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Charged-hard-sphere system: A self-consistent-field approximation
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A charged-hard-sphere liquid system was studied using a self-consistent-field approximation which in-
cludes short-range correlations through a local-field correction. Static and dynamical properties such as
structure factor, pair-correlation function, and dispersion relation are presented as functions of the plas-
ma parameter and the packing fraction. The results are compared to those obtained by other methods.
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I. INTRODUCTION tial is described by

The research of ionic systems is not recent, and its
practical interest in electrochemistry, nuclear materials,
molten salts, and fast ionic conductors are enormous.
The first model to describe an electrolytic solution in
equilibrium is due to Debye and Hiickel.

The primitive model of electrolytes consists of charged
hard spheres with additive diameters, in a uniform neu-
tralizing background. The study of the thermodynamical
and structural properties of this system has been done
through the years with different approaches. The exact
solution in the mean spherical approximation (MSA) was
first reported by Palmer and Weeks [1]. Lado performed
a mixed-integral-equation approach as a redefined-
hypernetted-chain approximation (RHNC) [2] and a
Monte Carlo calculation was done by Hansen and Weis
[3]. A thermodynamic approach was reported by Aber-
nethy and Silbert [4] using the MSA model more recently
by Badirkhan, Pastore, and Tosi [5] through a modified-
hypernetted-chain approximation (MHNC) and interpo-
lation between MSA and HNC. Although many results
have appeared in the literature, practically nothing was
presented about the dynamics of this system.

In this work we investigate the structural correlations
and some dynamical properties of a charged-hard-sphere
system using a different approach, the self-consistent-field
approximation due to Singwi, Tosi, Land, and Sjolander
(STLS) [1—6], which has been successfully applied to
different systems [7]. In the STLS model the inclusion of
short-range correlation correcting the local field in the
radial-pair-correlation-function calculations improves
considerably the results obtained from MSA principally
in the region of a weak- and intermediate-coupling con-
stant. This paper is organized in four sections. The
STLS is discussed in Sec. II, and the results are presented
in Sec. III. Concluding remarks are given in Sec. IV.

II. SELF-CONSISTENT-FIELD APPROXIMATION

Consider a system of N charged hard spheres in a neu-
tralizing rigid background. The pair-interaction poten-

T d
4(r)= e r)d,

r '

where %(q) is the Fourier transform of %(r) which is
given by

V„+(r)=g (r)V„@(r), (3)

and g (r) is the pair-correlation function.
The direct-correlation function, together with the pair

potential, Eq. (1), can be written as

e 2

c(q) = —4~ cos(qd)
g

4' f r s—in(qr)dr f dx,pe h (x)
g d X

(4)

where h (r) is the total-correlation function defined as
h (r) =g (r) —1.

where d is the diameter of the spheres and e is the elec-
tronic charge.

Two parameters, which are external parameters,
characterize the model. One specifies the density and is
characterized by the packing fraction g=~pd /6, where

p is the average number density; and the other, the plas-
ma parameter I =Pe /a, where a is the average ionic ra-
dius given by 4+a p/3 = 1 and P= 1 /k~ T, incorporates
both temperature and density specification. Two extreme
cases, g =0, corresponding to the classical one-
component plasma, and I =0, the neutral-hard-sphere
Quid, are very well known for several values of g and I
[8—11].

The self-consistent-field approximation relates the
effective pair potential %(q) with direct-correlation func-
tion c(q) through

e(q) = —p+(q),
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By taking the function

y (r) =g (r) —1 —c(r)

and making use of the Qrstein-Zernike equation, we can
write

QCf

F(q) =
2 [a sin(qd)+q cos(qd)](a+q )

T

X a+(a+q ) +1cled

2

y(q)= pc(q)
1 —pc(q)

(6) ——(a +q )sin(qd) . .
2

(14)

where j'(q) is the Fourier transform ofy (r).
Equations (4)—(6) constitute a set of equations to be

solved self-consisteritly. It is important to note that the
definition of y(r) assumes faster convergence in the nu-
merical procedure.

The Fourier transforms are calculated numerically,
and the numerical infinity is, of course, a finite number.
It is then very important that the functions we are trans-
forming vanish in the numerical infinity. But, for the
direct-correlation function it is known that
c(r)~ —PN(r) as r +~—. Following the procedure pro-
posed by Springer, Pokrant, and Stevens [12],we can sub-
tract the long-range Coulomb tail by defining the short-
range functions

Note that for d=0 and a =0 we recover the results for
a one-component plasma (OCP) system previously ob-
tained in the same approximation (STLS) by Berggren
[13]. The MSA is also obtained when we neglect the
short-range correlations and set +=0.

III. RESULTS

A. Structure and thermodynamics

cz(r) =c (r)+u (r),
ys(r) =y (r) —u (r),

where

Pp&
u(r)= '1 —e " 1—

r (9)

which have the same asymptotic behavior as c(r) and
y(r), but are finite at the origin. The Fourier transform
of u (r) is given by

4

( )
4ma

a(a+q )
(10)

where a is an arbitrary number chosen such that the
functions become extremely small at the numerical
infinity. The set of equations to be solved self-
corisistently can now be written in terms of the functions
of short range, i.e.,

h (r) =g ( r) —1 =cz(r)+yz(r),

p[c (q) —u(q)]'
ys(q) =

1 —pcs(q)+pu(q)
(12)

c&(q)= f r sin(qr)c&(r)dr
q 0

+ f &(r),j&(qd) A(qr) «—
d r

4n.Pe ~( ) (13)

where j& (x) is the spherical Bessel function and

The iterative solution of Eqs. (11)—(13) was performed
starting from a given cz(q) [for instance, cz(q)=0], ob-
taining yz(q) from Eq. (12), and after Fourier transforma-
tion obtaining )'i (r). This allows us to calculate a new
cz(q), completing the self-consistent approach. The nu-
merical Fourier transformation was done using the
method proposed by Lado [14], which ensures the or-
thogonal nature of the Fourier expansion. This iterative
scheme continued until the self-consistent cz(q) is
achieved. The convergence occurs whenever the largest
difference between two consecutive results is smaller than
some preassigned value. In our case this value was
SX10 '.

In Fig. 1(a) we compare our results with those reported
by Lado, using the RHNC approach, for I =2.5 and a
very small packing fraction g=1.57X10 . This is prac-
tically a pure OCP system. As we can see the overall
agreement is very good.

Figures 1(b) and 1(c) display the pair-correlation func-
tion for two different pairs of g and I, which are I =5
and g=1.0X10, I =10 and g=1.0X10, respective-
ly. %'e can observe that all results from RHNC are out
of phase. This also occurs even compared with Monte
Carlo data for larger values of g and I . Figure 2 shows
two different results for two values of the plasma con-
stant, I =0.5 and 5.0, for the same packing fraction
g=0.125. In this figure we can observe competition
behavior between the one, coming from the hard sphere,
and the OCP system. This results are also in agreement
with those obtained from RHNC and MSA. This com-
petition will be discussed in detail below.

The static structure factor is shown in Fig. 3 for
different values of g and I, along with the MSA results.
This displays very nicely the competition between hard-
core and plasma effects addressed previously. As is well
known, for a pure hard-core system the isothermal
compressibility is related to S(0) [typically S(0)=0.4 for
g=0.1], while for a pure Coulombic system S(q) =q as
q~0 (Debye-Hiickel). For small I (I =0.5) the shoul-
der for small-q values is clear. For the remaining curves
this is not observed anymore because large values of I
predominate over the hard core and q behavior is ob-
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FIG. 1. Pair distribution function g (r) vs r/a for a charged-
hard-sphere system at (a) I =2.5 and q = 1.57 X 10 ', (b) I"=5.0
and q=1.0X10, and (c) I =10.0 and g=1.0X10 . The cir-
cles report the RHNC results of Lado [2].

fS(x)dx =0, (15)

which is the usual electroneutrality condition, is satisfied.
The internal energy and pressure were calculated using

the pair-correlation functions from

=2mpPe f [g (r) —1]r dr

and

—1= pd g(d)+ pPe f [g(r) —1]r dr .
B 3

The results are shown in Table I together with some
RHNC calculations reported in the literature. Recently
Badirkhan, Pastore, and Tosi [5] performed some ther-
modynamic calculations of a one-component classical
fluid of charged hard spheres. Although our packing-

I.22— .5

served for small q.
It is important to note that the Stillinger-Lovett [15]

condition

FIG. 3. Static structure factor S(q) vs qa for a common pa-

rameter q=0.125 and several values of I. The result from

mean spherical model is also displayed for comparison.

fraction parameter and plasma parameter are not all the
same as the one used by Lado and also Badirkhan, Pa-
store, and Tosi, the results presented here are consistent
as well as with the Monte Carlo results.

Moreover the STLS theory we are working on is not
only internally self-consistent, but it is also a complete
theory of fluids. In this sense both equilibrium and
dynamical properties of this charged classical system are
being discussed.

B. Dispersion relation

The dynamical behavior of neutral and charged sys-
tems can be drastically different. While the neutral fluid
can support only number-density fluctuation, in a
charged-fluid system it is possible to have either number-
density or charge-density fluctuations. In our case, due
to the rigid neutralizing background, these two fluctua-
tions coincide.

In the STLS the density-density response function is
given by

xo(q ~)
x(q ~)=

1 —%(q)yo(q, co)

where yo is the density-density response function of the
noninteracting system and g(q) is the Fourier transform
of the effective pair potential which can be obtained
through Eq. (3).

TABLE I. Computed thermodynamic parameters, excess
internal energy and pressure, of charged-hard-sphere system in

a neutralizing background, using the STLS approximation. The
results from the RHNC are from Lado [2].
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Nk~T 2
PV

q = 0.125 STLS RHNC STLS RHNC

O. OO l I

I.O 2.0 3.0 4.0 5.0
r/a

FIG. 2. Pair distribution function g(r) vs r/a for a common
parameter q =0.125 and two values of I, 0.5 and 5.0.

2.5
5.0

10.0
10.0
0.5
5.0

1.57 X 10-'
1.04 X 10
1.0X 10
8.0X 10
0.125
0.125

—1.666
—3.635
—7.823
—7.321
—0.341
—4.995

—1.706
—3.732
—7.936

—0.341
—3.870

—0.554
—1.200
—2.504
—2.008
—0.616
—0.153

—0.568
—1.244
—2.645
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FICx. 4. Dispersion relation co(q)/co~ vs qa for several values
of the plasma parameter (a) I =0.5, (b) I =3, (c) I =5, and (d)
I =10 for (a) g=8.0X10 and (b) q=0. 125.

qa

FIG. 5. Dispersion relation co(q)/~~ vs qa for several values
of the packing fraction (a) g=1.57X10 ', (b) g=8.0X10
(c) g=0.027, and (d) q =0.125 for (a) I =0.5 and (b) I = 10.

From the poles of the density-density response func-
tion, and in the long-wavelength limit, the dispersion re-
lation can be written as

2 3
co(q) =to (q) Pp+(q) 1+

where ppg(q) is the Fourier transform of the direct
correlation function calculated self-consistently and co is
the plasma frequency given by

1/2
4~pe

co (q)= (20)

Equation (20) shows that the frequency of oscillation does
not vanish anymore in the limit q —+0, as expected for
neutral Quids, but goes to the plasma-frequency value.

From the weak-coupling and intermediate-to-strong-
coupling regime, as in the OCP case [10,11], we can ob-
serve (Fig. 4) that the dispersion relation changes from
positive to negative, i.e., the frequency of the plasmon
mode decreases with increasing q. Figure 5 displays the
dependence of the dispersion on the packing fraction.
When the packing fraction increases, the envelope of the

dispersion increases. Thus, for q —+0, the plasma oscilla-
tions dominate completely the density fluctuations, and
then the change in the curvature of the dispersion rela-
tion is just a reflection of the OCP behavior [11].

IV. CONCLUSIONS

We have discussed, using the ansatz proposed by
Singwi et al. , the structural correlations and some
dynamical aspects of a charged hard sphere classical Quid
for several values of packing and plasma parameters.
The numerical method used to Fourier transform back
and forth the self consistent scheme assures the ortho-
gonality between r and q spaces. The dispersion relation
was obtained, and it was shown that the density Auctua-
tions are governed by plasma oscillations.
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