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We propose a theoretical approach to the problem of electroconvection in the vicinity of electrodepo-
sits which are growing in quasi-two-dimensional cells. Charges at the tips of the branches are expected
to induce a convective motion of the solution. We show theoretically that, in the steady state, pairs of
contrarotative vortices must be expected between neighboring branches. The concentration map is ex-
plicitly derived in the limit where diffusion is negligible, as compared to drift and convection. A more
realistic concentration map is computed numerically in the case of nonnegligible diffusion. We compare
the theoretical predictions to experimental observations of the growth of copper deposits from a solution
of copper sulphate. We show that both the convective vortices and the concentration gradient are very
well described by the theoretical model. Hence the simple theoretical approach that we present gives a
good understanding of the intricate problem of the electroconvective, diffusive, and drift motion of the
ions. To our knowledge, an electrodeposition model which incorporates these three aspects has not been

published previously.

PACS number(s): 68.70. +w, 82.45.+z, 47.65.+a, 81.15.Lm

I. INTRODUCTION

Electrochemical deposition (ECD) of ramified metallic
clusters in thin cells, without supporting electrolyte, has
attracted much attention in the last decade because of its
possible  relationship with the diffusion-limited-
aggregation (DLA) algorithm proposed by Witten and
Sander [1,2]. The DLA numerical simulation shows that
one should expect a fractal morphology when the growth
of a cluster is ruled by a Laplacian field. The first experi-
mental electrochemical clusters which were reported
have been claimed to be fractal, and fairly well described
by DLA [3]. Their growth was believed to be governed
by a Laplacian field, which was thought to be either the
diffusion field or the electric field.

However, it was soon recognized that in most experi-
mental conditions using an unsupported binary electro-
lyte (e.g., copper sulfate, zinc sulfate) the clusters are
rather dense or dendritic than fractal [4,5]. In the case of
the dense morphology (DM) the clusters are formed of
many almost rectilinear branches whose tips have a
smooth envelope. As a consequence, the description of
the growth must go beyond a Laplacian field. A stabili-
zation mechanism was proposed [6] to account for the
observed smooth envelope. While this model may hold,
from the point of view of linear stability analysis, it does
not describe the actual motion of the ions in the vicinity
of the deposit. Moreover, the validity of this model has
been questioned recently [7].

In order to get a better understanding of the ramified
deposition mechanism, many experimental investigations
have been performed [8—-21]. Many parameters were ex-
plored, such as salt formula, cell geometry, concentration
of the solution, applied potential, or electric field etc.
While getting deeper into the details of the growth pro-
cess it has been realized that the genuine electrochemical
aspects of the growth were not irrelevant, and that ECD
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may not belong at all to the DLA class of structures
which is already well known [22]. The main weakness of
the DLA model when applied to ECD is that DLA is ba-
sically a single-field model (the concentration gradient),
while three fields (at least) are present in ECD (the cation
and anion concentration gradients in addition to the elec-
tric field).

An electrochemical model [22] describing the interplay
of these three fields was proposed for the growth of
ramified clusters (in two-dimensional rectangular cells
and without supporting electrolyte). This model will be
recalled in some detail in Sec. II. Its most striking pre-
diction is that the growth speed of the deposit is simply
the speed at which the anions withdraw ahead of the tips
of the deposit while the deposit is growing. This has been
verified experimentally [11,16]. However, the prediction
for the concentration map is not in agreement with the
experimental observations. It is in fact necessary to in-
corporate convection in the description of the growth,
the fluid velocity being one more field which should be
added to the three fields mentioned above. One possible
source of fluid motion is the electroconvection (or
“Coulomb” convection) due to the positive charges
which are expected to be found in the fluid in the vicinity
of the tips. In this article, we will show theoretically that
electroconvection should indeed be expected in the vicini-
ty of the tips (Sec. III). Then, we will derive the flow pat-
tern around the deposits, for the case of a dense morphol-
ogy (Sec. IV).

Taking these results into account, we will give an
analytical description of the ionic motion in the vicinity
of branches when neglecting diffusion (Sec. IV). This lim-
iting case will help us understanding the role of electro-
convection, and prompt us to perform a numerical calcu-
lation of the concentration gradients in the vicinity of the
branches, in the presence of diffusion (Sec. V). The con-
centration profiles will be shown as a function of the
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diffusion constant D.

We will turn to the experiments in Sec. VI. We will
show that electroconvective motion exists between the
branches, by using small oil droplets in the solution. In
spite of many sources of noise and randomness, the ob-
served vortices are very well described by the calculated
ones. We will present experimental observations of the
concentration gradients by an interferometric method,
whose results are at variance with other observations
from the literature [20,21]. The concentration gradients
we report on exhibit an archlike shape between two
branches, which is in agreement with our theoretical pre-
dictions.

II. THE MODEL WITHOUT CONVECTION

Chazalviel has proposed an analytical and numerical
description of ECD without a supporting electrolyte [22].
The model predicts the existence of a positively charged
zone and of a large electric field near the cathode. These
two factors will be responsible for the convective motion,
as will be proved in Sec. III. Before proceeding to the
next sections, we need to recall how the charges and po-
tential distributions are predicted in Chazalviel’s model.
This description of ECD goes through two steps, which
we now recall in some detail.

A. Deposition on a flat smooth cathode

Suppose a constant potential difference U, is set be-
tween a linear cathode (at potential zero) and a linear
anode (at potential U,), in a thin electrochemical cell,
filled with a salt of a metal, for example, copper sulphate
(Cu?*S0O,27) (see Fig. 1). The equations which govern
the ECD are

aC,

at

=D AC,—u E-gradC,—pu,.C.divE , (1)

glass plates
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FIG. 1. Sketch of the electrochemical cell. A current is im-
posed between two linear electrodes. The thickness of the cell is
of the order of 0.1 mm, the distance between electrodes is of the
order of 2 cm, and the length of the electrodes is of the order of
6 cm.

aC,
Y =D,AC,+pu,E-gradC, +u,C,divE , (2)
divE=e(z,C,—z2,C,) /€€ , (3)

where D’s are diffusion constants, C’s concentrations, and
©’s mobilities; the subscript a stands for anion and the
subscript ¢ stands for cation. z, and z, are the charge
numbers of the cations and of the anions, respectively. E
is the electric field, —e the charge of the electron, € the
dielectric constant of the solvent, and €, the vacuum per-
mittivity.

In this first step, the cations are expected to form a
smooth deposit on the cathode, with no treelike struc-
tures. The cathode remains flat during this stage of
ECD, so one can restrict the equations to the x direction
and obtain

aC, 3’c, aC, dF

at _Dc ax? —pE Ax —Au'ccc_a—x- > 4)
oC, =D A + Eac“ +u,c,2E (5)
ot —4Ya ax2 Ha Ox Halqg Ax ’
g—f=e(zccc —z,C,) /€€ . (6)

The steady state resulting from this set of equations is
determined analytically and numerically in Ref. [22]. It
appears that while the applied electric field tries to bring
the cations toward the cathode and the anions toward the
anode, a charged layer starts forming in the vicinity of
the cathode (Fig. 2). There is a depletion of both cations
and anions near the cathode, but the balance of the
charges shows an excess of positive charges. This excess
of positive charges is essentially found near the cathode,
and is responsible for the strong curvature of the poten-
tial. A minute excess of positive charges will also be
found in the bulk of the cell, where dE /0x will be weakly
positive. Hence two zones can be distinguished in the
cell (Fig. 3), a charged layer (CL) near the cathode, and a
quasineutral region (QNR) which occupies the rest of the
cell. Notice that the overall neutrality of the solution is
not conserved, and that it becomes slightly positive.

The potential just outside the CL starts from zero
when the potential is switched on, and rises while the ex-
cess of positive charges increases near the cathode (Fig.
2). Eventually, the potential outside the CL reaches a
value close to U,. The thickness x; of the CL is of the
order of a few micrometers in usual experimental condi-
tions. Hence, in the case of smooth deposition, the po-
tential difference which is set between the electrodes is, at
the end, almost totally absorbed by the CL located very
near the cathode. There is still a very small potential gra-
dient in the QNR, such that the drift motion of the
anions cancels with the diffusion:

D,gradC,/C,+u,E=0, (7

so the anions do not participate in the current through
the cell. This is sensible, and comes from the fact that
the anions are neither produced nor deposited during the
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FIG. 2. The concentration of cations and of anions that
would be found at different stages of growth of a smooth deposit
on the cathode (solid line: r=10? s; dashed line: 10° s; dotted
line: 10* s), and the potential difference (bottom). As one no-
tices, the potential near the cathode increases progressively. A
large field appears near the cathode. An excess of positive
charges forms in a thin layer near the cathode, which is respon-
sible for the curvature of the potential. The bulk of the solution
is quasineutral. Here, due to irrealistically small concentrations
(C=10" cm™3), the charged layer appears thick. In usual con-
ditions, its thickness is very small, of the order of a few microm-
eters.

ECD. Conversely, the motion of the cations is the sum of
a diffusive motion and a drift motion:

v.,=—D_,gradC,/C,+u E (8)
which, taking into account Eq. (7), becomes
v.=—D,gradC,/C,—(u,/u,)D,gradC,/C, , (9

since z,C, is almost equal to z,C, in the QNR, this last
equation may be written

v.=—[D,+(u./u,)D,lgradC,/C,
=—D.(1+z,/z,)gradC,/C, . (10)

This shows that the motion of the cations is very slow,
being governed essentially by diffusion. The current will
be limited to small values of the order of 100 uA/cm?. In
the QNR, the concentrations are roughly equal and vary
linearly:

zccc:zacazz[(x_xl)/l’]coo > (11)

where C, is the common initial (uniform) value of z,C,
and z,C,. [Note that the gradC terms in Eqgs. (7) and (8)
are simply constant.]

The distinction between the CL and the QNR will be
of upmost importance in the derivation of the Coulomb
force, in Sec. III. (This model of ECD, which would de-
scribe deposition before branch formation, has been cal-
culated independently by Bruinsma and Alexander [23].)

C / C(bulk)

U/U(L)

0 XL 1

FIG. 3. The potential and the concentration through the cell,
in the case of smooth deposition, when the steady state is
achieved. Irrealistically small values of the concentration are
used (C=10'" cm™3), so that the two zones can be clearly dis-
tinguished. There is a charged layer (CL) near the cathode,
where an excess of cations and a large field are found. The rest
of the cell is quasineutral (QNR), but there remains a very small
excess of positive charges.

B. Step two: Growth of branches

In fact, the potential U(x,;) which will be found out-
side the CL cannot rise to its maximum possible value
U,, because the huge electric field in the vicinity of the
branches will provoke instabilities, such as dendritic
growth or convective motion, which will either roughen
the cathode, thus changing the limiting conditions, or
modify the set of equations themselves, by adding anoth-
er transport mechanism, or both. It has been shown ex-
perimentally [16,19,24] that in a first transient regime the
potential U(x,) reaches a critical value 8U (similar to the
n parameter of Ref. [11]) much smaller than U,. While
the exact value of U has not yet been predicted theoreti-
cally, it has been shown experimentally to be of the order
of 1 V [16,19,24]. The experimental evolution of the elec-
trochemical parameters during this first stage of growth,
where the set of equations (1)-(3) holds, has been shown
to be very well fitted by the model described above
[24,25].

The potential drop 8U is found at the tips of the
branches during growth, and remains constant. It is as-
sociated to a limiting value of the electric field near the
tips, above which the structuring of the branches is possi-
ble. As shown in Refs. [16,19,22], a steady state of
growth can only be achieved in parallel geometry using
constant current conditions, instead of constant potential.
In the latter case, branches form and grow at a constant
rate. A numerical solution has been obtained, which
gives the concentration maps around a comb of branches
which grow steadily. In this calculation, the fluid is sup-
posed to be at rest so the set of equations (1)-(3) is as-
sumed to hold. Typical concentration maps are displayed
in Ref. [22], Fig. 4.

While it has not been possible to calculate an analytical
formula for the concentration maps in two dimensions
around the teeth in the most general situation, it is still



1282 V. FLEURY, J.-N. CHAZALVIEL, AND M. ROSSO 48

(Quasi«Neutral Region, of length }‘b = 100 um)
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flows of ions cross each
other
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cathode
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FIG. 4. Schematic view of the ion distribution in the cell,
during the growth of the branches, in the limit of very small
spacing between the branches. One successively finds a charged
layer near the tips, over a distance of a few micrometers, then a
quasineutral region, over a typical distance of 100 um, then a
truly neutral region where the two ionic species simply cross
each other (drawing not to scale).

possible to derive the expression giving the potential drop
associated with the excess positive charge, and of the
thickness of the charged layer, as functions of the dis-
tance to the tips, in the limiting case of an infinitely small
spacing between the teeth. These are

U=8U[1—(1—x/x,)*?], (12)
€€k, C., (141, /) '
c.= |- - , (13)
2zfe(x,—x)
where
T TReE C (1+p, /1) (

is the thickness of the charged layer which is found in the
vicinity of the tips, and E  is the field in the bulk. This
is akin to modeling the deposit as a flat growing sheet in-
stead of a comb. It also shares obvious analogies with the
case of ECD on a smooth motionless cathode which was
explained previously. Especially, there still exists a CL
near the moving front of the branches, and a QNR in a
region of thickness A,, where A, is the backstream
diffusion length:

Ay=—(kT /eE Nz .+z,)[z.z,(1+pu, /u)]"".

In practical cases A, is of the order of 100 um, which is
much larger than x,. In the rest of the cell, there is a tru-
ly neutral region where the two flows of ions of equal
concentration simply cross each other (see Fig. 4). In the
frame of the laboratory the growth speed of the deposit is
the speed at which the anions withdraw from the vicinity
of the deposit, and it is written as

v,=—uE, . (15)

The CL and the QNR advance in the cell with the tips of
the branches while the truly neutral zone shrinks.

While the limit of infinitely small spacing is of little in-
terest for an accurate description of the growth, it en-
ables one to derive the strength of the Coulomb force
which acts on the liquid, as it will be shown now.

III. DISCUSSION OF THE EXISTENCE
OF ELECTROCONVECTION

It has been known for long that as soon as a charged
liquid is placed in an electric field, a Coulomb force will
act on the charges, and hence on the liquid. Many exam-
ples of electroconvective motion appear in the literature
[26-32]. Experiments, and theories, have been proposed
for the case of electroconvection of a dielectric liquid sub-
mitted to unipolar injection of charges. In these experi-
ments and theories, a controlled distribution of charges is
supposed to be created (by thermal effects, or by means of
ionic pumps), in the liquid near an electrode. Then the
motion of the charged liquid, submitted to an electric
field, is studied. For large enough electric fields, convec-
tive transport plays an important role. However, the case
of a unipolar injection of charges, while worth being men-
tioned, is rather different from the case we are discussing,
in which two carriers are present in the solution (“binary
electrolyte”), whose concentrations depend on the elec-
tric field as described in Sec. I. The question whether
electroconvective motion of the solution would appear in
the conditions of fast electrochemical deposition has only
been addressed very recently [23,33]. After deriving a
model for deposition along a smooth interface in a steady
solution, which is essentially identical to the model de-
scribed above (Sec. II), Bruinsma and Alexander [23]
have studied the convection which could be expected
from the concomitant existence of a positive excess of
charges and of an electric field. The conclusion of these
authors is that electrohydrodynamic convection must be
expected, but that this effect is very small, and could easi-
ly be hidden by, for example, gravity-driven convection.
We will now show that, while the calculations performed
by these authors are valid and help in understanding elec-
troconvection in general, they do not apply to convection
around the ramified electrochemical deposits.

As we can see from the model described in Sec. I, the
volume force that acts on the liquid [which is equal to
(z,C,—2z,C,)eE] can be formally divided into two contri-
butions: the contribution of the CL and the contribution
of the QNR, as long as these two zones exist. The charge
and the field in the CL are both very large, but the thick-
ness of the CL is very small (of the order of micrometers).
The charge in the QNR is very small and the field is very
small, but this region is large, since it fills all the cell in
the case of smooth deposition and spreads over a distance
A, (100 pm) in the case of ramified deposition. What will
be the essential condition to the convective motion? It is
argued by Bruinsma and Alexander that the contribution
of the CL is strictly zero, on the argument that the elec-
tric force on the liquid is oriented towards the electrode
(Fig. 5), which is the wrong way for destabilization. This
means that the electric force acting on the liquid near the
electrode is a stabilizing one. In the context of Rayleigh-
Bénard convection, it would correspond to driving the
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cathode

FIG. 5. Scheme of the cell, before branch formation, and
without convection. Bruinsma and Alexander argue that the
charged layer cannot provoke convective motion because the
convective force is oriented towards the cathode, which is the
stabilizing direction.

liquid located on the bottom of a cell, towards the bottom
of the cell. (However, keep in mind that gravity convec-
tion with a thermal gradient is very different from elec-
troconvection, because in the case of electroconvection
both the charges and the field are determined self-
consistently throughout the cell, while gravity is a con-
stant in Rayleigh-Bénard convection). Hence, these au-
thors have only considered the contribution of the QNR
to the convective motion. Indeed, their finding is that
this contribution is very small, because neutrality is a
very good approximation in the quasineutral region (with
their values of the parameters the deviation from charge
neutrality is of the order of 10~ 2eC «» While in our case
it is closer to 10~ %C ).

In fact, the contribution of the CL to the convective
motion cannot be neglected. Suppose that the deposit has
been growing for a while according to the model de-
scribed in Sec. II B, without convection. We clearly see
that the force acting on the liquid will not be stabilizing
at all, because instead of a flat compact cathode, the
liquid sees an array of ramified and soft branches. The
liquid is not simply pressed by the electric force on the
cathode: it will try to move between, or even through,
the branches. So, as soon as branches have appeared, the
argument of Bruinsma and Alexander will not hold any
longer. While our argument is valid when branches exist,
one may question whether it holds at the very beginning
of the growth process. We argue that as soon as the
slightest protrusion appears on the cathode, the CL at the
tip of the protrusion will exert a destabilizing force.

We now proceed and calculate the force exerted on the
liquid in the charged layer. We first start by the limiting
case of infinitely small spacing between trees; we show
afterwards that the result is extendable to any array of
parallel branches by means of simple flux-conservation
arguments.

In the CL, the positive excess of charges is almost
equal to the concentration of cations given in Eq. (13).
The electric field is simply obtained from Eq. (12):

E(x)=—(3/2x)8U(1—x /x)/?*, (16)

so at any point x lying inside the CL, the force df(x) act-
ing on an elementary volume d Q of fluid is

df (x)=[z,C,(x)—z,C,(x)]eE(x)dQ , (17)

which, since the concentration of anions is negligible in
the CL, reduces to

df (x)=z,C.(x)eE(x)dQ , (18)

replacing C.(x) and E(x) by their expression [Egs. (13)
and (16)], one finds

df (x)=(1+u, /p)E ,C edQ) . (19)

This force is independent of x. when integrating it over
the whole charged layer, it is simply found that the force
fis

f=(1+p,/u)E C ex sl (20)

where [ is the length of the electrodes, and s the thickness
of the cell. The front exerts on the section of the cell (of
area sl) a pressure P equal to

P=(1+p,/u)E, C ex; . 2n

An order of magnitude estimate of P, for usual values of
the concentration (1072 mol1™!) and the field (10 V/cm),
and remembering that the thickness of the charged layer
is of order 1 um, is P~10° Pa. This pressure is very
large, and indeed enough to provoke a motion of the
fluid. Of course, the branches themselves hinder the
motion of the fluid. Also, the force acts only on the
charged layer, and nowhere else, so the Navier-Stokes
equation must be invoked and solved around a nontrivial
boundary: the front of the branches, with a local force
acting only inside the CL (this will be treated in greater
detail in the next section).

Equation (19) shows that df is independent of x
through the CL. This is not surprising. Since the CL is
totally depleted of anions, the current is only transported
by the cations. The current is the sum of the drift
current and of the diffusion current. Diffusion is negligi-
ble in the CL because the electric field is very large (of or-
der 10* V/cm) hence the current density is written simply
as J=p.,ez,C,(x)E(x). This in turn is equal to
u.df /dQ. Since J is constant, z.C.(x)E(x) is equal to
[, +p.)/pn.1eCLE,. Remember that in the neutral
region C , is simply equal to what it was at the beginning
of the growth process, because the neutral region is a re-
gion of constant electrochemical parameters which sim-
ply shrinks while the deposit grows. The field E, is
merely the applied field. The volume force
[, +p.)/u.leCLE, has to be integrated over the
volume of the charged layer: six;. Of course, x; depends
on 8U, which, as stated before, is not known theoretical-
ly. The reasoning we have derived in the previous lines is
very general, and applies as well to branches separated by
a large distance. Since the deposit, in this model, has
periodic invariance along the x axis, we can restrict our-
selves to a single box of width b containing a single
branch. The force on an elementary volume d{) very
close to the tip is written as

df (tip)

— 3 22
70 ez, C,(x,y)E(x,y) (22)
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The crucial point is that in the vicinity of the deposit the
concentration of negative ions is almost zero, so

ez, C,(x,y)E(x,y)=J(x,y)/p, . (23)

If we now integrate the force along the cross section = of
the tip we find that

f—‘—‘P—ds (1/p ) (x,0)E=(1/p ) bs , (24)

where J, is the current density in the neutral region far
ahead of the tips. The right-hand side of the last equa-
tion comes from the conservation of the flux. Then, the
total force acting at the tip is

ftip)=(1+p, /u.)eC E  bsx, . (25)

Of course, x; depends on 8U and probably on the specific
geometry of the apex of the branch.

Before going to the next section, let us insist on the fol-
lowing points: As soon as one tries to deposit a metal in
a thin electrochemical cell, without a supporting electro-
lyte, one creates a positively charged zone in the vicinity
of the cathode. If the branches grow, and still have a
smooth envelope, the charged zone will move in the elec-
trolyte with the tips of the branches. The electroconvec-
tive force around a single tip can be approximated by
Egs. (23)—(25), which is essentially an exact result, as
long as the liquid is at rest. This force is expected to be
very large, much larger than the force acting on the
quasineutral region. It will exert on the cross section X, a
pressure equal to (1+pu, /u.)eC E  (bs/2Z)x,: As com-
pared to Eq. (21), this value is increased by the factor
bs /3. Although the value of x; may be different here,
we expect that this pressure may still be larger than
(1+p, /u.)eC E ,x,, given by Eq. (21) in the case of
infinitely small spacing between branches.

IV. THE MODEL FOR CONVECTION
WHEN DIFFUSION IS NEGLECTED

We have proved in Sec. III that the excess of positive
charges which is found in the vicinity of the tips can pro-
voke an electroconvective force on the liquid. We now
address the question of the convective pattern that will be
found around the deposit, in a steady state. A short ver-
sion of this has appeared in a Letter [34]. We will rapidly
recall the hypotheses, and some results. We will then
give a full discussion of the main issues, when neglecting
diffusion. Diffusion will be taken into account in the next
section.

The simplest way of modeling the deposit [22], in the
dense regime, is to consider it as an infinite comb of thin
parallel teeth with equal spacing b. The question arises of
what will be the behavior of the fluid when arriving on
the teeth. One should pay attention to the fact that the
deposit is very lacunar at scales below the typical width
of a branch. One can refer to the micrographs presented
by Hibbert and Melrose in Ref. [12] for a better under-
standing of the intimate structure of the deposit. It
seems obvious that water can flow through the deposit,
much like wind blowing through a leafless tree. As a
matter of fact the deposit does not push the water ahead.
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If one considers the (liquid plus deposit) mixture as
homogeneous, then the “concentration” of metal in this
mixture is (1+u,/u,)C, (C,, is usually of order 1072
mol1™1!). This shows how lacunar it is (compact copper
has a density corresponding to 10*> moll™!). We then
make the approximation that the solution will flow freely
through the deposit.

Now we must model the distribution of forces. As
pointed out in Sec. II, the force acts mainly in the
charged layer, which is a very narrow region close to the
tip. We make the approximation that the liquid is only
driven by this force, and neglect the contribution of the
QNR. The force is oriented antiparallel to growth and
acts on the liquid only when it penetrates into the CL.
The width of the CL is very small compared to the dis-
tance b between the teeth, which is larger than the thick-
ness of the cell (of order 100 um). We then model the dis-
tribution of forces as an array of Dirac-8 forces acting at
the teeth, directed toward negative y and of modulus f
(Fig. 6). In order to compute the fluid flow, we consider
the cell as almost two dimensional. In the real experi-
ments, the distance between branches will be of order
1-40 times the thickness of the cell. The two-
dimensional (2D) approximation is certainly not valid for
small spacings between neighboring trees; however, we
have not gone beyond the 2D approximation.

Note that the convective motion discussed here is rath-
er different from gravity-driven convection since in the
case discussed here the force is not a bulk force, but a lo-
cal force. Note also that the parameter dU is only known
experimentally.

We have solved in Ref. [34] the problem of the motion
of the fluid around a moving comb, with the previous hy-
potheses, in the limit of small Reynolds numbers, and for
a Poiseuille flow [35]. This is done in two steps: First,
the solution around a single motionless tooth, and then
with an array of growing teeth. Let us call ¥ the stream
vector [35], which is such that ¥=(0,0,¥(x,y)), and
v=curl¥, where v is the speed averaged along the direc-
tion perpendicular to the cell. (The only nonzero com-
ponent of ¥ is the z component because, when averaged
along z, the flow is two dimensional.) After some simple
calculations ¥(x,y) is found to be [34,36]

s x
Yx,p)=—5— pv? 72 (26)
anode

growth speed
=- uaE

cathode

FIG. 6. Scheme of the cell, used as model for the analytical
derivation of the fluid flow. The force is supposed to act only at
the tips, where the charge is considered as pointlike.
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where r is the distance to the tip of the tooth, and v is the
kinematic viscosity (whose unit is m?s™!, pv is called the
dynamic viscosity). The stream lines are the constant ¢
lines. One should note that due to the assumption of
infinitely thin teeth, the fluid velocity is infinite at the tip.

The solution for a steady comb is a sum of terms analo-
gous to the one in Eq. (26), corresponding to each tooth:

s k=t * x—kb

T D Y 27)

Yix,y)=

(where r, is the distance to the tip of rank k).

Then the solution for the growing comb is simply ob-
tained, in the moving frame of the teeth, by subtracting
v,= —u,E, from the motion of the fluid. This corre-
sponds to adding the term v, x to ¥(x,y). Finally, the z
component of the stream function reads

s ks> x—kb

Y (28)

P(x,y)=v,x +

Now, the flow pattern, of course, will depend on the ra-
tio a=v, /(sf /24wb?pv). If the force is negligible, the
flow will simply be a laminar flow antiparallel to the
growth (in the laboratory frame, the liquid is at rest). We
show in Fig. 7 the different aspects of the flow pattern for
different values of the ratio @. As one can see, the pat-
terns fall into two classes. Either the closed loops of the
two vortices between neighboring teeth touch each other,
or they do not. In the first case (small values of a), the

1 b
1 Ji

(©) (d)

FIG. 7. Fluid patterns around the growing comb, as a func-
tion of the parameter a, which represents the ratio of the
growth speed over the force. The fluid patterns are shown in
the moving frame of the tips. (a) a=0.25; (b) a=2; (c) a=6; (d)
a=20.

1285

liquid coming from ahead will be trapped in a kind of
funnel, arrive at the tip, and then leave the tip through a
symmetrical kind of funnel. In the second case (large
values of a), part of the liquid goes from far ahead to far
behind without ever getting close to the tips. In all cases
the liquid in the vortices is trapped there and rotates,
speeding up as it gets closer to the tips. Let us say in an-
ticipation that the experimentally observed vortex, in the
case of dense parallel growth, is of the first kind: the
liquid is trapped in a funnel and the neighboring vortices
do touch each other. (In the case of fractal growth one
cannot model the deposit by a rectilinear comb, and there
is no steady state; however, vortices of similar shape are
still observed.)

We have been able to derive the fluid flow without con-
sidering the actual fate of the anions because the force
acting on the fluid was restricted to the local force at the
tips. This force is not supposed to depend on the distri-
bution of ions around the comb, in the quasineutral re-
gion, but only on the strength of the local force at the
tips. As shown in Ref. [34] this simple fluid model allows
one to derive an approximate concentration map.

It is known experimentally that the concentrations of
both cations and anions are constant and equal to
C.(bulk) and C,(bulk) in the neutral region, while the
concentrations are equal to zero far behind, between the
branches [24]. As a consequence, the motion of the ions
in the neutral region is only governed by electric drift
(the VC term is equal to zero). We are interested in the
frontier between the two zones, where a concentration
gradient must be expected. However, we will suppose in
the next paragraphs that diffusion is everywhere negligi-
ble (and not only far ahead or far behind), and that the
transport of the ions is only governed by convection and
electric drift. We will arrive to a rather simple concen-
tration pattern, which, in our opinion, catches the main
features of the ionic transport around the deposit. Then,
in the next section, diffusion will be incorporated into the
model. The case without diffusion will appear as a limit-
ing case of the more general problem in which convec-
tion, diffusion, and drift are taken into account altogeth-
er.

Whatever the deposition mechanism, we know that the
anions are neither produced nor deposited during the
electrochemical process: Since their concentration is
zero behind the tips, this implies that, in the steady state,
they are frozen in the moving frame of the tips (in the lab-
oratory frame the two flows of ions cross each other and
the anions do participate in the charge transport). Since
we restrict ourselves to the case where diffusion is
neglected, this requires that —u,E+v=0. Therefore, we
may expect two zones around the deposit: (1) A zone
containing anions (and hence, cations) where u,E=v. (2)
A zone free of anions, and hence of cations, where the ac-
tual shape of the electric field is of little importance, as
regards the deposition mechanism.

When neglecting diffusion, the frontier between the
two zones behaves like a sharp interface (this is where
neglecting diffusion seems a rather crude approximation).
The border between the two zones must itself be both a
field line and a stream line. Indeed, along the border line,
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the anions and cations which are present on the concen-
trated side must cross each other without penetrating
into the emptied zone. This can only be achieved if both
kinds of ions move tangentially along the borderline. The
pattern must then exhibit a stream line which separates
the plane into two parts, one which is concentrated, and
one which is not. Let us remark that a domain of con-
centrated region cannot be enclosed into an emptied one
because its contour would be a field line making a loop,
which is not possible. Then the concentrated region must
be connected [37]. Also, we know experimentally that
the rear part of the front, between the teeth of the comb,
is in the emptied zone. If we now turn to the fluid flow
patterns, we see that, among the fluid patterns which we
have determined, only the class of patterns for which the
vortices touch each other exhibit a stream (and field) line
separating the plane into two parts. This line is the arch
formed by the largest closed loops of the vortices. It is in
fact composed of two stream lines which start from a
stagnation point and go in opposite directions. By con-
tinuity, the zone containing the ions is necessarily on the
upper side. Then, in the moving frame, the two zones
mentioned above are as follows: (1) The zone on the
upper side of the arch, ahead of the branches, which acts
as a funnel for the cations, and in which the anions are
frozen (Fig. 8). (2) The lower zone and the vortices them-
selves, between the branches, which are empty of ions of
both kinds.

Now, we can show that the concentration in the con-
centrated zone is everywhere equal to the bulk concentra-
tion: Indeed, since the fluid is incompressible, the flux of
v is conserved, and so is the flux of E. The conservation
of the flux of cations implies that the concentration of
cations is constant. Neutrality implies that the concen-
tration of anions is constant, and so, equal to C,(bulk).

The picture of the motion of the ions is then as
sketched in Fig. 9: The anions drift backwards in the

FIG. 8. Concentration and fluid velocity map between two
teeth, in the moving frame. z,C, and z,C, are equal and con-
stant on the upper side of the arch which joins two neighboring
teeth (hatched zone). In the steady-state regime, pairs of con-
trarotative vortices will always be found between the branches.
The cations do not penetrate between the branches; they move
along the fluid lines until they reach the growing tip. The
anions are frozen in the moving frame.

electric drift
component

convective
component

convective
component

FIG. 9. Schematic motion of the ions in the moving frame of
the tips. An anion is shown on the left, and a cation on the
right. The anion is frozen because in the moving frame electric
drift and convection cancel each other out. On the contrary,
electric drift and convection add up for the cation.

convective flow, and their drift velocity compensates ex-
actly the flow velocity, in the moving frame. The cations
go towards the tips with a speed roughly twice as fast
{(1+u, /u,) in fact] as the drift speed. Both ionic
species remain in the funnel formed by the fluid and field
lines. No ion penetrates into the vortices.

The question arises of how it is possible that the field
lines should have this shape. One indeed expects the field
lines between a comb and a linear anode to be as in Fig.
10(a), and not as in Fig. 10(b), which is the shape of the
field which our calculations give. In fact, the arch is a
sharp interface between two media of different chemical
composition, one of it being in principle an insulator. As
it is casual in electrolyte junctions, one should expect a
distribution of charges along this arch. This specific dis-
tribution of charges along the arch will bring the normal
component of the field along the arch to zero. Our model
then predicts the existence of charges along the virtual
interface between the solution containing ions and the
vortices. The convective force that will be added to the
problem because of this interfacial distribution of charges
is much weaker than the convective force due to the
charge at the tips. Indeed, in order to bend the field lines,
the areal distribution of charges o must be of order

Y

(a) (b)

FIG. 10. Electric field lines expected between a comb and a
linear anode in normal circumstances (a). Electric field which is
necessary in order for the anions to be frozen (b). In this case,
the electric field is proportional to the fluid velocity field. Inside
the vortices, no ions will be found, so the electric field is a priori
not known.
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o =~eeyE(arch) , (29)

the field along the arch is of the order of E _, so the force
¢ acting on the liquid along the arch (of length =~b) will
be of the order of

p=~bseeyE>, . (30)

The volume force df /d(Q inside the charged layer is of
order

df /dQ~eC _E.,, , 31)

which has to be integrated over a volume typically equal
to sbx , so the total force is typically of the order of

f=~eC E sbx, . (32)
The ratio ¢ /f is then of the order of
¢/f~eeyE , /eC  x; . (33)

An order of magnitude estimate, with E_ =10 V/cm,
C,=10"2 moll™!, e=1.6X10"" C, ee,=7X10"1°
Fm™ !, x,=10"*cm, gives

$/f=10"6 . (34)

This shows that the model is self-consistent.

To summarize the simple model that we have present-
ed: (1) There are pointlike charges (and forces) at the tips
of the branches; therefore, (2) there exist convective vor-
tices between the tips; (3) there exists a depleted zone
below the arches; (4) ahead of the vortices the electric
field is proportional to the fluid velocity, in the moving
frame; (5) the concentration in the funnel is equal to the
bulk concentration; (6) there must be a distribution of
charges along the arch, which is a virtual interface.

Before going to the next section, where we shall ad-
dress the question of diffusion inside the vortices, let us
make the following remark: We have considered as an
experimental fact that the concentration behind the
branches is zero. This was used as a cornerstone for the
derivation of the concentration map around the branches.
However, one can wonder why the rear zone is totally
depleted of ions. It has been argued by Chazalviel [22],
in the case of a steady solution, that if some ions
penetrate between the branches, this will favor branch-
ing, and new branches will form. The same argument
holds in the case of a convective flow. We conjecture
that if the pattern is of the form which allows penetration
of the solution between the branches, then branching will
be favored in the rear zone: In the steady state the fluid
flow always exhibits the arch between neighboring tips.
Of course, the patterns that we have shown stand only for
the steady state, and they can only be used as a qualita-
tive hint of how branching will proceed.

V. IONIC TRANSPORT WHEN TAKING INTO
ACCOUNT DIFFUSION, CONVECTION, AND DRIFT

A. Qualitative approach to diffusion into the vortices

An exact analytical solution of the ECD process that
would incorporate diffusion, convection, and drift seems
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out of reach. This would require solving the following set
of equations around the moving comb:

)
—a—;— +v-gradC,=D,AC, —u E-gradC, —u C,divE ,

(35a)

aC
-j +v-gradC,=D,AC, +pu,E-gradC, +u,C,divE ,

(35b)
divE=e(z,C,—z,C,) /€€, ,
(36)
coupled to the Navier-Stokes equation:
% +v-gradv=vAv—(1/p)gradP
+(1/ple(z,C,—z,C,)E . (37

However, we can derive qualitatively the thickness of the
interface from simple arguments. It is easy to show that
the length over which diffusion will spread the interface
must vary as (D /|Vv|)!”2% Indeed, in the steady-state re-
gime the anions satisfy the following equation:

v-gradC,=D,AC, +pu, E-gradC, +u,C,divE , (38)
while for the cations,
v-gradC,=D ,AC,—u E-gradC, —u C.divE (39)

by combining Eq. (38) and Eq. (39), and assuming the
quasielectroneutrality condition (z,C,~z.C,, we note
both C), we get

(D,—D,)AC—(p, +p,)E-gradC —(u, +p.)C divE=0 .
(40)

We can use this to eliminate in Eq. (39) the terms con-
taining E, and end up with

v-gradC=DAC , (41)

where D=(D,u,+D_ u,)/(n,+u.). [Equation (41) can
be considered as an equation of conservation of mass
when taking into account the advective term.]

Now, let us consider only the point 4 which lies at the
summit of the arch. A is a hyperbolic point for the fluid
flow, as shown in Fig. 11. We can approximate the fluid
flow, in the vicinity of A4, by the flow
v(x,y)=(ax)i—(ay)j, where i is a normalized vector or-
thogonal to the teeth, and j a normalized vector parallel
to the teeth, and @ =0dv-i/0x. Then from Eq. (41), the
concentration satisfies the following equation:

?C , d¥*C aC aC
— = —(ay) 5=

b ax2  9y? x dy

=(ax) (42)

Let us call d the width of the transition zone between the
concentrated and the emptied zones; we can approximate
from Eq. (42)

DC/d*=~ad(C/d) , (43)
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FIG. 11. Top: Scheme of the fluid flow in the vicinity of 4,
which is a stagnation point in the moving frame. Bottom: The
linearized flow which allows one to determine the D!/ depen-
dence of the width of the transition zone.

e

<

so finally
d=~(D/a)'?. (44)

There is a given value of a for each fluid pattern. Anoth-
er way of understanding why d does not vary linearly
with D is to realize that, as the ions diffuse more easily,
they penetrate into regions (such as the inner parts of the
vortices) where the fluid speed is larger. This in turn
tends to sharpen the transition. The interplay of the
smoothing effect (enlarging the diffusion constant) and of
the sharpening effect (faster fluid speed) gives rise to a
dependence of d which is proportional to the square root
of (D /|Vv|).

Note that d will also depend on the distance to the tip,
because the magnitude of v depends on the distance to
the tip. While the absolute magnitude may change, the
dependence on D will still be of the form d =~D!/2. Note
also that the Péclet number vb /D varies along the arch,
because the flow is not laminar.

Let us finally remark that, since the value of a in Egs.
(42)—(44) is of the order of

a~u,lE /b, (45)

d will be of the order of

Db 1/2
UalE |

172

kT ~(A,b)2 . (46)

——b

elE,|

~

d~

Since A, is smaller than b, d is also smaller than b.

As stated before, the case studied in Sec. IV is merely
the limit for vanishing D of a more general problem, and
in that limit, one should recover a steep archlike concen-
tration step. We now proceed and present a simplified
solution of the ECD process which includes convection,
diffusion, and drift.

B. An approximation of the complete problem

We will not attempt to solve the whole set of equations
(35)-(37). The Navier-Stokes equation is coupled to the
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electric equations in the charged zone only. Since this
zone is expected to be very small we can consider the
force inside this zone as a parameter and take the fluid
flow as a fixed field whose shape is known analytically,
once the force is known. With this hypothesis, one can
rather easily find the concentration and potential field nu-
merically.

We expect that the two concentration fields z,C, and
z,C, will be almost identical in the QNR, again, we call
them both C. As stated before, neutrality is a very good
approximation in the QNR, and, as above, we consider
the zone where a large excess of cations is found to be
confined in a single point: the tip of the branches. Of
course, we restrict ourselves to the steady state, and start
again with Eqgs. (38)-(41) coupled to Eq. (28), giving the
fluid velocity at any point around the comb. Now, this is
in fact a much simpler problem. By solving numerically
Eq. (41), with the fixed fluid velocity given by Eq. (28), we
will get the concentration map of both cations and
anions. Knowing that the anions are frozen, we recover
the shape of the electric field by means of

E=(vC, —D,gradC,)/p,C, . 47)

The specific charge distribution Q inside the vortex,
which will allow the electric field to have such a shape,
will be given by

Q =¢€€,divE , (48)
which can be expressed as a function of C alone:

Q= —e€ey(D, /u,)div[(gradC)/C] . (49)
Using Eq. (41), Q can be expressed in the following form:
Q=—eeyD, /u,)

X[(1/D)(v-gradC)/C —(gradC)*/(C)*].  (50)

(This form is more suitable, from a numerical point of
view, because it makes use of only one derivative of C.)

C. Numerical solution of the simplified problem

We have solved Eqgs. (41) and (28) numerically. We de-
scribe in the Appendix some technicalities of the numeri-
cal computation. We present here the results which were
obtained with an explicit recursion scheme on a grid with
discretization 82X 160. We show in Fig. 12 a typical con-
centration map, in the region ahead of the vortices, for a
value of a equal to 2, and a value D=5X 1073, where D
is a parameter proportional to the ambipolar diffusion
constant: D=(24mpvb /sf)D. As expected from simple
arguments, the transition zone is widened by diffusion.
As 9D is decreased, the pattern gets closer to the solution
which was first presented in Ref. [34] and further dis-
cussed in Sec. IV. When the diffusion constant is very
large, the ions can penetrate between the teeth of the
comb very efficiently, as if there were no fluid motion at
all, thus the concentration pattern tends towards a purely
diffusive one. We have checked that, in this limit, C is
proportional to the Laplace potential between a comb
and a linear anode.
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100%

0%

FIG. 12. Typical concentration map as given by the compu-
tation (D=5X10"3). The alternate black and white stripes cor-
respond to C,, /10 concentration intervals. The concentration
is set to zero in the rear part of the branches (see the Appendix).
Tips are at the bottom corners of the picture.

In order to see how the concentration map goes from a
solution similar to the Laplace potential between a comb
and a linear anode, to the solution of Sec. IV, we have
plotted the concentration profile halfway between two
branches, as a function of D (Fig. 13). We have also plot-
ted the thickness d of the transition zone as a function of
D (Fig. 14). We find a power-law dependence, close to
D'2. Note that for larger values of D it saturates to the
size of the cell, which is sensible. Of course, one expects
the thickness of the transition zone to vary with the posi-
tion along the arch, as stated before. Then the behavior
depicted in Fig. 9 catches the main features of the motion
of the ions, except that diffusion will spread the otherwise
sharp interface over a distance proportional to D '/2,

The electric-field lines which we have derived numeri-
cally are shown in Fig. 15 for some values of ). An asso-
ciated distribution of charges, as deduced from Eq. (50),
appears along the arch. As expected, in the limit of small
D, we recover a field proportional to the fluid speed, asso-
ciated with a distribution of charges more and more
confined to the arch.

(a) i (b)

C/C..

_ ©) (d)
0 20
y/b

()

FIG. 13. One-dimensional cut through the concentration
map, halfway between the two teeth: (a) D=5X10"3, (b)
D=1073, (c) D=5X10"*% (d) D=10"* One notices that the
concentration profile gets closer to the solution corresponding
to Fig. 9, while D decreases. In the limit of large D, one recov-
ers a purely diffusive solution.
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FIG. 14. Thickness d of the transition zone as a function of
D (the thickness is measured as the length between the point
where C=0.1C,, and the point where C=0.9C,, halfway be-
tween branches). The slope of the line, drawn through the cal-
culated points, is here ~0.4.

VI. EXPERIMENT

We have observed the growth of copper deposits in
conditions which allow us to clearly see the arches ahead
of the tips. This is the subject of the first subsection. In
the second subsection we focus on the fluid motion,
which we have been able to visualize with oil droplets
used as tracers: The convective vortices are proved to ex-
ist. We then describe how branching and screening
occur. Finally, we discuss some quantitative estimates
which can be derived from these experiments.

A. Experiment using interferential contrast

We have used a Nikon Optiphot microscope equipped
with a Nomarski interference-contrast accessory. This is

FIG. 15. The electric-field lines which are obtained from Eq.
(47) (see text). (a) D=1072, (b) D=5X1073, (c) D=1077, (d)
D=5X%X10"% As explained in Fig. 10, this peculiar shape of the
field is not the one expected between a comb and a linear anode.
Since the motion of the ions is only governed by diffusion, drift,
and convection, the model predicts that, in the steady state,
there will be a specific distribution of charges, in order for the
field to have such a shape.
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used traditionally by metallurgists in order to detect
scratches or small irregularities on metal surfaces. It is
also used by biologists in order to distinguish microscopic
details of bacteria or other cells, which are usually trans-
parent, but whose refractive index is not the same as wa-
ter. The principle of the interferometric contrast is the
following. The beam produced by a source of light passes
first through a birefringent prism. The two polarities of
the light are slightly separated into two beams. Suppose
the sample is a transparent object, of nonuniform refrac-
tive index, there will be a difference between the optical
paths of the two beams. If now the two beams interfere
before coming back to the eyepiece, it results in a sha-
dowed picture of the refractive-index map, mimicking a
relief under grazing illumination. In our case, the
difference in optical path will be due to the differences in
refractive index, because of the concentration gradients.
The setup is as described in Fig. 16. A small electro-
chemical cell (1 cmX 1.5 cmXO0.1 mm) is placed on the
sample holder of the microscope. This cell consists of
two microscope cover plates glued to two parallel copper
stripes acting as the electrodes. The lower plate is metal-
lized on its lower side, so it works as a mirror. The cell is
filled with a solution of copper sulphate by means of
capillarity through the sides, which remain open. The
two light beams, after being separated by the refractive
prism, cross the upper glass plate (thickness 0.16 mm),
cross the solution, then the lower glass plate, are reflected
on the lower side of the glass plate, and come all along
the way back. In the end, they form the contrasted image
in the eyepieces. As one notices, the solution is crossed
twice, and the glass plates are crossed four times. Cali-
bration tests showed that the thickness of the glass plate
was not critical. However, the thickness of the layer of
solution had to be chosen below 0.2 mm in order to ob-
tain a good contrast.

to the eyepiece light
A source
I
- — — — ] the two beams
interfere
double
refractive
prism

A upper
glass plate

~
~
~

~

~
beam going through a
medium of index n + dn

beam going through a
medium of index n

FIG. 16. Sketch of the experimental setup. The Nomarski
interferential contrast gives a shadow image of the concentra-
tion profile.
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The experiments which we report on here were carried
out with solutions of copper sulphate in the range
5%107% moll™! to 8X1072 moll™!, i.., sufficiently
small so that the independent-ion approximation is not
too bad, and sufficiently large that the optical contrast is
high enough.

For practical purposes we used a potential generator.
The applied potential was in the interval 2—15 V. How-
ever, we checked with a current generator that the
growth, in the same range of initial potential, is of the
same kind and exhibits the same features. The duration
of a typical growth, in these conditions, is between 1 and
10 min (for example, with 2X 1072 mol1~! and 15 V, the
growth lasts 2 min).

We show in Fig. 17 two typical images that we ob-
tained. There is an interval of a few seconds between the
two snapshots. As one notices, the concentration step is
not perfectly sharp; however, as predicted from the mod-
el, the transition zone is shaped like an arch. In order to
compare the experimental shape to the theoretical one,
we show in Fig. 18 the concentration gradients, as ob-
tained from Fig. 12. The comparison shows that the ex-
periment is near the limit of small D. This will be dis-
cussed in the last part of this section.

We have also observed that, for large currents (some
tens of mA/cm?), there is a very active competition be-
tween the arches, which corresponds to a very active
competition between the vortices. For very large
currents one can hardly speak of vortices, and the motion
of the liquid is turbulent in front of the branches, but the
flow is still inwards, and shaped like a funnel at the active
tips.

B. Observation of the convective vortices

Several attempts were made in order to see the convec-
tive vortices with different powders and tracers. The

FIG. 17. Two consecutive images of the concentration gra-
dient obtained with the interferential contrast (see text) on an
almost steady growth. One should view the contrast on the pic-
tures as the shadow of the concentration profile, with a spot
light coming from the direction of the arrow. The concentra-
tion is 5X 1072 mol1™, a potential of 8 V was applied, the cell
geometry is 0.1 mm X1 cmX 1.5 cm (because of using constant
potential in this experiment, the growth is not in the steady
state).
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X

FIG. 18. Maps of aC /9y, for the values of D which give con-
centration maps comparable to the experimental case. The
maps are shown over the same region of the cell as in Fig. 12.
(@) D=10"2,(b) D=10"3,(c) D=10"*

reason why it has proved hard to find a good tracer is
that, as appears in Fig. 8, all the liquid goes once through
the tip. This means that whatever the tracer one puts in
the electrolyte, it will all end up at the tip. This could ex-
plain in part why the deposit is very sensitive to any im-
purity present in the solution. However, we found it very
satisfactory to add a very small amount of Esso cutwell
40 oil to the solution. In the case we report on here, we
diluted one drop of oil in 100 cm® of copper sulphate
electrolyte. The oil split into many very small droplets
(1-10 pm), forming a milky emulsion with water. The
emulsion is rather stable over three days. Such a dilute
emulsion permitted us to see the vortices without hinder-
ing growth. However, growth was slightly disturbed by
the oil. One must also keep in mind that the shape of the
vortices depends on the viscosity of the solution. Adding
a drop of oil certainly does change the viscosity of the
solution. However, while this effect was not controlled, it
did not seem to affect the patterns very much. The same
solutions of copper sulphate, with concentrations ranging
from 5X 1073 mol17™! to 8 X 1072 mol1~! were used, and
the values of the applied potential also ranged between 2
and 15 V. The electrochemical cell is similar to the one
described above. We show a typical picture in Fig. 19.
We could not see the concentration gradients together
with the vortices because the small oil droplets diffuse
light. The vortices were observed, and their motion was
recorded with a charged-coupled-device (CCD) camera at
different magnifications (50X, 100X, and 200X). Their
features do correspond to the predicted ones. Namely,
two contrarotative vortices are always found between two
neighboring active branches, in the dense parallel regime,
in the range of parameters which we have studied. The
vortices are found just below an arch. As a matter of
fact, the part ahead of the vortices could be better seen
for the following reason: The water that enters the inner
part of the vortices below the arch has gone through the
deposit. Therefore, it contains less droplets, because the
oil seems to stick to the deposit, though it does not
hinder the growth. However, the droplets and some
powdery copper (coming from the deposit) which enter
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FIG. 19. Image of the convective vortices, just after the be-
ginning of the growth. The darker aspect of the upper part of
the picture is due to the very small oil droplets (diameter ~1
pm) which are in the solution. The droplets hardly penetrate
below the arch, because the fluid flow makes them drift through
the funnel. (Same experimental conditions as in Fig. 17.) Note
that the feet of the arches, where the tips are located, are very
narrow: these are very active zones due to the high speed of the
liquid going inwards.

the vortices are largely sufficient to see the motion of the
fluid. Without a doubt, the simple observations that we
report here rule out any model of growth in similar con-
ditions which would not take into account hydrodynam-
ics. Let us repeat that the arches which appear in Fig. 19
are not due to concentration gradients. They show where
tracers are found and where they are not. The arch is
very sharp because there is no diffusion of the tracers.
The overall shape of the vortices and of the fluid flow
seems to be rather well described by the simple model
that we have presented in the preceding sections.

It is revealed from the pictures that the funnels are
very sharp at the tips. This shows that the approxima-
tion of very thin needles is very good, though the
branches themselves are thick. Also, the volume on
which the force acts does not encompass the tips on all
their width, as it could have been naively expected. It
seems that, after passing through the funnel, the solution
moves turbulently through the branch, which is much
thicker than the funnel; growth can then occur inside the
growing branch, a few tens of microns behind the tips.
Also, the fluid velocity is very large at the tips, thus pro-
voking the observed shaking of the active zone. Obvious-
ly, the fluid flow is also three dimensional and turbulent
when the distance between branches is small.

We also noticed that there is a global and quite slow
motion of the tracers towards the anode. This can be due
to an electrophoretic effect [38]. However, it is so slow
that it does not change deeply the fluid pattern.

We also observed that when the deposit arrives at the
other end of the cell, near the anode, the vortices which
we have described previously disappear. The deposit
stops a few tenths of millimeter afar from the anode and
starts to thicken. When the deposit stops, another kind
of convective motion sets in. One or two cylindrical rolls
appear between the anode and the deposit. These
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cylinders lie parallel to the anode, and are certainly
linked to buoyancy. We will not discuss this effect any
further here.

C. Observation of branching and screening

We have been able to observe branching and screening
quite easily. We have seen with interferential contrast
that, when a tip splits, an arch joining the two baby
branches appears. Also, we have observed the slow van-
ishing of an arch when a branch is screened and “dies.”
These patternings of the deposit proceed concomitantly
with the formation and vanishing of pairs of contrarota-
tive vortices between neighboring branches, which can be
observed because of very small impurities which are still
present in the solution. The formation and vanishing of
pairs of contrarotative vortices was evident with the oil
droplets (see Fig. 20), but, as stated before, we could not
observe the concentration and the droplets in the same
experiment.

D. The beginning of the growth

The understanding of the beginning of the growth is of
upmost importance in order to fully understand the
growth itself. Hence, we have carefully observed the first
stages of the growth. At the very beginning of the
growth (up to 10 s or so, depending on the experimental
conditions), one observes under interferential contrast
that a more contrasted layer forms near the cathode.
(The liquid is at rest at this stage.) This means that a
zone of different chemical conditions builds along the
smooth cathode. This zone corresponds to the depleted
zone of Chazalviel’s model; this will be described in detail
elsewhere [25]. After this first stage, one observes a com-
plicated turbulent motion of the fluid near the electrode,
on a scale of order 1 mm. Though the flow is turbulent,
there is a general trend of the fluid motion, which con-
sists in making three-dimensional whirls which bring the
solution near the electrode and then away from the elec-
trode. These whirls can be seen with the oil-droplet

FIG. 20. The convective vortices, in the vicinity of two tips
which are getting closer. The vortices still exist, but become all
the smaller as the distance between the branches gets smaller.
Eventually, a pair of small vortices will disappear and one of the
branches will survive.
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method. When watching under interferential contrast
one sees many small arches that compete and have a
wavy unsteady behavior, which is linked to the underly-
ing motion of the fluid. During this stage of the electro-
deposition process, the deposit is very small, smaller, in
fact, than the cell thickness. This random motion of the
fluid, and of the concentration arches, organizes itself
progressively, until the large steadier vortices finally ap-
pear. It seems that as soon as the vortices are formed,
larger branches at the feet of the arches exist. However,
it is hard to tell, from the above observations, whether
the branches organize the vortices, or the converse. We
should emphasize the interesting fact that, in some in-
stances, when branches are too fragile, the vortices do ex-
ist, though the branches were destroyed as they grew.
This is especially the case when very large currents are
employed.

E. Quantitative aspects

One can notice in the pictures of the concentration gra-
dients and of the vortices that, while the distance between
trees is not constant, due to the particularities of the de-
posit, the aspect ratio of the arch is roughly the same and
of the order of unity (this is particularly clear in Fig. 17).
This means that point 4, where the fluid velocity is zero,
stands always at coordinates (b/2,h), with h=b/2
(x =0 is on a branch). This gives an experimental esti-
mate of the force which acts at the tip of the branches.
Indeed, since v( 4 )=0, we must have curl¥( 4)=0. This
condition implies that

k=+ow . _
RaieT ] D
(51)
or,
k=40 1_(1—92k)2
THaEo 241rpvs(b /2)2fk=zw [11+((11_22':))2]2 -
(52)
This gives an estimated value f, for the force f:
fo=~u,E  [157pvb?/s] . (53)

A numerical estimate of f,, with u,=8.64X10"*
em?V~ls™L E_=10 V/cm, p=10° kgm 3, v=10"2
cm?s !, b=5X10"2cm, s=10"2 cm, gives f,~10"® N.
We have also shown in Sec. III that, because of flux con-
servation, the electric force f that exists on top of a
branch when the fluid is at rest is given by Eq. (25). A
numerical estimate of f, with the same values as above,
and C,=10"%2 moll™!, 2z, =2, p,=576x10"*
cm?V 7 ls7 x,=107% m, gives f~10"* N. These esti-
mates show that, in principle, the electric force at the tip
is 10* times larger than what is required in order to pro-
voke a convective motion like the observed one. Of
course, one must keep in mind that the value of f has
been derived in the case of a steady fluid: As soon as the
convective motion has set in, the calculation is no longer
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valid. Especially, the charged zone will extend over a
very narrow region close to the dendrites in which
boundary layer effects must be taken into account. Also,
the branches hinder the motion of the fluid, and a full
description of the turbulent zone, including friction in-
side the tip, would certainly lead to a much lower value
of the force which is available for the convective motion
between the teeth.

Let us also add the following result concerning the
value of the diffusion constant. Taking into account the
previous results, 1 is written as

x , 15 k2= %_k
v=by, |+ 3 ——7 |- (54)
b 24, r |’

b

=—o00

The value of the numerical parameter £ which is ob-
served seems to be close to 1072 Since D=bv,D,
b=~10""! cm, and v,,zlo_2 cms” !, we derive D=~1073
cm?s™ !, which is very close to the known value of the
ambipolar diffusion constant in CuSO,.

VII. CONCLUSION

We have presented a model which, in our opinion,
catches the main features of the electrochemical aspects
of the growth mechanism, in the dense parallel regime.
This model incorporates electric drift, diffusion, and elec-
troconvective motion. We have shown experimentally
that the fluid flow and concentration maps around the de-
posit compare well with the predicted ones. We have
proved experimentally, and conjectured on some simple
arguments, that the convective vortices do not allow
penetration of the solution between the branches in the
steady-state regime. The observations and the theoretical
model that we have presented rule out any model of ECD
in similar conditions which would not take into account
convection. In particular, the attempts to link the type of
growth discussed here to diffusion limited aggregation
seem rather questionable. This remark may not apply to
growths in supported electrolyte or to growths at very
low growth speeds, where diffusion is dominant over elec-
tric drift, and convection is weak. Let us remark howev-
er, that there is no onset to the convective motion, and
that the speed of the fluid seems simply to decrease when
the imposed current density is decreased. Also, in the
case where convection is suppressed [39], like in Hibbert
and Melrose [12,13] experiments, our model may not
hold (still, the model proposed by Chazalviel [22] for a
steady solution may be valid). Also, preliminary experi-
ments with zinc showed that convection is equally impor-
tant around zinc deposits. The vortices are very similar
to the ones observed in the case of copper sulphate, when
the growth is in the dense parallel regime. The arches ex-
ist and their main features are analogous to the case of
copper. However, in the case of needlelike crystalline
dendrites large vortices between neighboring tips do not
exist any longer. In this case, the active zone extends
rather far behind the tip (several times the tip width) and
some smaller vortices still exist, along the active sides of

the dendrite. Note that, in this case, the boundary condi-
tions near the dendrite are clearly not represented by a
rectilinear comb. Also, the anisotropy favors so much
the direction of growth that one can hardly achieve, in
practice, a stationary state, and the vortices seem to cor-
respond to the ones shown in Figs. 7(c) and 7(d) rather
than 7(a) and 7(b), hence there is no arch between neigh-
boring dendrites. A more detailed report on the case of
zinc will appear later.

Finally, let us remark that when the current is
switched off, the convective vortices are frozen almost at
once. However, the arches of concentration still exist for
a while, and slowly fade away. In our opinion, this rules
out the Marangoni convection which has been conjec-
tured [21,40] to possibly exist between the concentrated
and nonconcentrated solution, due to the mismatch in
surface tensions. Also, the shapes of the concentration
gradients in these references are not the same as the ones
we present here. One should notice two differences be-
tween the regime studied here and the one described by
Barkey [21]. First, the zinc aggregates he obtains at low
concentration are more compact than ours (Fig. 2 of Ref.
[21(b)], for example), so it seems that the branches are too
close to each other to allow the presence of vortices be-
tween them. On the other hand [Fig. 6 of Ref. [21(b)]] in
the case of well-separated branches (dendritic growth) a
parabolic envelope is found around the dendrites which
does not resemble the arches we present here. But it
should be noticed that, in this instance, very high concen-
trations are used (0.2M). We believe that natural con-
vection provokes a gravity current [41] near the branches
which gives rise to this envelope.
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APPENDIX

We describe in this appendix some technical aspects of
the numerical calculation.

The concentration map C was computed on a VAX
9000 computer. We have in fact used two grids, one of
size 42X 160 and one of size 82X 160. We have found it
necessary to take a rather elongated cell, so that the con-
centration gradients, which are expected to extend over a
length (at most) of the order of the distance between
teeth, would not be too sensitive to the presence of the
cathode and of the anode. Since the speed is in principle
infinite at the tips, we introduced a cutoff around the tips.
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Namely, the concentration was set to zero not on the tip
itself but on a neighborhood of two pixels (respectively,
five pixels) around the tips in the case of the smaller grid
(respectively, in the case of the larger grid). An explicit
recursion scheme was used:

[Ck+ i, j)—CXi,j)]/dt
=D[CKi+1,j)+CKi—1,7)+CHi,j+1)
+Cki,j—1)—4CHi,j)]

—v,(i,j)8%(i,j)—v,(i,j)8%,j) , (A1)
where
. [CKi+1,j)—CXi,j)] ifv.(i,j)<0 (A2a)
Ol )= 1ok, j)—CHi—1,7)] if vy(i,j)>0  (A2b)
and
. [CXi,j+1D)—CKi,j)] if v,(i,j)<0  (A3a)
&L= ki, j)—CHi,j—1)] if v,(i,j)>0. (A3b)
We use for v the curl of the vector (0,0,v,) with ¢
X
x k=+ ;_k
v=a—+ 3 ——3 (A4)
b = 13
b
(where b is the width of the box in lattice units).
So, the fluid velocity was given by
v (L) =i, i+ D)=, )) , (A5)
0, (1, J) =i, ) —hali+1,j) . (A6)

We have explored different values of fluid speeds (hence
different values of a). We then focused on fields corre-
sponding to a=0.25 and a=2 [which is the fluid flow
shown in Fig. 7(b)]. We started from a purely diffusive
concentration map (i.e., Laplacian potential), and a high
diffusion constant. We used as the control parameter the
parameter ), which is related to the true ambipolar
diffusion constant D by

D =(sf /24mpvb)D (A7)
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(where b is the distance between branches in the real ex-
periment). Let us insist on the fact that the conditions
(A2) and (A3) arise because of convergence problems
when the gradient is not taken in the direction of the
flow. As a matter of fact, this condition is not absolutely
necessary when the diffusion constant is large, but con-
vergence becomes more and more difficult as the diffusion
constant is lowered. It should be noticed that the fluid
velocity is very large at the tips. When the diffusion con-
stant is decreased, the advective term starts playing a
greater role, and the transition zone sharpens. This
means that the v-VC term becomes larger in a nonlinear
way [much like in Navier-Stokes equations with large
Reynolds numbers, of which Eq. (41) is a scalar analog].
This causes a rapid divergence of the algorithm, which is
always triggered at the tips, if conditions (A2) and (A3)
are not implemented. In order to achieve good accuracy
and rapid convergence, we proceeded in the following
way. The solution with one value of 2 was used as input
for the next computation with smaller 2. It would take
typically 10000 iterations to reach convergence for
values of D in the range 1074~10"!. In fact, though D
and dt must satisfy dt2 =<1 in order to ensure conver-
gence for the calculation of the Laplace potential, we
found it possible to loosen this condition, in the case of
the equation we are discussing here, Eq. (41), while the
diffusion constant was decreased. For values of D in the
range 2.5X1074-1072 we could go up to Ddt=10.
Also, in order to ensure reasonable resolution, we have
chosen to use a rather coarse grid of size 42X 160, with
teeth of length 80 along the larger side for values of D
above 107 3. Below this value of D, the concentration be-
tween the teeth is lower than 0.02. We then imposed
C =0 between the teeth, and restricted the computation
to a smaller box corresponding to the zone ahead of the
branches. We could use in this box a finer grid, of size
82X 160. As a matter of fact, the use of a smaller box,
with a concentration equal to zero in between the
branches, does not lead to a pattern which matches exact-
ly the pattern calculated in the larger box (keep in mind
that the discretization is better in the small box). Howev-
er, the discrepancy is very small, and can be neglected, in
a first approximation. A refinement would be to take the
values of the concentration determined with the coarse
grid as the new boundary condition between the tips.
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FIG. 17. Two consecutive images of the concentration gra-
dient obtained with the interferential contrast (see text) on an
almost steady growth. One should view the contrast on the pic-
tures as the shadow of the concentration profile, with a spot
light coming from the direction of the arrow. The concentra-
tion is 5X 1072 moll1™!, a potential of 8 V was applied, the cell
geometry is 0.1 mmX 1 cmX 1.5 cm (because of using constant
potential in this experiment, the growth is not in the steady
state).
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FIG. 18. Maps of dC /3y, for the values of 7 which give con-
centration maps comparable to the experimental case. The
maps are shown over the same region of the cell as in Fig. 12.
@D=10"% (L) D=10"3 () D=10"*.



FIG. 19. Image of the convective vortices, just after the be-
ginning of the growth. The darker aspect of the upper part of
the picture is due to the very small oil droplets (diameter =1
um) which are in the solution. The droplets hardly penetrate
below the arch, because the fluid flow makes them drift through
the funnel. (Same experimental conditions as in Fig. 17.) Note
that the feet of the arches, where the tips are located, are very
narrow: these are very active zones due to the high speed of the
liquid going inwards.



FIG. 20. The convective vortices, in the vicinity of two tips
which are getting closer. The vortices still exist, but become all
the smaller as the distance between the branches gets smaller.
Eventually, a pair of small vortices will disappear and one of the
branches will survive.



