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Analytic solutions of the time-dependent quasilinear diffusion equation
with source and loss terms
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A simplified one-dimensional quasilinear diffusion equation describing the time evolution of collision-
less ions in the presence of ion-cyclotron-resonance heating, sources, and losses is solved analytically for
all harmonics of the ion cyclotron frequency. Simple time-dependent distribution functions which are
initially Maxwellian and vanish at high energies are obtained and calculated numerically for the first
four harmonics of resonance heating. It is found that the strongest ion tail of the resulting anisotropic
distribution function is driven by heating at the second harmonic followed by heating at the fundamental
frequency.

PACS number(s): 52.50.Gj, 52.25.Dg

Ion-cyclotron-resonance heating (ICRH) is currently
considered as one of the most promising methods for
heating plasmas in large fusion experiments to the re-
quired fusion temperature. Minority ions in resonance
with the incident radio-frequency wave develop a non-
Maxwellian velocity distribution function with larger per-
pendicular energy which is subsequently transmitted to
the background ions and electrons through Coulomb col-
lisions. The analytic nature of this non-Maxwellian dis-
tribution function has been the subject of several studies
[1—3]. These studies were mainly concerned with obtain-
ing steady-state velocity distribution functions for the
minority ions and were largely based on the classic work
of Stix [1]. Time-dependent velocity distribution func-
tions have recently been reported [4,5], but these are only
confined to heating at the fundamental and second-
harrnonic frequencies.

In this paper we report explicit time-dependent analyt-
ic expressions for the distribution function of ions under-
going radio-frequency heating in the ion cyclotron-
frequency range. The results obtained are valid for all
harmonics of the ion cyclotron frequency.

The radio-frequency diffusion equation describing the
short-time evolution of the resonant ion distribution
function, f(v, t), in the presence of an ion source and a
heat sink and in the absence of collisional effects has the
form

u D +S(u) —Xf,
Bt vi Bv~ Bv~

where D is the quasilinear diffusion coefficient, S is a
source function representing here neutral beam injection,
and A, is a loss term which can be attributed to charge ex-
change and radial losses. The exact form of A, , taken here
to be a constant, can only be determined by the plasma
transport process and does not affect the analytic results
presented below in a significant manner. Steady-state

—t 2/U
f(u~~~, uj, t) =g(u&, t)e (3)

Thus, substituting (3) into (1) and integrating over u~~, we
obtain the following diffusion-type equation:

t)g t) g (1—2 ) tlg
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(4)

where we have introduced the nondimensional variables
and parameters,

solutions of Eq. (1) can only be derived provided that the
number of particles created through the source function
S is balanced by an equal number of particles destroyed
through the loss term X.

Evidently, since (1) does not take into account the
effects of Coulomb collisions, it is only applicable in the
limit of strong radio-frequency heating and for time
scales shorter than the collisional time scale. The results
obtained below, therefore, adequately describe the time
evolution of the ion distribution function only at its very
initial stages of deformation before the onset of collision-
al effects [2].

To simplify the problem further we neglect the finite
Larmor radius effects in which case the diffusion
coefficient D takes the simple form

D =D v2(n —1)
n

Here n represents the nth harmonic of the heating
scheme and D„ is a constant proportional to the square of
the wave amplitude.

Since our main concern here is to study the initial de-
velopment of the ion distribution function in the direc-
tion perpendicular to the magnetic field, we may take the
dependence of f on u

~~

to be Maxwellian and assume the
separable solution
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g=(uz/us)
D„

(2—n) t, v=
Vo

7Z 1

n 2
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S= f Sduii
(2 —n) D„(2 n) —D„

The transformed equation (4) is not valid for n =2, i.e.,

the case of heating at the second harmonic. This case
will be dealt with separately.

Equation (4) with the initial condition g(0, $)=F(g)
and the boundary conditions g(t, ~ ) =0 and the condi-
tions g(t, 0) is bounded can be solved using the method of
Laplace transform. The result is

(r g)= ~ e & " ~' f x' e " 'I (x(/2t)F(x)dx2t' 0

+P x' S(x)dx f J(xy)J (gy){1—e '~ + "I .
k+

(6)

It is easily checked that (6) satisfies the initial and bound-
ary conditions specified above. It is also readily observed
that (6) evolves into the following steady-state solution:

V —(g /4t) —A, t 1 —v —x /4t —/
2t '7TU g

XI (xg/2t )dx

g(~, g)=g f x' S(x)dxf, J,( xy) J,(gy) .
0 A, +y +Sp

p

'"', JV e J- yk+y

X I 1
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The case of particular interest in ICRH studies is that
of initially Maxwellian ions and neutral beam injection
source, i.e.,

nQ —
U /U nQ

g(0, uj ) = e ' -F(g) =
exp%

—
g

&Ug &V@

and

SQ
S(g)= 5(g —gp) .

The distribution function (6) then takes the form

and the corresponding steady-state distribution function
reduces to the simple form

g( ~,g)=Sp
p

I (P, 'i )E (gpA'i ), if gp)g
I (gA' )K (gA' ) fg

An approximate analytic expression for the initial devel-
opment of the distribution function can be obtained in
closed form by evaluating the integrals in Eq. (8) for
small values of t.

The result can be written in the form

V
+p &, &zn n Sp t' &1—At IgJ (a)J'(13)—gpJ'(a)J, (P)I (gAgp), (10)

g(&, g)= '

"p z, pn . (1 At )——
7tug 2 gp

V
1 — J (a)+J', (a) . (g=gp),

where

1/2
1 —A, ta=0p

1/2
1 Ar—

Explicit expressions for the distribution function F(t, g) =(vru 8/n p )g(t, g) in the cases of heating at the first, third, and
fourth harmonics can be written in the dimensionless forms

—
g /(4t + 1)—A, t

Fi(t, g)= +A, f Jp(g(p)Jp(gy)I1 —e
(4r +1) A. +y

(12)
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FIG. 1. The profile of the distribution function F, [given by

Eq. (12) for the case of heating at the fundamental frequency] as

a function of perpendicular velocity for different times and for

go= 1; A, =0.1.

FIG. 2. The profile of the distribution function F3 [given by
Eq. (13) for the case of heating at the third harmonic] as a func-
tion of perpendicular velocity for different times and for go= 1;
A, =O. 1.
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where we have used the balance relation (m u tt /no )So =A, .
In order to i11ustrate the nature of these solutions we

evaluate the expressions F&, F3, and F4 numerically for
various values of the parameters involved. The results
are summarized in Figs. 1 —3.

HEATING AT THE SECOND HARMONIC

0,4
In the case of heating at the second harmonic (n =2)

we have, instead of Eq. (4), the following diffusion equa-
tion:

0.2 Bg 1 8 3 Bg
Bt g Bg Bg

(15)

0
0 0.5 Vl 1,5 2.5 where g=u~/ue, t =D2t, and A, =X/Dz. In terms of the

new variable y =2t+lng, Eq. (15) can be transformed
into the simpler form

FIG. 3. The profile of the distribution function F~ [given by
Eq. (14) for the case of heating at the fourth harmonic] as a
function of perpendicular velocity for different times and for
go

= 1; A, =0. 1.

Bg Bg +S(y, t) —A,g(y),
Bt Qy2

which can readily be solved by the method of Fourier
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transform. The result is

e
—A, t'

g(t, g) = —,/z f g(O, x )
2 rr t

X exp I
—(2t +in/ —x ) /4t ]dx .

2 rr ox
2

0.8
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A,x+ 2x+ in~
Z

4x -. (17) 0.4

To illustrate the nature of the solution (17) we consider
the case of initially Maxwellian ions and perpendicular
beam injection, i.e.,

no SQ
g(O, x)= expI —e "},S(z)= 5(z —

gp) .
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Equation (17) then reduces to

no —A, f

g(t, g)= 3/2 2, /z f dx exp

FIG. 4. The profile of the distribution function Fi [given by
Eq. (20) for the case of heating at the second harmonic] as a
function of perpendicular velocity for different times and for
go= 1; A, =0.1.
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2
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0 ~ dx
g( Oo, g) = —

i expx'"
2

A.x+ 2x+ln 4x-

The corresponding steady-state solution can easily be de-
rived from (18). The result is

GENERAL DISCUSSION

The main results of this paper are Eqs. (8) and (18)
which give analytic expressions for the time evolution of
an initially Maxwellian distribution function of collision-
less ions in the presence of combined ion-cyclotron-
resonance heating, neutral beam injection and losses
which may be due to charge exchange. These expressions
are valid for all harmonics of the ion cyclotron frequency.

The heated distribution function for the first, second,
third, and fourth harmonic is evaluated numerically and
the results are presented in Figs. 1 —4. In each of the four
cases the initially Maxwellian distribution function is
shown to develop a tail of non-Maxwellian energetic ions
within a fraction of the characteristic time scale
t —v2s" /D„(n =1—4).

In Fig. 5 we have plotted the distribution functions of

(1++A, +1)
0 &0

2''(X+1)'" (19)
t= 0.3 g = 1 X=0,1

It should be noted that in the case A, =O the first and
second parts of Eq. (18) reduce to the expressions given in
Ref. I2] [Eqs. (14) and (29), respectively].

Finally, as in the previous cases, we can rewrite Eq.
(18) in the dimensionless form

F2(t,g)=, f dx exp +e(2t+Ing —x )

2 rrt 4t

dx+ — exp
g2 p i /2
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The function F2(t, g) is evaluated numerically and the re-
sults are summarized in Fig. 4.

FIG. 5. The profiles of the functions Fl Fp F3 and F4 for
the case t =0.3, go= 1, and X=0. l.
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the first four harmonics for the case t =0.3, go= 1, and
A, =O. 1. The graphs reveal that second harmonic heating
results in the initial development of the most energetic
tail, followed by fundamental heating. The tail is less en-
ergetic in the case of heating at the third and fourth har-
monics, due to the weak absorption of the rf power by the
ions at these harmonics.

Recent rf-heating experiments of JT-60 [6] have
confirmed the occurrence of an ion temperature tail in
the case of third and fourth harmonic heating. In further

agreement with the results of this paper, these experi-
ments have also shown that the temperature tail becomes
weaker at the third, fourth, and higher harmonics.

Although the validity of this model is limited to time
scales less than the collisional time scale [2], the simple
exact analytic results reported here may be relevant to
experiments in which knowledge of the initial deforma-
tion of the ion distribution function due to the combined
effect of ion-cyclotron-resonance heating and neutral
beam injection is of importance.
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