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We consider the mathematical foundations of continuum theories of nematic liquid crystals of the

Frank-Oseen form which include, in addition, the surfacelike K» term. Such theories present problems

because {i) the free-energy functional F2, quadratic in the director derivatives, is unbounded from below

and hence possesses no minima unless K» is strictly zero; and (ii) microscopic theories indicate that in

the general case K,3 does not vanish. The continuum theory presupposes the existence of weak director
deformations. This is not consistent with the idea, proposed by Oldano and Barbero, that there should

be strong subsurface director deformations, which are shown in the present paper to be a formal conse-

quence of {i). Instead we propose a resolution of the K» problem which is consistent with weak director
distortions alone. The resolution involves a formal consideration of all the terms in the total free energy

containing high-order derivatives, the infinite sum of which, R „,bounds the total free energy F2+R
from below. A consequence of this resolution is that the Euler-Lagrange equations which follow from a

naive consideration of the Oseen-Frank free-energy functional F2, and which appear to give rise to a

nonminimal family thereof, in fact give rise to a minimal family of director distributions of the total free

energy F, +R . Moreover, no specific information on higher-order elastic terms enters the theory. The

theory further allows consideration of the derivative-dependent terms in the anchoring energy. Each
such derivative is shown to be proportional to a small parameter. As a result, all derivative-dependent

anchoring terms are much smaller than the usual Rapini-Popoular term.

PACS number(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION

f»=K, 3(v n)(V.n),
f24= —(K22+K24)v. [n(V n)+nX VXn] . (4)

In formula (I), the bulk integral over the terms which
are of divergence form is transformed by means of
Gauss's theorem into the integral over the nematic sur-

Macroscopic structures in nematics are described by a
director distribution n(r). This can be found by minimiz-
ing a free-energy functional (henceforth FE in this paper).
The important part of this functional from our point of
view will be that part which is quadratic with respect to
the sign 8 of the director derivatives; we shall label it F2.
F2 contains distinct contributions. One contribution is
the standard Frank contribution f~. In addition there
are two divergence terms. This can be expressed as [I]

F~= f dVI f~+K,3V [n(Vn)]

(K +K )V —[n(V n)+n X V Xn] I

= f dV f + fdS(f, +f ),
where

fF= —,'[K»(V n) +K22[n (VXn)] +K33(nXVXn) ],
(2)

face S, whose external normal is v, with
~
v~ = l.

Most traditional treatments of the physics of nematic
phases have only considered fF', the divergence terms in
the FE have essentially been ignored. More recently,
however, there has been renewed interest in the physical
content that these terms might convey. One argument
which has been put forward to justify ignoring the diver-
gence terms is that divergence terms do not change the
Euler-Lagrange equations, and that therefore they may
be omitted. In our opinion this argument is not satisfac-
tory, and a large number of papers on this problem have
appeared in the literature which show that this point of
view is untenable (a detailed analysis of the reasons why
the surfacelike terms have been ignored is given in Ref.
[2]). Indeed, it turns out that basic mathematical
difficulties appear, associated with the minimization of
the total functional F2. The problem derives from the
fact that the standard variational analysis deals with
functionals whose surface contribution contains no
derivative-dependent terms, whereas the surface part of
the functional F2 depends on the director derivative Bn.
Such terms appear in the surface integral in Fz in the two
divergence terms, which we shall refer to as the X&3 and
K@4 terms. An extremal family of functions for the stan-
dard functional is known to satisfy the Euler-Lagrange
equations. However a minimizing procedure for the
functional F2 is not known. Moreover, specific physical
effects associated with the K&3 and E24 terms have not
been derived.

The present situation is that the problem of the %24
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term has been solved: a minimization procedure for the
FE with the K24 term has been proposed [3,4]; physical
effects whose very occurrence critically depend on the
value of K&4 have been shown to exist [2,4—6], and even
estimates of the value of Kz~ have been made [6,7].

In the case of the K&3 term, by contrast, minimization
procedures are now under discussion [8—15] and, as a
consequence, the corresponding physical effects cannot
be predicted unambiguously.

A formal treatment of the K&3 term in the FE results in
the idea of strong (formally, infinite) spontaneous subsur-
face director deformations. Barbero and Oldano [8,10]
were the first to point out these unexpected, indeed para-
doxical consequences of the presence of the K» term in
the nematic FE. Further discussion of these conse-
quences [10,13] has in fact revealed the inconsistency of
such infinite subsurface deformations. The next impor-
tant step in comprehending the problem has been made
by Barbero, Madhusudana, and Oldano [11]. These au-
thors, having understood the need to deal with finite de-
formations, explicitly introduced in the theory certain
terms of the fourth order in the derivative sign 0, and so
additional fourth-order elastic constants. Though this re-
stricts the deformations, they are still sufficiently strong
that the relevant length scale is of molecular dimensions
[11,13,16,17]. Since the weakness of the deformations is
crucial for the very derivation of the FE expression (1), it
is evident that an approach leading to such strong defor-
mations in the nematic liquid crystal is inadequate.

In order to show how the consequences of this ap-
proach are far different than the standard ideas about the
nematic phase, we consider the following example. If fol-
lows from [11] that the director tilt 8 on the nematic
surface S undergoes a change 50-1 in a distance of
the order of the molecular length LM corresponding
to the surface energy density f,3

——~K&3(58/LM )
~——~K&3/LM ~. At the same time the characteristic scale

L of the standard nc. . atic deformations is much greater
than L~; the energy fo contained in the subsurface
layer of thickness LM can be estimated as

f0-K(b8/L ) LM -K(LM /L ) LM
' per unit area of S.

This approach thus results in an enormous negative
subsurface energy density as compared to any standard
macroscopic value. Indeed, the ratio is

~f&3/f o ~

(L/L~) -&&1, if we suppose elastic constants K&3 and
the Frank constants K to be of the same order of magni-
tude as predicted recently [18]. The factor (L /LM ) is so
large that the nematic phase —in particular the freely
suspended nernatic phase —must spontaneously increase
its surface area because its "surface tension" is negative.
Then the state of a freely suspended nematic drop would
not be equilibrium and the drop would be elongated into
a thin rope and so on. We know, however, that such
effects do not occur.

To a certain extent the authors of Refs. [8,10,11] real-
ize the inconsistency of this approach [10], leading to
such exotic predictions for nematic liquid crystals. How-
ever, there is still no other approach that is at least for-
mally consistent.

Rather than face this problem, Hinov [9,12] proposed a

(6)

postulate that the director must satisfy the Euler-
Lagrange equations corresponding to the functional F2.
Of course, this postulate results in bounded deformations;
however, F2 has its own minimum for each function fam-
ily, and the exclusive role of the Euler-Lagrange equa-
tions for F2, containing the K,3 term, is by no means
clear.

Thus, the problem of the K&3 term has not reached a
level where it can be solved, either experimentally by
measuring the elastic constant K&3, or by discovering an
effect caused by the K,3 term alone. In this context, it is
interesting to note that sometimes, depending on the
specific problem, the situation impels researchers to ac-
cept one of two diametrically opposite points of view.
Thus theoretical considerations imply the existence of
strong subsurface director deformations [11],whereas the
necessity of carrying out measurements of K&3 leads to
the acceptance of the heuristic point of view that the
director must satisfy the Euler-Lagrange equations for F2
[19].

The problem of the K&3 term also calls into question
investigations of the effects associated with the K24 term
in the FE, making them heuristic in the best case.
Indeed, it is difficult to find a situation when the K,3 term
can be ignored while the K24 term plays an important
role. The problem is that both surfacelike terms come
into play in the same situations: either in geometries
with a sufficiently large surface-to-volume ratio or when
there are singularities in the director distribution (de-
fects). At the same time, while the K,3 term can contrib-
ute to the FE in any geometry, the K24 term is identically
equal to zero if the director depends on a single Cartesian
coordinate. Thus physically the problem of the K&3 and

K24 terms cannot generally be divided into two indepen-
dent ones.

Along with the surfacelike terms in the bulk part of the
FE, derivative-dependent terms can be introduced in the
expression of the anchoring energy. Some surface energy
densities widely quoted in the literature are

fRp
=

—,
' Wapsin (8—8), (5)

fDvp
=—WDvp sin[ 2( 8 8) ]8

fM
=

—,
'

WM sin [2(8—8) ]8' (7)

which are referred to as the Rapini-Papoular [20],
Dubois-Violette and Parodi [21], and Mada [22] terms,
respectively. Here 8 is the angle between n and the nor-
mal v to S, 0—0 is the angle between n and the easy
direction e on S, and the prime denotes the derivative of
0 along v.

Evidently, the problem of the derivative-dependent
terms in the surface part of the FE must also incorporate
the anchoring terms (5)—(7). In this paper we solve this
problem on the phenomenological level. This corre-
sponds to a macroscopic description of liquid crystals
and maximally employs the features of the realistic
nematic phases which appear in the Landau theory. As a
result, the problem is reduced to the experimental mea-
surernent of the constants K&&, K&2, K33 K24 K]3 and
O'Rp. No additional phenomenological constants enter
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the theory.
Generally speaking, the problem of the surfacelike E &3

term in the nematic FE has three principal aspects: mi-
croscopic, the inclusion of the K,3 term in the macro-
scopic description, and, at last, the observable conse-
quences of the inclusion. Respectively, this paper, devot-
ed to the second aspect, belongs to a series consisting of
three papers. In the first one [18] the microscopic pro-
cedure of the computation of the elastic constant K» is
shown to be unambiguous, and K,3 itself and the usual
Frank constants are of the same order of magnitude. The
third paper [23] presents an effect due to the K,3 term
alone. The computation performed in [18] confirms that
the values of X» necessary for this effect to exist are not
exotic; the effect itself is a direct corollary of the phenom-
enological theory worked out in the present paper.

II. UNBOUNDEDNESS OF THE FREE-ENERGY
FUNCTIONAL F2 FROM BELOW FOR E ]3%0

To formulate the problem of derivative-dependent
terms in the surface part of the functional FE one first of
all has to understand the mathematical nature of strong
subsurface deformations predicted by Barb ero and
Oldano [8] and considered in detail subsequently
[8,10,11,13,16,17].

The crucial question in this context is to understand
why, when both K&3 and %24 terms introduce the direc-
tor derivatives in the surface part of the FE, the %24 term
does not lead to any paradoxes and exotic deformations,
while the K,3 term does cause problems? The answer is
that, for any arbitrary surface S of a nematic sample, the
IC24 term f24 (4) contains only derivatives B~~n in the
direction tangential to S and does not contain derivatives
B~n along the normal directions; whereas the I(

&3 term al-
ways contains the director derivatives B~n normal to S.
This result, which is of a crucial importance in the con-
text of the paper, as well as the derivation of a direct
variational procedure for the FE functional (2), contain-
ing only the %24 term, are obtained in the Appendix.

Now we shall show that it is just singularity of the nor-
mal derivatives B~n on S which allows an unbounded de-
crease in the value of F2. The result is that the functional
F2 has no minimum for any nonzero K,3.

Thus we want to show here that the presence of the
K]3 term always leads to an infinite negative value of F2 ~

"Always" means that it takes place for nematic phases
with arbitrary surface S when arbitrary boundary condi-
tion for the director is fixed at an arbitrary distance 6
from the surface (Fig. 1). Since S in the general case is
not planar, it is appropriate to introduce a curvilinear
coordinate system (x„x2,x3) with metric tensor g;~ in
such a way that the nematic surface S coincides with the
coordinate surface X3 =const=SO. Then x, and x2 are
the coordinates on S, and the outer normal v is directed
along the coordinate line x3: v=(0, 0, 1). In these coor-
dinates, the differentials of the area of S and the volume
are given by dS =Qg»g22dx &dxz and d V=+g33dx3dS,
respectively. Now, all the differential operators must be
written in terms of these curvilinear coordinates. Intro-

ne
=So- g

X3-go

soli

ducing the notation 8;n~ = conj Zax, , g =g»g2pg33 using a
unit antisymmetric tensor e,.ik(i, j,k take the values 1,2,3)
and implying the summation over similar subscripts, we
have [24]

(V n) = —8; (n; Qg/g;; ),1

g

(VXn); =elk+g;;BJ(+gkknk)

(8)

(no summation over i), (9)

n3
f» =X» —8;(n;Qg/g, , ) . (10)

Let us consider the subsurface layer So )x3 )So —6
with the arbitrary boundary condition n(x„xz, x3
=Sp —b, )=v(x&,x2) on its inner boundary x3=Sp —6,
all the derivatives of the function v being finite. Such a
boundary condition can be associated with an arbitrary
director distribution in the volume. The FE Fz of this
layer is given by the integral over its volume plus the an-
choring energy which at this stage is assumed to be a
functional on n only (Bn-dependent anchoring will be
considered in the next section):

So
F~=f dx3 f dS+g33f~

0

+ f dS[f»+f24+f~(n)], (11)

where f„(n) is the surface density of the anchoring ener-

In order to prove that F& is not bounded from below, it
is sufhcient to find in the layer a director distribution
m(x) which satisfies the boundary condition
m(x„x2, x3=Sp 6)=n(x] x2 Sp 5)=v(x, xp) and
leads to F& Im] ~—00. Let the third component of the
director distribution m(x) in the layer be the function

m3=P(Sp —x3) —Ph +U3(x„xz), (12)

FIG. 1. Part of the nematic-solid substrate interface S which
coincides with the coordinate surface x3 =SO. The coordinate
lines x& and x& lie on the surface x3 =const, while the coordi-
nate lines x3, whose directions are indicated by arrows, are per-
pendicular to them; v, the unit external normals to the nematic
surface S, are directed along these x, lines. In the volume in-
side the surface x3=SO —5 located an arbitrary distance 5
(along the x3 lines) from S, an arbitrary director distribution n
is fixed; m is the distribution (12), (13) satisfying the boundary
condition m(x3=SO —6)=n{x3=SO—6) on the inner surface
x 3 So —6 of the subsurface 6 layer.
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which identically satisfies the boundary condition on the
surface x3=Sp —b„' a and p are constants, —,

' &a&1.
Suppose the second component of m coincides with its
value for x3 =So —5, so that

~2(xi~x2&x3) U2(x1&x2)

m, (x)=++1 —m ~(x) —m 3(x),
(13)

—m383m3

m&
(14)

Thus only 83m 3 and 83m, are infinite and both behave
as ap(Sp —x3) ' for x3~Sp. As it follows from (8), (9),
and (1) these derivatives contribute both to the volume
and surface parts of Fz. However, it is easy to see that
the resulting singularity in the volume integral is integra-
ble. The volume integral is thus finite:

(Sp —x3)
dx KaP(S —x ) ~aP ~03 0 3 2(x 1

(15)

for x3 —+So. Here K is a finite factor which depends on

Ki j K22 K33 n, and finite Bn. The surface density f24

from Eq. (4) is shown in the Appendix to contain no
director derivatives along the directions normal to the
surface. Thus f24 does not contain the only infinite
derivative B3n and, hence, the f2~ contribution to the FE
layer Fz is finite. Then, separating the infinite part offJ3

(8), we find the infinite part of the K&3-term contribution
to be

1F~= J dSK, 3 m3 83Pl3 (x3 Sp)

K,3aP(Sp —x3 ) (16)

for (Sp —x3)~0. We see that lF&l ~ ~ and can be
made negative, whatever the sign of K&3, by the choice of
sign of the factor p: if K,3p & O, F&~—ao.

where the sign of m
&

can be obtained from the continuity
condition of n

&
for x3 =So—h.

We see from (12) that lB3m3l~~ on S, i.e., for
x 3 So, the director itself being finite. Let us separate
the infinite director derivatives. The following behavior
of the derivatives can be found from (12) and (13) for
x3 ~So.

lB,m, l
~ laP(Sp —x, ) 'l ~, (j,m, =(),

ness of the F2 from below means that it has no minimum
while, from the physical one, these strong deformations
are in accordance neither with our ideas of the nematic
phase nor with the assumptions about the weakness of
any deformations underlying the derivation of the very
functional F2 and which must be verified a posteriori.
The first mathematical inconsistence can be removed
from the theory by adding to Fz some term R& of the or-
der higher than F2 in the operator 8, which bounds the
FE from below and hence ensures the existence of
min(F2+RA ). For example, Barbero, Madhusudana, and
Oldano [11] propose the form R4 = fP4(dn) dV, where

P4 is some fourth-order elastic constant (qualitatively
similar terms, which all can be denoted as R4, were intro-
duced by Sparavigna, Komitov, and Strigazzi [16]). Evi-
dently, both the total FE F=Fz+R4 and the director
derivatives are now bounded. But to make the theory
physically consistent is much more difficult. Indeed,
though the deformations become finite in this approach,
their values are still too high, Bin —1 on S [11,13,16]
while it must be of the order B~n-L~/L «I in the
nematic phase [1,26]. It is clear that such a theory pre-
dicts that the scales LM and L coincide which, generally
speaking, makes a macroscopic description impossible
(the less formal nonphysical consequences given in the In-
troduction should be added to this reasoning).

A further question arises as to whether one or several
terms of fourth order must be introduced in R4. Such an
ambiguity could be removed by taking into account in R4
all possible terms of the fourth order (there are, however,
35 such terms [1]). It is clear that this approach just
complicates the problem, without solving it. Indeed, the
total contribution of any order contains, along with the
bulk elastic terms (with unknown elastic constants), alter-
nate divergence terms, which also are unbounded from
below. For example, at order 8 there is a term
V [nb, (V n)], which introduces the third-order deriva-
tive Bjn in the surface part of the FE. Just as the K $3

term is unbounded from below, this term removes the
lower bound of the sum F2+R4, which again has no
minimum. Then, in order to restrict the value of this
term, one must take into account sixth-order terms,
among which, however, the term V.[nba(V n)] exists,
and so on. Thus, it is impossible to solve the problem by
introducing new elastic terms up to any finite orders.

Nevertheless, the problem of the K&3 term must reduce
to finding the appropriate regularization term R „which
can be attributed to the contribution of all higher-order
terms to the nematic FE. We shall formulate this prob-
lem in detail in the next section.

III. RESTRICTION OF DEFORMATIONS
AND HIGHER-ORDER ELASTICITY

Thus, the strong subsurface deformations normal to S
result in the unbounded drop in F2 both in the simplest
cases considered in Refs. [8,10] and for an arbitrary
nematic geometry. However, this picture is formal both
mathematically and physically.

From the mathematical point of view, the unbounded-

IV. PHENOMENOLOGICAL APPROACH
TO THE PROBLEM OF THE

REGULARIZATION TERM R

Mathematically, the K&3 problem follows from two
contradictory assertions: (1) for arbitrary nematic
geometry, the free energy F2 is unbounded from below
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for any K&3%0 (Sec. II), and (2) all microscopic theories
of nematics predict IC,3 %0 (for example, see Refs.
[11,15,18] and references therein).

It follows from assertion (1) that F2 has no minimum
for K,3%0 and the normal derivatives

~ Bjn
~

~~ for
x&S (infinite deformations). However, the phenomeno-
logical theory of nematic liquid crystals is analogous to a
Landau theory of phase transitions. One cannot consider
arbitrary consequences of such a theory. Rather, such a
theory essentially employs the idea of a specific ground
state and permits the description only of weak deviations
of the order parameter from this state. In our case, this
corresponds to the assumption that all possible deforma-
tions in the nematic liquid crystal are weak, ~Bn

~

((1.
The real task is how to preserve the standard phenome-
nological approach, and at the same time to remove the
exotic formal consequences of the theory. We shall show
below that there exists a unique solution of the problem
within the framework of a consistent phenomenological
approach.

Let us formulate the requirements for possible nematic
states and the functional R consistent both with generally
accepted ideas and the experimental data:

(i) Deformations in a nematic liquid crystal are weak,
~Bn

~

—~LM /L
~

(which allows spontaneous weak deforma-
tions in contrast to the requirement that Bn =0 without
any external forces).

(ii) A satisfactory theory of a nematic liquid crystal
must employ only the functional F2 quadratic in the
operator 8-LM/i. . This means that though the higher-
order terms F2+ for %=2,3, . . . in principle can play an
important mathematical role in the theory, they
must not enter explicitly the observable quantities, i.e.,
~F2~ ))~R

~
where R =+K 2F2z. It is clear that (ii)

can be satisfied only due to (i) since it follows from (i) that
F2~ —(LM /L ) [1,13,26].

For example, R of the form fP~(d n )dV [11,16] con-
tradicts both (i) (

~

Bn
~

—1) and (ii) ( ~Fz ~

—~R
~

and n
essentially depends on P4).

If a finite number of terms in R does not solve the
problem, the only possibility which remains is that R in
the form of the infinite sum R satisfies all the require-
ments formulated above. It is clear that R cannot be
obtained explicitly. Nevertheless, there are in fact only
two possibilities: either K,3 =0, or R behaves in the re-
quired fashion; otherwise (i) and (ii) are not satisfied.
Therefore, the problem can be formulated as follows: (a)
to determine which behavior of R is required to satisfy
(i) and (ii); (b) to show, that, in principle, such behavior
does not contradict the definition of R; (c) to find the
minimization procedure for the functional F=F2+R
and to show that this procedure does not require infor-
mation about R „more detailed than in (a) above.

Before performing this program, in the next section we
consider the derivative-dependent terms in the anchoring
energy. We shall see that this will throw light on the K&3
problem and give a very useful example of an infinite sum
possessing all the features required of R „.Of course, the
problem of the terms (5)—(7) in the anchoring energy is
also important in itself.

V. DERIVATIVE-DEPENDENT TERMS
IN THE ANCHORING ENERGY

If each derivative sign in the bulk density given by Eq.
(1) is proportional to the small parameter LM /L, then the
anchoring energy contains no scale parameters explicitly.
Therefore, Bn-dependent terms in Eqs. (6) and (7) were in-
troduced in the anchoring energy only for symmetry
reasons and no magnitude hierarchy in the derivative
powers occurs in the approach. We propose now a sim-
ple physical idea which enables us to introduce the
derivative-dependent terms in the anchoring energy natu-
rally and estimate how small they are.

On a molecular length scale there is an interaction be-
tween the nematic molecules and a surface field penetrat-
ing inwards to some small depths I.z. This physical idea
underlies the introduction of the phenomenological quan-
tity known as the anchoring energy. The anchoring ener-

gy acts solely at the surface and has permitted the suc-
cessful interpretation of experimental results. This idea
that the anchoring energy results from the bulk interac-
tion with the external field produced by the surface was
articulated most explicitly by Sluckin and Poniewierski
[27], by Sen and Sullivan [28], and by Osipov [29], and
will be employed in what follows.

It is known that the surface field directs the nematic
liquid-crystal (NLC) molecules on the surface along a cer-
tain easy direction e. This field can be considered as a
vector, /=1((x)e, in the case of an azimuthally isotropic
surface which is considered here only to simplify the for-
mulas. Its magnitude decreases rapidly towards the

~s 2'normal-to-S direction so that f o f z dz= f o"P z dz,
where z = ~x3

—S ~. The interaction energy density can be
written as

f&= —
—,'Wz(n f) + W„(n g) + (17)

If 8(x„x2) is the angle between v and e, then the
quadratic term has the form (with the accuracy of an n-
independent constant)

f& 2
=

—,
' W2$ (x)sin [0(x)—8], (18)

the elastic constant K» is taken to be zero in F2 in this
section. Under this condition, the form of Eq. (18) en-
sures that f& 2 is bounded from below, and hence F is
also bounded from below. The functional F is minimized
by solutions of Euler-Lagrange equations; these differ
from the Euler-Lagrange equations of the functional F2
alone only in a thin subsurface layer of thickness I.z.

Equation (18) represents the surface —nematic-phase in-
teraction as a standard bulk effect. However, we would
like to treat the energy density given by Eq. (18) tradi-
tionally, i.e., as a purely surface term. Of course, these
two representations, bulk and surface, must be

where 8'2&0. Now the total FE is given by the sum
F=F2+Fs, 2 where

Fs2 —j dV f~2= I dS f dzV g33(x»x2, z)f&2,

(19)
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equivalent, i.e., they must lead to the same families of ex-
trernals for F, which can in principle differ only in the
layer of thickness of order Ls near S. However, here
they must actually coincide in order to give the same

I

value of the free energies. One can pass to the "surface"
representation in the following way. Expanding sin in
(18) in power series of z near S given by z =0, we find the
surface density fs 2(x „x2 ) = f o dz +g 33f& z to be

f„(x„x,) = -,
' W, f "

q'&g33dz sin ( Oo
—8)+ f p Qg33zd z sin[2( Oo

—8 ) ]
O O dz

2

+ —,
' f g Qg33z dz 2 cos [2( Oo

—8) ] +sin[2(Oo —8)] 2
+ .

Z Z
' (20)

where 8„=8(z =0), d Oo/dz = (dO/dz )(z =0). Since

f o f Qg3&z "dz -Ls f o f Qg33dz -Ls +' and L is the
scale of 8 changes, in fact (20) turns out to be the ex-
pansion in the power series of the small parameter Ls /L.
The first term in (20) coincides with the surface
Rapini-Popoular term [20] f„p if the notation

WRp = Wi f o f Qg33dz is introduced; the second
term reproduces the one fDvp introduced by Dubois-
Violette and Parodi [21]. The latter is (L /Ls ) times
smaller than f~p. In the next order of smallness
—f Rp (Ls /L ) —f Dvp (Ls /L), the term cos [2(Oo
—8 ) ](d Oo/dz ) exists, which coincides with Mada term
[22] fM with the accuracy of the term const( d Oo/dz ) al-

lowed by the symmetry, and also the term
sin[2( Oo

—8) ]d Oo/dz exists. The terms of the order of
fRp (Ls /L ) and higher are omitted in (20) but of course
they can be easily calculated. The term W4 (n.g ) in ( 17)
can be written in the similar form, too.

The quantity fs z(x i,x2 ) (20) represents the surface
density of the surface —nernatic-phase interaction and its
contribution Fs 2

= fdSfs 2 is given by a surface rather
than by a bulk integral (19). Thus, the formula (20) gives
the "surface" representation of the surface —nernatic-
phase interaction energy.

We emphasize that passing from the bulk (19) to the
"surface" representation of Eq. (20) is possible only as a
result of the smallness of Ls . If Ls is comparable with L,
then ~x&

—So ~
must be taken for the upper limit in the in-

tegrals entering (20). In that case the function on the
left-hand side of Eq. (20) depends on x „xz, and also on
x 3 the Euler-Lagrange equations of the functionals Fz
and F2 +Fs 2 differ in the bulk region which cannot be
considered as a subsurface region, and hence the "sur-
face" and bulk representations, Eqs. ( 19) and (20), of the
surface —nematic-phase interaction are no longer
equivalent.

Thus, Eq. (20) can be thought of as a valid
simplification of Eq. (18) only if the condition Ls/L &( 1

is satisfied. Of course, normally this is indeed the case.
Then each term of the series (20) has the form
const(L Bn ) ~,

" o(Ls /L ) where const- 1, ~LBn
~

—1 by
the L-scale definition, and each surface derivative in the
anchoring energy is proportional to a srnal 1 factor
(Ls/L) just as each bulk derivative is proportional to
LM /L . Thus, we obtain a hierarchy of contributions of
derivative-dependent terms in the anchoring energy

I

which now can be classified by order of magnitude.
Since each power of 8 introduces a small factor in the

anchoring energy, the minimization problem for the func-
tional F=F2 +Fs 2 can be solved in the form of a power
series of this factor by means of perturbation theory.

In the lowest-order approximation the only term con-
tributing to the anchoring energy is the Rapini-Popoular
term FRp = ffRpdS. In this approximation the extremal

family of the FE, which is equal to F2 +FRP, is the solu-
tion of the Euler-Lagrange equations for the functional
F2 ~ The next terms of the series (20) give small correc-
tions of the order of (Ls /L ), (Ls /L ), and so on, and
thus play no practical role as compared with the first ap-
proximation� .

Let us look at the formula (20) from another point of
view. Since f& z in Eq. ( 1 8) is bounded from below,

fs,= fdz+g33f & 2 is bounded and, in this respect, the

infinite sum (20) possesses suitable behavior. Let us try to
truncate this series and to restrict it to finite powers k of
B. If one formally uses such a sum fs"2' in order to deter-
rnine the director distribution, the same difficulties ap-
pear as appear in the problem of the K» term. Indeed,
for any k the surface part Fs ' of the FE contains the
normal-to-S derivative of kth order that leads to its un-

boundedness when the FE if formally minimized. If we
did not know about the equivalence between the infinite
sum (20) and the expression ( 19), again, as in the case of
the K

& 3 term, we would restrict the sum by k = 1 and ob-
tain the strong subsurface deformations ( ~

d Oo/dz
~

~ ~ )

and so on. This shows that it is impossible to restrict the
sum R k to any finite number of terms but that it is never-

theless possible that the infinite sum R possesses the
necessary behavior. What is important here is that in or-
der to find the distribution with accuracy (Ls /L ) it is
not necessary to know al 1 the higher terms of the series
(20). To demonstrate this further, let us consider an ex-
ample which is extremely close to the K

& 3 problem and
restrict the sum to k = 1:

fs z
=

2 WRpsin ( Oo 8)+ z WDvpOosin[2( Oo
—8) ] . (21)

Formally, (2 1 ) results in
~ Og ~~ on S, however, we

know that the sum of all the higher-order terms of the
series (20) bounds the FE from below so that O' -L ' in
the ground state Then, . since O' WDvp —(Ls /L )

WRp Ls /L the FE, corresponding to (2 1), contains



1260 V. M. PERGAMENSHCHIK 48

in the first approximation just the first term from (21),
and its minimum can be found by solving the Euler-
Lagrange equations of the functional Fz. The role of all
higher terms is reduced to the restriction of the functions,
upon which minF'" is sought, to the family of solutions
of the Euler-Lagrange equations for the functional Fz.
The terms of the anchoring energy containing the deriva-
tives give contributions which are Ls/L, (Ls/L ), and so
on, times smaller than the Rapini-Popoular term and can
be taken into account as perturbations.

C, p

VI. STRUCTURE OF THE REGULARIZATION
TERM R „AND THE MINIMIZATION

PROCEDURE

We know from the previous sections that the regulari-
zation term Rk is of infinite sum form, i.e., k = ao. We
have also seen, both that this sum R „can ensure that the
theory satisfies the basic requirements (i) and (ii) and ig-
noring the specific form of R cannot be regarded as a
serious obstacle. So we pass to the solution of the prob-
lem formulated in point (a) from Sec. III, which is to
determine the necessary behavior of R

We have shown in Sec. II and in the Appendix that the
nematic FE containing the K &3 term can be written in the
form

F2=Fb+K)3 J dxtdx2o. g, (22)
S

where Fb is the part of Fz bounded from below,
g(x) =vB(v n)/t)x is the derivative of the director
normal-to-S component along the normal v to S (in the
notation of Sec. II g=t)n3/r)x3), cr(x) is a nonsingular
function determined on S [see formula (A14)]. For F2 to
be bounded from below, the surface density ~ of the func-
tion R also must depend on g. Evidently, it must be
such that the function

p(g) =&»tr(x)g(x)+~(g(x)) (23)

must be bounded from below at each point xES and,
hence, must have a minimum for some value g (x) of
g(x). According to (i), all the deformations including g
are weak, i.e., Ig I «1; according to (ii), the high-order
terms in the FE are very small, i.e., IC»o g )) Ir(g) I

for
I

at each point xES. The only dependence ~(g),
that satisfies the requirements, and the relevant function
p(g) are shown qualitatively in Fig. 2 under the assump-
tion that X»cr & 0 (for IC»cr )0, one simply has to plot p
and r for negative g). It is clear that for I/I & Ig I, where

I-Lbr/L «1, IrI « Ip I, so that the inequality
(or IF2 I

» IR 1»s satisfied. F«
I, r increases steeply, as a result Ig I

is bounded
by the value

I g I. It is clear that the regime of values

I/I ) Ig I
is never reached in the system, since it does not

correspond to a minimum of the FE. Moreover, the
value Ig~ I

itself can be reached only in the case when all
elastic constants other than E&3 vanish. Since this is im-
possible, the normal derivatives g' on S in a real nematic
liquid crystal are always smaller than g, and the value

itself does not enter any observable quantities. Thus,

FIG. 2. Qualitative dependences of the surface density r of
the regularization term R and the total surface density p of
the nematic FE on the value g of a normal-to-S derivative. If

I, IrI « IpI =-IIt„og, and the total contribution of the
higher-order elasticity R „ is negligible, IR „I

« IF I

—=
I F2 I.

The distortion range I/I) Ig I
for which IrI —IpI —IIt, 3ogI

corresponds to a high value of the free energy and thus is never
realized in the system.

min«(F2+R„) min~&~&~& ~F2 . (24)

For
I g I

&
I g I

the functional F2 (1) is minimum on
some family of functions n, where c corresponds to a pa-
rametrization of that set of functions. Since
min( A + B))min A +minB, one has to seek such n, that
minimizes the bulk Fz ~ and the surface Fz z contribu-
tions to the functional Fz=Fz ~+Fz z separately. The
bulk part Fz ~ is minimum on the family of solutions
f(x,c ) of the Euler-Lagrange equation corresponding to
Fz z. If this family is such that the normal derivative
g'(x, c)=t)&Pt(x, c) can take any value fP( —Ig' I, Ig' I)
at each point x of the surface, then the condition
I(I & Ig'

I
in (24) does not impose additional restrictions

on the family n, . Equivalently, suppose r)&fan(x, c) as a

function of c cannot run over the whole interval
I). Now min(Fz v+F2&) may occur on

another family, permitting a decrease of F2s (i.e., the
I~ ~3 term), since g can now be taken in the whole interval

the role of the quantity g is that the system senses the
energetic unfavorableness of the state with I/I ) Ig I, and
strong deformations do not occur.

The form of ~(g) given in Fig. 2 can be easily interpret-
ed. The standard expressions for the elastic constants are
derived by means of the expansion in the power series of
infinitesimal deviation 5n from the state n =const [1,26].
Finite 6n renormalizes these expressions. Then a steep
increase of r(g) for Ig —Ig I

can mean a corresponding
decrease in the absolute value of the renormalized con-
stant K,3 when I(I becomes sufficiently large.

Now let us pass to point (c) of Sec. III and find the pro-
cedure minimizing the functional F=Fz+R „. F is
bounded from below and hence has a minimum. Given
that R

I
«

I F2 I
for g & g' I, the minimization of

F2+R„ for arbitrary g with the accuracy of order
(Lbr/L ), which is the lowest order in the series R „,is
equivalent to minimizing the functional Fz under the re-
striction

I g & g
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( —lg l, lg l ), rather than in a certain part of it.
Thus, we have proven the following assertion:

min~& &~& ~Fz occurs on the solutions n, =f(x,c) of the

Euler-Lagrange equation of F2 if the solution c of the
equation B~g~(x, c)=g exists for any xCS and any

Of course, here c consists of numerical parameters only
in the simplest cases. Generally speaking, it is made up
of functions c(x) corresponding to the arbitrariness of the
solutions of partial differential equations. The case when
the equation Bjf~(x,c)=g has no solution seems to be
rather exotic so we shall not consider it.

In order to obtain n, corresponding to min(F2+R „),
one has first to find an arbitrary solution of the Euler-
Lagrange equations of F2, then to introduce it in the
functional F2, F2 [n, [ =P(c), and finally to minimize the
function P (c) (or functional) obtained with respect to c.

Let us consider the one-dimensional case for the sim-
plest example. Then n = (sin8, cos8), 8=8(z), the sam-
ple has two surfaces S, (z= —d/2) and S2 (z =d/2).
The solution of the Euler-Lagrange equations is
8=8(z,c„c3), its derivative d8/dz =8'(z, c„c2); two
arbitrary constants c

&
and c2 can be expressed in

terms of the angles 0& and 02 between the z axis and n
on S

&
and S2, respectively. Introducing 0 and 0'

in the FE F= ff~dV+g, =,fdS, (f»+f„), where

f,3=K»v, 8'sin(28), v, , = —1, v, 2=1,f„=f~(8), and
minimizing the obtained function of 0& and 02 with
respect to these angles, we find the equations which are
usually referred to as the boundary conditions:

+K,38'cos(28, )+—,'K»sin(28, ) 8'=0,

z= —d/2,
(25)

, + +K»8'cos(282)+ —,'K&3sin(282) 8'=0,
d82

z=d/2 .

Equations (25) permit the evaluation of 8, and 82 (and
hence, c& and cz) and the solution of the problem of the
director distribution in the one-dimensional case. These
equations were obtained long ago [30]. However, the as-
sumption that the director satisfies the Euler-Lagrange
equations of F2 (1) had a heuristic character, and, as we
have already said, has been explicitly criticized [14] (see
also Ref. [31]).

Thus, the phenomenological approach based on the
main assumptions (i) and (ii) leads to the following con-
clusion. The nematic free energy can be expanded in
differential operators; the quadratic term is just F2. The
director minimizing the total nematic free energy satisfies
the Euler-Lagrange equations of this functional Fz. This
permits a solution of the K&3 problem experimentally, by
measuring the elastic constant K». For such a measure-
ment to be possible, one has to consider theoretically the
effects in which this constant plays an important quanti-

tative role. In particular, the most dramatic effects
would be those whose very existence is impossible for
K,3 =0. One such effect is presented in Ref. [23].

VII. CONCLUSION

We have shown that the problem of the EC» term and
derivative-dependent terms in the anchoring energy is as-
sociated with derivatives normal to the nematic surface.
The %24 term never contains such derivatives and, there-
fore, does not give rise to such problems.

In a consistent phenomenological approach, the
specific structure of the ground state and the assumption
that its deformations are weak (lan l ((1) are essential
ingredients in the construction of the FE functional.
However, formal minimization of the functional F2 (1)
for K,3%0 results in inadmissible deformations lan l

—1.
In this case we formulated the problem as follows: is it
possible both to introduce the E,3 term in the nematic
FE and to save the basic idea of the nematic phase? We
have shown that there exists a single possibility: the
infinite sum R of all the higher-order terms in the FE
expansion in the power series of the differentiation opera-
tor 8 bounds the deformation on the necessary level and,
at same time, no information concerning their specific
form enters the observable quantities within the accuracy
accepted in the standard macroscopic theory of the liquid
crystals. The problem of the derivatives in the anchoring
energy gives us one possible exact and detailed example
of such series. Such behavior of R „ is equiualent to the
possibility of introducing the EC&3 term in the nematic
FE. In this case the director distribution is determined
by the Euler-Lagrange equations of the functional F2 (1),
quadratic in B. If R does not possess the features need-
ed, then either X,3 =0 or the crystal under consideration
is not nematic. Inasmuch as the results of our theory can
be compared with the experimental data the E &3 problem
reduces to the experimental measurement of K&3. If the
experiment gives K,2&0, one can state that R „behaves
adequately, ' if K&3=0, the question of R does not arise
at all. Thus, in spite of our approach being in spirit
much closer to the approach of Barbero and Oldano, the
formal conclusion coincides with those proposed by
Hinov [9] a priori: minimum of the nematic FE is deter-
mined by the Euler-Lagrange equations of the Fz (1) (see,
however, Ref. [31]).

To make the picture complete, the approach should be
considered in which the macroscopic theory employing
only the functional F2 is used to derive some restrictions
or relations concerning the values of the elastic constants.
For example, the requirement of boundedness of F2 from
below results in the known restriction [25]
IK22+K24I —2K» for Kz, and K,3=0 [13] for K»; the
requirement F2 ~0 plus the assumption a priori that the
Euler-Lagrange equations determine n result, according
to the author of Ref. [12], in the equality
lK33 —K» l

=2K,3. On the other hand, it is clear that
any elastic constant value can be obtained only from the
microscopic theory. This contradiction can be eliminated
if one requires the sum F2+R„rather than F2 to be
bounded. As we saw, it is then possible to introduce a
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finite %13 in the nematic liquid-crystal theory. Similarly,
the restriction for %24 quoted above is not necessary: if it
does not take place, then an infinite sum of all the contri-
butions to the FE of the orders higher than two is able to
restrict the director derivatives along the directions
tangential to the surface, which enter the K24 term (see
the Appendix). Thus, in this case, too, the realistic con-
stant can be found only either from experiments or from
the microscopic theory.

As for the requirement F2 ~0 [12], it is equivalent to
the assumption that there are no (even weak) spontaneous
deformations in the force-free nematic phase. We believe
that the question of the existence of such a deformation,
which is equivalent to knowing the specific values of all
the elastic constants, must be solved experimentally.
Thus, there is no basis for any relations between elastic
constants other than the microscopic theory.
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APPENDIX

(Al)

1
v (n X V X n) —V3E3jk n Ek] .V'gkk d]( V'g n )

(A2)
Let us separate the normal derivatives B3n in (A2). To

do this it is convenient to introduce the subscripts s, s
taking the values 1,2, while others take the values 1,2,3.
Then we have

Here we shall show that for an arbitrary nematic sur-
face S (i) the surface density f24 (4) of the K24 term does
not contain the director derivatives along the directions
normal to this surface; (ii) the surface density f» (3) of
the %13 term contains them; and it is just these which
lead to the unboundedness of the FE F2 (1) from below.
Additionally we shall obtain the direct variational pro-
cedure for any bounded functional containing derivative-
dependent terms in its surface part. Inasmuch as we deal
with an arbitrary curved surface, it is useful to write f24
in curvilinear coordinates using the notation of Sec. II.
The first term in f24 is, in fact, already quoted in (8):

1/2

(v n)(V n)= —8; n;v'g ' '
g;;

Using (7), one can write the second term in f24 as

v (nXVXn)= 1
E3 n E ' 3V g ' 'B3(V g n )+ —E3 n E 3 Qg '9 (V 3g3 3n)

g22g 11
1/2

( n ] ])3n ] + n 2 '])3nl 2 ) +J g 22g11
1/2

n383n3+ Jz . (A3)

When deriving the last equality, 03n =0 is used; J& con-
tains only director derivatives along the x, and x2 direc-
tions:

+g Jg n]V g22~ Vg +n2V g]]~3Vg22

5F24= I dS 5n„+ 5(B,n„)
af24 af

(]),nk )

+~snk&nk (A6)

(n2V gll 2+ 1V g22 ])(V g33 3) (A4)

Summing up (Al) and (A3), we find that the integrand of
the surface integral in (1) containing f24 (4) does not con-
tain the derivatives normal to the surface 5, i.e.,

&gf24 =v g J& n+ 8 V g]]g22
%22+%24

1/2
5F24= I dS.

Bnk V g]]g22

df 24
])s V g]]g22

&(& „

where Xz=kz(x„x2) is the Lagrange (surface) factor,

dS=+g»g22dx]dx2. Taking into account the equality
5(]3,nk)=t3, 5nk and performing integration by parts in
(A6), we find that

+n3B, n,
gss

(A5)

But at the same time, the normal derivative 83n3 enters
the K,3 term as is seen from (Al). We shall show now
that if the integrand contains only derivatives along the
tangential directions, then integration over the surface re-
sults in the variation 5F24 of the integral F24= fdS f24
to be independent of the director derivative variations
68;nk. Let us find the variation of the functional F24 un-
der the condition n = 1,

+g~nk Qnk

5f24—= JdS 5nk.
5nk

(A7)

This is valid if the surface S is smooth. If, however, it
consists of smooth parts S„with the boundary contours
I„,then
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5f245F24=+ f 5nkdS„
5nk

r)fF

Bnk

dfF
,—t) g +A,nk =0, xE V,

+g (t) dl„cosa, + 5nk, (A8)
~f24 dfEd

where dl„ is the integral over l„and a& is the angle be-

tween external normal to l„and the coordinate line x, .
By analogy to the anchoring surface energy ff„(n)dS,
we introduced here the anchoring edge energy
FE&=g„rJJdl„fEd(n). In what follows we assume S to
be a smooth surface and equality (A7) to be satisfied.

Thus, the variation F2~ is a functional only on 5nk
similarly to 5FF and 5F~. Therefore, the total variation
under the condition n = 1 is given by

85F= f dV.
Bnk

dfF
~—t) g +Ak nk 5ng

+ f dS. + + +Asnk , 5nk,
~fF @'~ 5f24

3nk k 5nk

(A9)

where A, k (x) is the volume Lagrange factor. Equating to
zero each of the expressions within the curly brackets, we
obtain the Euler-Lagrange equations (A10) and the
boundary conditions (Al 1) to be

dfF df~ df24

~(~3nk)
+

~nk
+

ank

1 —df24

(A 10)

+A,&nk =0, x3 =SO, (A 1 1)

where gz =g»g22. Thus, the minimum of the total func-
tional F containing the E24 term occurs on the family of
functions which satisfy the Euler-Lagrange equations
(A10). The K@4 term does not contribute in these equa-
tions similarly to any term of divergence form, but it
changes the boundary conditions (Al 1). It is clear that,
in contrast to the tangent derivatives B,n, the normal
ones, 83n, cannot be eliminated by means of the integra-
tion over dx, dx2, and the variation of the functional F,3

depends on their variation 583m. These can be infinite
and can lead to unboundedness of the F,3 variation from
below. This possibility is confirmed in Sec. II.

The geometrical structure of the surfacelike terms sug-
gests that it is convenient to rearrange their contribution
in a way which geometrically is even more natural than
separation into the E,3 and %24 terms; namely, let us
separate the normal and tangential derivatives in the to-
tal contribution f»+f34. From (Al) —(A5) one can easi-
ly obtain such a representation to be

f13+f24 fs, ~~+fs, i (A12)

13 22 24 2fs ~~~=
—(K2z+K24)Js+ — n B Q3gs+n ~, (n, Qg~g„) (A13)

n 383n 3f, t=K, 3
V g33

(A14)

Thus, the surface density fs ~~,
containing the tangential-

to-S director derivatives, will appear in formulas
(A6) —(A9) and (All) instead of f2„ if both K,3 and K&4
contributions are taken into account. The remaining
part, fs L, which contains the normal-to-S director
derivative, and which is, in fact, the most essential part of
the K,3 term, is incorporated into the variational pro-
cedure for the one-dimensional case in Sec. VI. Note that

t

the minimizing procedure proposed in Sec. VI [solving
the Euler-Lagrange equations and subsequently minimiz-
ing the functional P(c) with respect to arbitrariness c] is
always applicable. However, a generalization of the ex-
plicit boundary conditions (25) to the three-dimensional
case requires more detailed information about the arbi-
trariness c(x).

Permanent address.
[1]J. Nehring and A. Saupe, J. Chem. Phys. 54, 337 (1971).
[2] V. M. Pergamenshchik, Phys. Rev. E 47, 1881 (1993).
[3] V. M. Pergamenshchik, Ukr. Fiz. Zh. (Russ. Ed.) 35, 1349

(1990).
[4] G. Barbero, A. Sparavigna, and A. Strigazzi, Nuovo

Cimento D 12, 1259 (1990).
[5] O. D. Lavrentovich and V. M. Pergamenshchik, Mal.

Cryst. Liq. Cryst. 179, 125 (1990).
[6] D. W. Allender, G. P. Crawford, and J. W. Doane, Phys.

Rev. Lett. 67, 1442 (1991).

[7] O. D. Lavrentovich, Phys. Scr. T39, 349 (1991).
[8] C. Oldano and G. Barbero, J. Phys. (Paris) Lett. 46, 451

(1985); G. Barbero and C. Oldano, Nuovo Cimento D 6,
479 (1985).

[9] H. P. Hinov, Mol. Cryst. Liq. Cryst. 148, 197 (1987).
[10]G. Barbero and C. Oldano, Mol. Cryst. Liq. Cryst. 170, 99

(1989); 168, 1 (1989).
[11]G. Barbero, N. V. Madhusudana, and C. Oldano, J. Phys.

(Paris) 50, 2263 (1989).
[12] H. P. Hinov, Mol. Cryst. Liq. Cryst. 178, 53 (1990).
[13]V. M. Pergemenshchik, Ukr. Fiz. Zh. 35, 1218 (1990).



1264 V. M. PERGAMENSHCHIK

[14] G. Barbero and N. V. Madhusudana, Liq. Cryst. 7, 299
(1990).

[15]G. Barbero, Mol. Cryst. Liq. Cryst. 195, 199 (1991).
[16]A. Sparavigna, L. Komitov, and A. Strigazzi, Phys. Scr.

43, 210 (1991).
[17]G. Barbero, Z. Gabbasova, and Yu. A. Kosevich, J. Phys.

(France) II 1, 1505 (1991).
[18]P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluc-

kin, Mol. Phys. (to be published).
[19]N. V. Madhusudana and R. Pratibha, Mol. Cryst. Liq.

Cryst. 179, 207 (1990).
[20] A. Rapini and M. Papoular, J. Phys. (Paris) Colloq. 30,

C4-54 (1969)~

[21]E. Dubois-Violette and O. Parodi, J. Phys. (Paris) Colloq.
30, C4-57 (1969).

[22] H. Mada, Mol. Cryst. Liq. Cryst. 51, 43 (1979).
[23] V. M. Pergamenshchik, P. I. C. Teixeira, and T. J. Sluc-

kin, following paper, Phys. Rev. E 48, 1265 (1993).
[24] L. D. Landau and E. M. Lifshitz, The Classical Theory of

Fields, 4th ed. (Pergamon, London, 1976).
[25] J. L. Eriksen, Phys. Fluids 99, 1205 (1966).
[26] P. G. de Gennes, The Physics of Liquid Crystals (Claren-

don, Oxford, 1974).
[27] T. J. Sluckin and A. Poniewierski, in Fluid Interfacial Phe

nomena, edited by C. A. Croxton (Wiley, New York,
1986).

[28] A. K. Sen and D. E. Sullivan, Phys. Rev. A 35, 1391
(1987).

[29] M. A. Osipov, Poverkhnost' 9, 39 (1988).
[30] G. Barbero and A. Strigazzi, J. Phys. (Paris) Lett. 45, 857

(1984).
[31]Though both Eqs. (25) and Hinov's approach are based

upon the solution of the ELE, the boundary condition ob-
tained in Ref. [9] crucially differs from (25). In accor-
dance with the very sense of minimization with respect to
the parameters 0& and 02, the differentiation in the last
terms of (25) is performed with respect to these pa-
rameters. This implies that 0' is a known function of
0& and 0&, i.e., 0'=0'(z=const, 0„02), so that d0'/d0&
=d 0 ( 0& 02) /d 0&. Instead of d 0'(z = —d /2) /d 0& Hinov's
boundary condition [9] contains [(d 9/dz )(d8/dz) ']
(z = —d /2). The last expression can be written as dO'/dO
only if 0 and 0' are regarded as functions of z rather than
of 0& and 02. To illustrate the difference, let us assume 0
to be the solution of the ELE in the one-constant approxi-
mation: 8(z) = [(82—9, )/2d ]z +(9,+gz)/2. Then
0 (0] 02) = (02 0&)/2d and dO (0~ Op)/dO& = 1/2d
whereas 0"0' ' =0.


