Q = (()
—cot —((), Qo=4'o —

(b . We change the integration variable from (b to g,

We keep in mind that cot =coot f—(t)I depends on the ac-
tion variable. In the exponent, we substitute u (t), u (t) by
b(t), c(t) via Eq. (9) and obtain

V tto
exp I Ib——I[b +c cos(2Qo) ]2'

Ic—cos(2Q)+2+II A cos(Q —Qo)],
(B1)

with

tan(Qo) = tan(Qo),
b —c
b+c

A =Qb +c +2bc cos(2Qo) .

The first and second moments lead to the following type
of integrals over the angle variable:

R (I)= J F((b)exp[ Ic cos(—2Q)
277 0

+2+II A cos(Q —Qo)]d(b,

with

cos((b)

sin(P)
1+cos(2$ )

2

R (I)= J F(g+rot+P+Qo)
277 0

Xexp[ Ic c—os(2$+2Qo)]

X [cos[i2+II A cos(g)]

i s—in[i2+II A cos(g)]]dg .

Either the sines or the cosines of the trigonometric func-
tion will give a zero contribution in the integration due to
symmetry. We expand the remaining trigonometric func-
tion in a power series:

(2trII A )
"

cos[i2tr II A cos(g)]= g cos "(g),
(2n)!

(2+II A )sin[i2+II A cos(g)]=i g cos2" +'(g),
(2n +1)!

and substitute the expression given in Eq. (A3).
tegration over the angle g results in Bessel functions. The
second integration over the action variable leads to a
power series containing hypergeometric functions. To
simplify the notation in the final expressions, we de6ne

Gn, I
J

c(t)
2P, (t)

2 '

(2n —1+1)! 2n —1+2 2n —l +3F. , n —1+1; c(t)
p"+ (t)I (n —l +1) 2 ' 2 ' '

pl(t)
(B2)

2n+1
( 1)n

—
k+ 1[A+I(t)]2n+1

exp I I ( t ) [b +c cos(2Q—o ) ] ] g
n=0 k=O

QU

2
(q)+i(g) =

X (exp [i [ —(2n —2k+ 1)Qo+ coot +(b] ] G",'"

—exp [i [(2n —2k+ 1)Qo+coot+P] ] G &'" ) .

The result for the second moments is given by

where p (t) is defined in Eq. (A5). For the first moments of the distribution, we obtain
1/2

(B3)

oo 2n
( 1)n —

k( A 2I)n
u U exp I I [b +c cos(2Qo) ] ]

—g
=o k=o k! 2n —k l

X [cos[2(n —k)Qo]Go'" 6—,'(exP [2i [ (n k)Q—o+ coot +P
—] ] G2'"

+exP[2i[(n —k)Qo+coot+P]]G2'"+'+c. c. )], (B4)

where c.c. denotes the complex conjugate of the preceding terms. The above relations considerably simplify in the case
of a centered injection with I(t) =0 or, in the case of a matched injection, with c (t)=0.
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