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Dynamic relaxation of drifting polymers: A phenomenological approach
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We study the nonequilibrium dynamic Buctuations of a polymer subject to an external force,
moving in a dilute solution at a uniform average velocity S.tarting from general symmetry arguments,
a set of nonlinear equations is proposed to describe the time evolution of the polymer. The dynamic
scaling of 8uctuations is studied analytically (by renormalization group) and numerically. In most
physically relevant cases, the Buctuations are superdiffusive, governed by a swelling exponent v =—
and a dynamic exponent z = 3. The polymer exhibits "kinetic' form birefringence as it is stretched
by the Bow. The crossover to anisotropy is controlled by the scaling variable y = UN l /U', where
U is the average velocity, N is the number of monomers, and U* is a characteristic microscopic
velocity that is roughly 10 —20 m/s for polystyrene in benzene. Numerical simulations show that
strong crossover behavior may produce larger swelling exponents along the force field at intermediate
length scales that may potentially give rise to a stretching transition.

PACS number(s): 61.41.+e, 05.40.+j, 64.60.Ht, 78.20.Fm

I. INTRODUCTION AND SUMMARY

The dynamics of polymers in Quids is of much tech-
nological interest and has been extensively studied [1,2].
The combination of polymer flexibility, interactions, and
hydrodynamics make a first-principles approach to the
problem quite diKcult. There are, however, a number of
phenomenological studies that describe various aspects
of this problem [3]. One of the simplest is the Rouse
model [4]: The configuration of the polymer at time t is
described by a vector R(x, t), where x p [0, N] is a con-
tinuous variable replacing the discrete monomer index.
(See Fig. 1.) Ignoring inertial effects, the relaxation of
the polymer in a viscous medium is approximated by

cl, R(x, t) = pF(R(x, t)) = DB R+ rl(x, t), (1.1)

where p is the mobility. The force F has a contribution
from interactions with near neighbors that are treated
as springs. (In a coarse-grained formulation the origin
of this term is entropic. ) Steric and other interactions
are ignored. The effect of the medium is represented by
the random forces g with zero mean. The Rouse model
is a linear Langevin equation that is easily solved. It
predicts that the mean square radius of gyration B
(~R —(R)

~ ) is proportional to the polymer size N and
the largest relaxation times scale as the fourth power
of the wave number, i.e., in scattering experiments, the
half width at half maximum of the scattering amplitude
scales as the fourth power of the scattering wave vector q.
These results can be summarized as Rz N and I'z
q', where v and z are called the stoelling and dynamic
exponents, respectively. Thus, for the Rouse model, v =
1/2 and z = 4.

The Rouse model ignores hydrodynamic interactions
mediated by the Quid. These effects were originally con-
sidered by Kirkwood and Risemann [5], and later on by
Zimm [6]. The basic idea is that the motion of each

monomer modifies the Qow field at large distances. Con-
sequently each monomer experiences an additional veloc-
ity 1,F(x')rz, + (F(x') r )r

Svrrl, /r

R (1.2)

FIG. 1. Configurations of the polymer at time t are de-
scribed by R(x, t), where x labels the monomer index.

where r i = R(x) —R(x'), and the final approximation
is obtained by replacing the actual distance between two
monomers by their average value. The modified equation
is still linear in R and easily solved. The main result is
the speeding up of the relaxation dynamics as the expo-
nent z changes from 4 to 3. Most experiments on polymer
dynamics indeed measure exponents close to 3 [7]. Rouse
dynamics is still important in other circumstances, such
as the diffusion of a polymer in a solid matrix, stress and
viscoelasticity in concentrated polymer solutions, and is
also applicable to relaxation times in Monte Carlo simu-
lations [1].
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There are also many studies of the morphology of poly-
mers in shear flows. The approach is usually to follow the
evolution of a probability distribution for the shape of the
polymer under the combined action of shear and elastic
forces [8]. Under some circumstances the shear force may
cause a coil-to-rod transition [9]. In this paper we con-
sider the dynamics of a polymer drifting through the fluid
at a constant velocity U, due to a uniform external force
E, and in the absence of any external velocity gradients.
Specific examples include sedimentation of polymers, in
which case E is the acceleration due to gravity g and gel
electrophoresis [10] where E is the electric field.

At first sight it may appear that there should be no
difference in the relaxation dynamics of a polymer at
rest and one moving at a uniform velocity. This con-
clusion is in fact not correct due to the interactions with
the surrounding fluid. For example, the drift velocity
of a rod pulled through a viscous fluid depends on its
orientation relative to the force [3]. (In principle the
force acting on a linear object can be calculated from
the equations of "slender body theory" [11].) There-
fore, the motion of a monomer, more accurately mod-
eled as a cylindrical rod along the chain rather than
a spherical bead, in general depends on its orientation
relative to the driving force. Thus, as E (and conse-
quently U) is increased, there should be a crossover to
a regime where the anisotropy is no longer negligible.
The scale of this crossover can be estimated from dimen-
sional analysis alone: For physical quantities that involve
the whole polymer, like form birefringence, the natu-
ral length scale is the radius of gyration, Bg = boN
The parameter D appearing in Eq. (1.1) has dimen-
sions of (length) /(time). We can thus construct a di-
mensionless parameter y = UBg/D = UN /U*, where
U* = D/bp = hp/7 p is a characteristic velocity. Here
bo and wo are microscopic length and time scales for the
monomers. For both the Rouse and Zimm models, this
quantity is given roughly by U* = kT/(7rrI, bp) For a di-.
lute solution of polystyrene in benzene (after Adam and
Delsanti [7]), U* = 10 m/s. For a polymer with molecular
weight M~ = 10s, y 1 when U 4 cm/s. Another cal-
culation, using the relaxation time data from Farrell et al.
[7] yields U* 20 m/s, about the same order of magni-
tude. (Not surprisingly, y is proportional to the Reynolds
number, Re = UBg/g„corresponding to the polymer
size, i.e., the same variable also controls the crossover
to hydrodynamic instabilities [12].) Yet another scaling
argument considers energetics: The energy scale associ-
ated with monomer orientation is roughly Ebo, where bo
is the monomer length. This should be compared to the
energy of thermal fluctuations, which scales as kT. For a
polymer with N monomers, the thermal Quctuations add
up as independent random variables unlike orientational
energies. Thus comparing these two total-energy scales,
we once again obtain the scaling variable

Nab, UN'/'2 UN'~2

~i/2kT kT/6~~ b2 U*

where the Rouse mobility relation E = 6~g, boU was used
in the second identity.

We are primarily interested in understanding the static
and dynamical scaling properties of the nonlinear and
anisotropic regime for U & U . A first-principles ap-
proach to the problem is quite diKcult due to the com-
plexity of the system and the nonequilibrium nature of
the problem. We shall instead take a phenomenological
route and construct the equations of motion based on
symmetry considerations. Such an approach has been
successful in describing other nonequilibrium problems
[13].

As in the case of the Rouse model, we shall neglect
inertial effects and write the velocity of a point on the
polymer (Fig. 1) as

OiR(x, t) = pF(0 R(x, t), 0 R(x, t), . . . ;e(x, t)). (1.4)

Bir~~ = D~~B r~~ + —(O~r~~) + ) (B~r~;) + ry~~(x, t),2 II 2 ~ && 2

~trodi

DJ ~~rJ i + ~J ~xr~~~zrli

+'Qadi(xi(

t) ~

(1.5a)
(1.5b)

In the above equation, and henceforth, we shall use the
symbols

~~
and (J i) to indicate the components parallel

(longitudinal) or perpendicular (transverse) to the force
field. For the general case of a polymer embedded in
a d-dimensional space, there are n = d —1 transverse
coordinates (J iJ. The noise q has zero mean, but un-
like thermal noise need not be isotropic, and its second
cumulants [14] satisfy

(9~~ (x, t) 9~~
(x', t') ) =

2T~~ 8(x —x') 8(t —t'), (1.6a)

(g~, (x, t)i1~~(x', t')) = 2Tih, ,~ b(x —x')b(t —t') . . (1.6b)

The equations of motion (1.5) and (1.6) are already
"coarse grained" in both space and time, i.e. , faster
modes associated with the motion of the fluid around
the polymer have been integrated out. The resulting
noise correlations may have long-range correlations; this
possibility will be discussed later. The nonlinear coef-
ficients (A~~, A&&, A~) must vanish in equilibrium due to
invariance of the equations under r m —r. As shown
in Appendix A, the external field breaks this symme-
try, and hence these coeKcients are proportional to E
for small fields. One source of such nonlinearity is the

We shall restrict ourselves to forces F that are local,
but that can be expanded in powers of gradients of R..
(Due to the translational symmetry R ~ R+ c, R can-
not appear in the equations of motion. ) The effects of
steric interactions, and nonlocal hydrodynamic forces as
in Eq. (1.2), will be discussed later. Nonequilibrium ef-
fects enter through the external force e = E + be, with
a nonzero average value of E, and fluctuations he(x, t)
due to thermal stochasticity and other sources of disor-
der in the solvent. We assume that any barriers to motion
in the medium are isotropic, and suKciently weak that
the polymer reaches a steady state where its "center of
mass, " Rp(t), is depinned and moves with a uniform ve-
locity. The leading terms in the expansion of Eq. (1.4)
yield (see Appendix A) the evolution of relative monomer
positions, r(x, t) = R(x, t) —Rp(t), as
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FIG. 2. A projection of the RG flows in Eqs. (3.7) for n = 1.
The quadrants mentioned in the text are shown in roman
numerals. The conditions necessary for Galilean invariance,
Cole-Hopf transformation, and Buctuation-dissipation, are in-
dicated by dotted, bold, and starred lines, respectively. The
projected RG Bows are constrained by these lines.

hydrodynamic interactions of the polymer with the sol-
vent. They can be estimated by starting from the Rouse
model, but regarding each monomer as a slender rod [11],
oriented along 8 r, rather than a spherical bead. The
mobility of each rod is then a function of its orientation
[1], and a brief calculation of the resulting nonlinear ef-
fects is given in Appendix B. The results show that to
lowest order in the applied Beld, all three nonlinear coef-
ficients are positive. However, symmetry considerations
alone do not restrict their signs. Without loss of general-
ity we shall assume that A~~ is positive and finite (its sign
can be changed by r~~

—+ —r~~), and focus on the behav-
ior of the polymer as a function of the ratios A~/A~~ and
Ax /A~~, as in Fig. 2. (The vertical axis is actually chosen

Ax TJ D~~/%~~TIED~ for the convenience of demonstrat-
ing renormalization-group trajectories. )

In the absence of transverse fIuctuations, i.e. , n = 0,
Eqs. (1.5) reduce to the Kardar, Parisi, and Zhang (KPZ)
equation [15] that describes a growing surface in two di-
mensions. Thus the transverse components can also be
interpreted as scalar Belds that couple locally to the pro-
file of the growing interface [16]. For example, the special
case of A~ ——0 corresponds to n dift'usive scalar fields cou-
pled nonlinearly to an order parameter r~~. The results
for the special case n = 1 were presented in an earlier
work [17], in the context of the motion of a (directed)
vortex line. Here, we shall investigate the more general
problem with the emphasis on n = 2 describing polymers
in three-dimensional space.

The noise-averaged correlation functions of Eqs. (1.5)
satisfy the dynamic scaling form

(1.7)

where f are scaling functions, v and z = ( /v
are the smelling and dynamic exponents, respectively.
(The exponent ( is introduced for convenience in the
renormalization-group (RG) procedure. The index n
refers to either the longitudinal or any of the n trans-
verse components. ) In the absence of nonlinearities, the
independent diffusion equations can be solved exactly to
give v~~

= vz; = 1/2 and z~~
= z~; = 4. A RG treatment,

perturbative in the nonlinearities, indicates that all the
nonlinear terms in Eqs. (1.5) are relevant and may mod-
ify tlie exponents in Eq. (1.7). Recent studies of related
stochastic equations [18,19] indicate that interesting dy-
namic phase diagrams may emerge from the competition
between nonlinearities. Surprisingly, in most cases the
nonlinearities reduce the exponent z to 3, the value ob-
tained from the Zimm model in Eq. (1.2). (This is a coin-
cidence, but indicates that the nonlinearities can mimic
some of the effects of hydrodynamic interactions. ) Fur-
thermore, the model parameters in Eqs. (1.5) and (1.6)
become anisotropic in general under RG, which implies
the existence of a kinetically induced form birefringence
even in the absence of an external velocity gradient. This
change in scaling from Rouse dynamics is controlled by
the dimensionless parameters AzT/D, not surprisingly
scaling as (UE ~ /U*), where I. is the coarse-grained
length scale. Thus, all the effects discussed in subsequent
sections become important when y & 1.

In order to justify the applicability of Eqs. (1.5) to
real polymers, we have to address the importance of
terms left out of the local description. Since the Zimm
model is the correct starting point for polymers at rest,
paramount among these is the long-range hydrodynamic
interactions appearing in Eq. (1.2). However, while the
hydrodynamic interactions are strongly relevant at the
Rouse fixed point, they are only marginal at the non-
linear fixed point of Eqs. (1.5). (This is because z is
already 3 at this fixed point. ) In fact even self-avoiding
interactions, usually left out of the Zimm treatment, are
also marginal, indicating the robustness of this behav-
ior. The remaining source of difBculty is a nonlinear and
nonlocal term described in Sec. V. The magnitude of
this term is likely to be small, but if it becomes relevant,
it could signal yet another scaling regime, possibly one
in which the polymer completely unravels and becomes
stretched.

The rest of the paper is organized as follows. In Sec.
II we address a number of nonperturbative properties of
Eqs. (1.5), that will be helpful in interpreting the RG re-
cursion relations (3.7). One such property is a Galilean
invariance (GI) that, for the case A~~

= A~, implies an ex-
act exponent identity ~~~ + v~~z~~

——2. This identity hold~
as long as the noise has only short-time correlations. The
Cole Hopf (CH) transfor-mation is an important method
for the exact study of solutions to the one-component
nonlinear diffusion equation [20]. We present a general-
ization that extends the applicability of this method to
arbitrary n. This enables an analytic solution to the de-
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terministic equation and is a useful tool in studying the
full stochastic equation by path integral methods. In par-
ticular for n = 1, the exact exponents z~~

= 3, v~~
= 1/2

are obtained. Finally, we investigate special cases where
a fluctuation-dissipation (FD) theorem can be written for
the system, which leads to the exact exponent values

v~~
= v~ = 1/2. The regions in parameter space, where

these properties are applicable, are indicated in Fig. 2.
In Sec. III, we present a one-loop dynamical RG calcu-

lation, perturbatively in the nonlinear couplings, which
determines the scaling exponents v and ( . At the point
All & 0, A~ ——Ax ——0 the equations for rll and r~; decou-
ple, and (~ ——2 while (~~

= 3/2. However, in general we
expect

g~~
= (~ = ( unless the effective A~ is zero. For

example, at the intersection of the subspaces with GI and
FD (see Sec. II) the exact exponents v~~

= v~ ——1/2 and
= 3/2 are obtained by utilizing the exponent

identities. To construct the RG equations, we use only
one value of ( and check for consistency by requiring that
A~ renormalizes to a finite nonzero value. (The perturba-
tive RG treatment breaks down when (~ g (~~, this limits
the usefulness of this method. ) Under a change of scale,

~e~ & m t-pe& "II m ~ ~]e„ll and r~, ~ e~~e„~
the renormalization of the parameters in Eqs. (1.5), com-
puted to one-loop order by standard methods of dynamic
RG [21,22], is given in Eqs. (3.7). The projections of the
RG flows on the two-parameter subspace of Fig. 2 are also
indicated in this diagram. The resulting exponents are
discussed below in conjunction with those of numerical
integrations.

Section IV describes details of the direct numerical in-
tegrations of Eqs. (1.5), used to determine the exponents
numerically. The scaling behavior in the various regions,
obtained by combining nonperturbative, RG, and numer-
ical results, is as follows.

1 & n ( 4. In this case, the recursion relations give
rise to the flow in parameter space like the one shown
in Fig. 2. When all three nonlinear terms have the same
sign (quadrant I in Fig. 2), the RG flows terminate on
the Axed line where FD conditions apply, and the expo-
nents assume fixed-point values v = 1/2 and ( = 3/2
(z = 3). The equilibrium polymer shape in this case
is an ellipsoid, with an aspect ratio that depends on
D~~~T~/D~T~~ which varies continuously along the fixed
FD line. In three dimensions (n = 2), starting from
the (A) values calculated in Appendix B, we followed
the RG flow to determine the fixed-point anisotropy, ob-
taining (r~~)/(r&) = 6. However, the fixed-point value is

reached only for very long polymers (- 10 persistence
lengths) unless the external force is large, in which case
the assumptions in Appendix 8 are inappropriate. When
A~ ——0, transverse and longitudinal components decou-
ple, resulting in a simple difFusion equation for r~;, with
(~ ——2. Since A&& g 0, the transverse components act
as a strongly correlated (both in space and time) noise
[21] on the longitudinal component. There is no finite
scale-invariant fixed point and the RG is inconclusive.
A naive application of the results in Ref. [21], treating
this coupling as a noise correlated in space only, gives

2/3 and ~II
= /3 (zeal

= 2). N~~~r~~~l ~~~~It~
give an even larger swelling exponent v~~ (see Table I),

TABLE I. Numerical estimates of the scaling exponents,
for various values of model parameters for n = 1. In all
cases, DII ——Di ——1 and Tll ——Ti ——0.01, unless indicated
otherwise. Typical error bars are +0.05 for v, +0.1 for z.
Entries in parentheses are theoretical results. Exact values
are given in fractional form.

All

20
x

20
Ai
20 0.48

(1/2)

zlI

3.0
(3)

0.48
(1/2)

Zi
3.0
(3)

20 20 2.5 0.75 F 7 0.50 3.7

20 5 25 0.51 3.4 0.56 2.9

0.83 unstable 0.44 3.6
(No fixed point for finite v, ()

20 -20 -20 0.50
(1/2)

3.1
(3)

0.50
(1/2)

2.9
(3)

0.52
(1/2)

3.3
(3)

0.57 3.4
(Strong coupling)

20 0 20 0.49
(1/2)

3.1
(3)

0.72
(O.75)

2.2
(2)

20 -20 0.48
(1/2)

3.0 0.65 3.1
(C» &ii)

20 20 0.84 1.4 0.50
(1/2)

4.0
(4)

20 -20 0.55 2.9
(((~ «~)

0.51
(1/2)

4.0
(4)

which seems to increase with system size, suggesting a
change in the scaling properties of the system [23]. A
polymer with swelling exponents vll ) v~ is elongated
and cigar shaped. On the other hand, when A &,

——0,
the longitudinal displacement satisfies the KPZ equa-
tion, i.e. , v~~

= 1/2, (~~
= 3/2 (z~~

= 3). Its coupling
to the transverse components, however, changes the scal-
ing exponents to v~ = 0.75, (~ = 3/2 (z~ = 2). With
swelling exponents v~ ) vll, the polymer assumes a pan-
cake shape. This increased value of v~ is verified by the
numerical results as well, as seen in Table I. In the light of
these results, difFerent scaling behaviors are anticipated
when the nonlinearities have different relative signs. The
recursion relations (3.7) indicate that the flows do not
terminate at a Gnite fixed point in quadrants II and IV
of Fig. 2. It is possible that there is no steady state in
this region, and the numerical integration procedure in-
deed suffers instabilities caused by discretization. The
exponents quoted in this regime are obtained from ex-
amining the correlation functions over short times before
the instabilities take over. As such they are not reli-
able, at most reflecting the qualitative changes in these
regions of parameter space. For the case A~ ) 0 and
A&& ( 0 (quadrant IV), the RG flows converge to a sub-
space where the CH transformation, discussed in Sec. II,
is applicable, suggesting v~~

= 1/2, (~~
= 3/2. Since A~
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TABLE II. Numerical estimates of scaling exponents for
the parameter values DII ——Dz ——1, XII = A x
and TII ——T~ ——0.01, for difFerent number of transverse com-
ponents n.

n
2
3
4
5
6

0.49
0.54
0.50
0.51
0.49

+II

3.1
2.8
2.6
2.8
2.6

1.53
1.52
1.33
1.42
1.27

Pg
0.48
0.49
0.50
0.50
0.50

ZJ

3.1
3.1
3.3
3.2
3.2

(J
1.50
1.55
1.64
1.62
1.61

For special choices of their parameters, Eqs. (1.5) sat-
isfy some important properties, which are addressed in
this section.

A. Galilean invariance

For A[[ = A~, Eqs. (1.5) are unchanged by the infinite-
sima transformation

x' = x —AII~t, t' = t, (2.1)
I I+e& I rg~ rli (& 1)n) ~

This result can be established by noting that under the

remains finite, we expect (~ = ([[ = 3/2, but there is no
information on v~. For the case A~ ( 0 and Ax ) 0
none of the methods employed give a definite result. RG
exponents diverge as E ~ oo, and there are no applica-
ble nonperturbative arguments. Numerical results show
the trend towards a large vII, but fail to give a definite
result due to instabilities in the discretized integration.
It is possible that higher-order terms in the equation of
motion are necessary to determine the correct behavior
of the system. When both A~ and A&& have signs oppo-
site to that of AII) the syste~ ~~ttles back to the scaling
behavior v = 1/2, ( = 3/2, the RG flows terminating
at the FD fixed line.

n & 4. The perturbative RG now breaks down as the
expansion parameters diverge. (Specifically, D~/D[[ —i 0
in quadrant I.) However, nonperturbative, i.e. , exact, re-
sults still hold. In order to see the efFect of increasing n,
we have numerically integrated the system at the point
where both the GI and FD conditions are satisfied. The
measured exponents for up to n = 6 are given in Ta-
ble II. The exact swelling exponents v[[ = v~ = 1/2 are
recovered, in compliance with the fluctuation-dissipation
theorem (FDT) condition, but the dynamical exponents
seem to depart from ( = 3/2. This behavior does not con-
flict with the GI condition, which implies d(ln A[[)/dI =
v[[ + ( —2, siilce it is possible tllat v[[ + ([[ ( 2 aild A[[
is irrelevant. Thus there is a possibility that for large n,
the system goes to a regime where the dynamical expo-
nents are difFerent. This region therefore needs further
attention and analysis.

Finally, in Sec. V, we discuss several straightforward
generalizations of the model to directed flux lines and to
drifting membranes. We also examine the relevance of
long-range correlated noise, hydrodynamic interactions,
and steric constraints. Surprisingly, we find that both
efI'ects are much less important in the presence of nonlin-
earities.

II. NONPERTURBATIVE PR.OPERTIES

change of coordinates, the derivatives transform as

(2.2)
kg = Bgl —EAI~B~~

In particular, in terms of the transformed distortions,
O.r[[ = (O. r[[

—e), wane O.r~, = O. r~, U. sing this
information we can rewrite Eqs. (1.5) as

(o[, —eA [[0 ) (r
[[

—ex):D[[8 r[[ + —(E9~ r[[
—e)

+ ) (8 r~, ) +- rl[ (2: —A[[et', t'), (2.3)

B. Generalized Cole-Hopf (CH) transformation

The CH transformation is a useful tool in studying the
exact solutions to the one-component (n = 0) nonlinear
difFusion equation [20]. Here, we generalize this transfor-
mation to arbitrary n. Consider a set of n+ 1 linearly
independent s x s complex matrices A = (A~, j = 0, nf
Let the anticommutator of two matrices be defined as

(A, Bj = ,'(AB+ BA). — (2 5)

The vector space spanned by A becomes a special Jordan
algebra [24] if, for any (A*, A~) E A,

(A*, A'f = e'„'A", (2.6)

with real coefficients e&, and A" E A [25]. We will show
next that for each such algebra, there is a nonlinear map-
ping which connects a linear dift'usion equation to a set
of nonlinear evolution equations similar to (1.5).

Let W(x, t) = exp(A[[r A /2D), where r (z, t) are n+
1 scalar functions. If TV satisfies the dift'usion equation,

B,W =DO W, (2.7)

the corresponding equations of motion for r are obtained
from

eW = ar.~-W,
2D

~ W = ci r~A + ~~rp~~r~JA, A~) IW'. (2.9)t3

2D
~

2D

(cl, —eA[[B~ )(r~, ) = D~O, r~, + A~(0~ r[[
—e)O~ir~,

+~~(~' —A[[«', t') . (2 4)

Keeping terms to order of ~, we see that the determin-
istic part of the above equations becomes identical to
Eqs. (1.5) for A[[ = A~. The transformed noise is eval-
uated at a difI'erent point, but it is easy to see that its
correlations still satisfy Eqs. (1.6). In fact this invariance
holds even for noise that has spatial (but not temporal)
correlations [21]. The significance of this invariance lies in
the fact that A~I appears both in the transformation and
the equations of motion (1.5). Consequently it cannot be
changed by any rescaling of the equation that preserves
this invariance [21,22]. This implies the exact exponent
id~~tity vll + ~ll

= 2, f« the special case A
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Substituting back in Eq. (2.7), and making use of the
relation (2.6), we find

pDO.'r. +..~ 'O—.r~O. r, W W. (2.io)

By construction, det(W) g 0, and the matrices A are
linearly independent. Therefore, the scalar functions
must satisfy

Bqr = DO r + —e~~B rp6 r& .~ll p~
2

(2.11)

00
60 = 1)
en* = A„/All (i = 1, n),

(2.12)
A~ /A

ll
(i —1 zz)

= 0, otherwise.

One out of the many possible algebras for cases up to n =
3 is given in Table III, along with the special conditions
when they are applicable. Unfortunately, there are no
such algebras for which A~ ( 0, and in all given algebras,
A& = All is required

This transformation enables us to solve the determin-
istic equations exactly, for any given initial conditions

(x, 0). It is also possible to write the solution to the
stochastic equation in the form of a path integral. The
answer is relatively simple for the case n = 1, since
one can use a simple algebra A = (1,ig —A&&/All) (for
A„(0), so that, for

W(x, t) = exp
f Allrll(x, t) + zg —

All Axr&(x, t) l
( )

the linear diffusion equation

The relation between Eqs. (1.5) and (2.11) is now easy
to establish. First of all, one needs Dll ——D~ ——D. If
we let ro =

rll and r;:—r~; (i = 1, n), then the structure

factors e& must satisfy

TABLE III. Jordan algebras suitable for use in the gen-
eralized Cole-Hopf transformation for up to n = 3. For a
given n, the corresponding algebra consists of the matrices
(A, cz = 0, n) o . (for n = 1, 2, 3) are the well-known Pauli
matrices; generators of the su(2) algebra together with the
2 x 2 identity matrix.

Case Ao

A )0 I
Ag

/Ax/Alloz

z QA &(/All cr,

A2

+Ax /All
o.2

i /Ax /All o,

A3

QA ~ /All mrs

i/A ~/All ~s

In all cases, Dll ——D~ = v and A~ ——A]].

C. Fluctuation-dissipation (FD) condition

From the Langevin Eqs. (1.5), we can also construct a
Fokker-Planck equation for the time evolution of the joint
probability 'P(rll(x), r~, (x)) for the case of uncorrelated
(white) noise as

O'P 8'P
OzP = dx)

~

. Or +T i. (216)

Equation (2.15) has been extensively studied in connec-
tion with quantum tunneling in a disordered medium
[26], with W representing the wave function. In partic-
ular, results for the tunneling probability ~W~ suggest
vll ——1/2 and zll = 3. The transverse fluctuations corre-
spond to the phase in the quantum problem which is not
an observable. Hence this mapping does not provide any
information on v~ and z~ which are in fact observable
in the polymer problem. In the presence of spin-orbit
scattering, the tunneling of the electron is described by
the evolution of a two-component spinor. The resulting
path integral is similar to the above equation, but the
impurities p now include random rotations. The prob-
lem is thus similar to the above, with the inatrices A
corresponding to generators of the su(2) algebra. This
example corresponds to n = 3. Discussion of other val-
ues of n is beyond the scope of this paper.

OzW = DO W+ p(x, t)W, (2.14)

W(x, t) =
(~,t)

D( )expe( e—'
0

I2
de +te)e', e) ).2D

(2.i5)
,0)

leads to Eqs. (1.5) with Dll = Dz = D and All
= Ai.

[Here Re(p) = Allzlll/2D and Im(p) = g—AllA&&zing/2D].
Therefore, the solution to the stochastic equation can be
written as the path integral Pp = exp dx (O rll) + ) (O ri;)

2Tll 2TL )
(2.i7)

upon substituting in Eq. (2.16), satisfies

Since Eqs. (1.5) are not generated from a Hamiltonian, it
is not a priori clear that the above equation has a station-
ary solution. Nevertheless, the probability distribution

" "(4e~)())-ed~i)'+ ) " (~e~) ~))*e~)*+ (2.is)

The first term in the integrand is a complete derivative,

O&[s(O~rll) ]e (2.i9)

and gives no contribution to the integral, since boundary
terms vanish (only profiles with lim ~~ O r = 0 have
nonzero probability [27].) The remaining terms can also

I

be combined into a complete derivative,

O*[(O*rll)(O*r~*)'1 = (O.'rll)(O*r~*)'

+2(O rll)(O r~;)(O r~, ), (2.20)

provided that A)&DllT~ ——A~D~Tll. Thus for this special
choice of parameters, depicted by a starred line in Fig. 2,
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III. RENORMALIZATION-GROUP (RG)
ANALYSIS

The information on exponents and the dynamic uni-
versality class is contained in the (k, cd) —+ 0 limit of
the noise-averaged correlations in Eq. (1.7), which after
Fourier transforming in space and time read

(r (k, cd)r (k', cd' )) = b(k+ k')8(cd+ cd' )

[k[~--'-'"-f
~

Following a change of scale to x ~ bx, accompanied by
t m b~t and r M b r, Eqs. (1.5) transform into

b&[f
—2c)2 II b2u/[ —

2(c) )
2A

~"II =
li *"II +

2 &rll

n
"b ) (c) rg)2

i=1
+b-('+~)/2&„(~, t), (3.2a)

the probability distribution of Eq. (2.17) is a stationary
solution of the Fokker-Planck equation. If P converges
to this solution, the response functions of the full system
are related to this stationary solution through a FDT
[21,28j. This implies a nonrenormalization of the "bare"
parameters TII/DII and T~/D~, which appear both in
the original equation of motion (1.5) and the full response
functions (1.7). Thus the long-time behavior of the corre-
lation functions in Eq. (1.7) can be directly read ofF from
the naive scaling of these ratios, giving vII = v~ = 1/2.
For D

I I

——D~ and Tl
I

——T~, the stationary distribution
is identical to that of the Rouse model. However, when

T~ g D&TII~ the average stationary ~h~p~ will be a
ellipsoid with (rII)/(r&) = D~TII/DIIT~ = Ax/A~. This
quantity varies continuously along the FDT subspace.
The nonspherical shape results in a form birefringence
that originates from the nonlinearities.

As we shall see in the following sections, the large-
N behavior is controlled by this subspace, at least in
the low-field limit. It is therefore possible to determine
the nonlinearities (Af by macroscopic measurements. In
order to do this, consider the situation where a stretching
force f is applied to the two ends of the polymer. This
will alter 7 o only by the change

c)~rII ~ (c)~rII —sfII)~ c)~ra' ~ (c)~ra* —sf&')

(s is a constant describing the amount of stretching. )
This modified distribution describes a rod of length pro-
portional to sN with transverse Buctuations that scale
as ~¹Thus, the polymer behaves as a slender rod, and
the nonlinear terms can be obtained by measuring the
orientational dependence of the mobility.

'C) ii(k, cd)

rg(+, cd) Go~~(k, cd) (k, cd)

k, G2
+

= -(~&/2) fq (k-q) = —(X„/2)f q (k—q)

FIG. 3. Diagrammatic representation of the non1inear in-

tegrall

equations (3.5) .

b B&r~i ——D~b" 6 r~i + A~b ~~ B~rIIB~r~i
+b-('+~)/'&, (*,t). (3.2b)

Equation (1.6) is used to determine the scaling of noise.
We conclude that the parameters of the equations trans-
form to

D mb~ D
T ~b& '- —'T,
A ~b ~~+~-'A

II ll~

A~ -+ b ~f+ -'A
&[~+(

When all three nonlinear terms are absent, the equations
become scale invariant upon the choice of ( = 2, vII

vz = 1/2. However, all three nonlinearity parameters
grow under rescaling. They are therefore relevant and
may change the scaling exponents. For example, when
AII ) 0, A~ ——A&&

——0, Eqs. (1.5) decouple and reduce
to a KPZ equation (for r I) and n difFusion equations (for
r~, ), with the exponents

(I =3/2, (~=2, vII =v~=1/2. (3.4)

In order to calculate the exponents in the presence of
nonlinearities, we can reorganize Eqs. (1.5) into a form
suitable for a perturbative calculation of r(k, cd) in powers
of the nonlinearities (A). Fourier transforming Eqs. (1.5)
in space and time, after some rearrangement, yields

II(k, ) = GII(k, )@II(k, ) = G II(k, )@II(k, )— dn ~
dq

q(k —q) rII (q, 0)rII (k —q, cd —0)

&x )- dn ~
dq—q(k —q) rg, (q, 0)r~, (k —q, cd —0), (3.5a)
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dO dq
&J '(k, ~):Gg (k, a) ilg '(k, a) = Gog (k, a)gg (k, a) —Ag —q(k —q) r~, (q, Q)rjj(k —q, ~ —0).2' 27'

(3.5b)

Here, Go 's are bare propagators (D k2 —iur) i in
the absence of nonlinearities, and A is a suitable short
distance cutoff. This set of nonlinear integral equations
is indicated diagrammatically in Fig. 3. The averaging
is done using the Fourier transform of Eqs. (1.6), which
reads

(g (k, (u)qp(k', (u')) = 2T b p8(k+ k')8(~+(u'). (3.6)

The perturbative expressions for the effective response
functions G~~, G~ are represented diagrammatically in
Fig. 4. (The combinatorial factor for each diagram is
found by counting all possible noise contractions that
give rise to it. ) Actually, the dimensionless perturbative
parameters are of the form A T/D . Since Go(k, 0)
1/Dk2, one can define an efFective tension D from

G(k, 0) = 1/Dk Sim.ilarly, an efFective spectral den-

sity function T(k, cu) is defined by

(r*(k, ur)r (k, (u)) = 2T (k, ~)G (k, ur)G (—k, —m),

and calculated perturbatively by the series shown in
Fig. 5. Effective vertex functions are similarly computed
perturbatively by the series shown in Fig. 6. The correc-
tions to the bare parameters diverge at small loop mo-
menta. We therefore reorganize the summation of these
corrections in order to avoid singularities. The RG pro-
cedure works as follows: We average noise over a momen-
tum shell Ae ( ~k[ ( A and find the contribution of
this averaging to the parameters, after which we make a
change of scale x —+ e x, t —+ ~ t, &~~ ~ & ][

&~~, &~,. ~
e ~ r~;. This procedure gives rise to recursion relations
for the effective parameters in Eqs. (1.5). The calcula-
tions are lengthy and not particularly instructive as a
straightforward generalization of those in Ref. [21]. De-
tails of the calculation are given in Appendixes C, D, and
E. The resulting recursion relations are

dD~~ A~~TII &g&x Tg
C

—2+Ki D, +nKi
dS 4D3)( 4

dDi AJ [(AxT~/Dg) + (AiTjj/Djj)] Di —Dll Ag[(Axe/Dg) —(AgTjj/Djj)]= Di ( —2+Ki + K]
dE 2Dg(Dg + Dll) D~ + Dll D&(D~ + Dll)

= Tll ( —2vll —1 + Ki s + nKi

(3.7a)

(3.7b)

(3.7c)

=T~ ( —2vi —1+KiD D ( D )

de
dE

dAii
vll+~ —2

= Az vll + ( —2 —Ki D 2 [(Ax T&/Dz) —(A&Tjj/Djj)]
-i +

dAx AjjDg —AgDjj= Ax 2vg —
vll + ( —2 + Ki D [(Ax Tg/Dg) —(A+Tjj/Djj)]Dg+D

(3.7d)

(3.7e)

(3.7f)

(3.7g)

Starting from a given set of "bare" parameters, the
RG flows are generated by integrating these differential
equations, corresponding to a repeated application of an
infinitesimal renormalization of the system. The expo-
nents ((/) and vll(E) are chosen such that Dll and A

remain scale invariant, i.e. ,

of all the parameters is determined, along with the scal-
ing exponents. The RG Qows and resulting exponents
are indicated in Fig. 2 and Table I, respectively. The re-
sulting flows naturally satisfy the constraints imposed by
the nonperturbative results: the subspace of GI is closed
under RG, while the FD condition appears as a fixe line.

dDii dAii

dZ dE
= 0. A. Different dynamical exponents

The exponent v~ can actually be eliminated from the
recursion relations by considering the renormalization of
A„T~ since only this combination appears in the recur-
sion relations. The value of this exponent can later be
determined by demanding scale invariance for each of
the parameters A&, , T~ separately. This way, the flow

With the above RG procedure it is difEcult to address
circumstances when the different components have di8-
tinct dynamical scaling. As long as the "fixed-point equa-
tions" are coupled, it is natural to choose (jj = g~. How-
ever, when (jj g (~, the RG fiows terminate at a region
of parameter space that is not perturbatively accessible.
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+4 vll vll
(k, ~) (k, u) (&-q.~-o) (k,~)

+4

+2n
(k, n))

+ e(z')

(&. ) (&. —q, u— +e(x')

+ e(x') I'g ——I' )+I'g, +I'ii +I'ii, +I'g +I'ii, +I'g, +5(X )

FIG. 4. Leading corrections to the longitudinal and trans-
verse propagators Gll, G~ in the perturbative expansion of
Fig. 3 after averaging over noise.

In order to demonstrate this, let us examine a simpler
set of equations,

Ogham ——Dg0 hg)

Og h2 ——D20~ 62.

These equations can be solved exactly; the dynamical ex-
ponents are (i ——2, (2 ——4. However, when we rescale
them together and choose ( to keep Di fixed, we see that
D2 ~ 0. As long as the equations are decoupled, one can
still recover (2 by examining how D2 flows to the fixed
point. But Eqs. (3.7) involve parameters that diverge at
such a 6xed point. Since the whole RG treatment is only
perturbative, a divergence of any perturbative parameter
invalidates its results. A difFerent RG treatment or a self-
consistent appoach [29,30j may eliminate such problems
and enable a systematic analysis of the whole parameter
space. We have investigated such regions numerically in
order to determine what kinds of properties one might
expect. It is also not clear whether such regions of pa-
rameter space are accessible to physical systems.

(b)

+2n +e(x')
+e(x')

+e(z')

FIG. 5. Leading corrections to the spectral density func-
tions Tll, T~.

FIG. 6. Leading corrections to the vertex functions (a) I ~~,

(b) I'„, and (c) I'~.
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B. Fixed points and scaling

The scaling behaviors for the different regions in Fig. 2
are determined by the values of the exponents at the at-
tracting fixed point(s). The results are presented below.

A~ ) 0 and A&& ) 0. In this quadrant (I), for n & 4,
the RG Qows terminate on the fixed line where FD con-
ditions apply, hence v~~

= v~ ——1/2. All along this line,
the one-loop RG exponent is ( = 3/2. When n ) 4, the
flows indicate that D~ —+ 0, even though A~ remains
finite and RG is inconclusive. The reason for the break-
down of RG is again the nonperturbative nature of the
Axed point. A different scheme is needed when the per-
turbative parameters diverge [29,30].

A~ & 0 and A&& ) 0. The analysis of this region (II) is
the most dificult in that the RG Bows do not converge
upon a finite fixed point and A~ —+ 0. Hence we expect
(~~ j g~, and a different RG scheme is necessary.

A~ ( 0 and A~ ( 0. The FD condition again provides
a stable fixed line in this quadrant (III), hence v~~

= v~ ——

1/2 and for n ( 4, the one-loop RG gives g = 3/2. For
n & 4, the RG is once again inconclusive.

A~ & 0 and A~ & 0. For n = 1, the projected RG Qows
in this quadrant (IV) converge to the point A~/A~~ = 1
and A„TgD~~/A~~[T~~~Dz = —1. However, this is not a fixed
point, as the noise parameters T~~ and T~ scale to infinity.
Therefore, it is not possible to determine the exponents.

Fortunately, the CH transformation is applicable to this
point, this suggests (~~

= 3/2 and v~~
= 1/2.

A~ = 0. In this case the equation for r~~ is identical
to that of an interface in 1+1 dimensions, and v~~

= 1/2,
with (~~

= g~ = 3/2 (since A~ P 0). The fluctuations in

r~~ act as a strong (multiplicative and correlated) noise
on r~, . The one-loop RG yields an exponent v~ ——0.75
for A~ ) 0, while for A~ ( 0, Ag scales to 0 and hence
the RG is inconclusive except for implying (~ ) (~~. This
result is independent of n.

A~ ——0. The transverse fluctuations satisfy a simple
diffusion equation with vz = 1/2 and (~ = 2. Through
the term A&& (0 r~, ) /2, these fluctuations act as a corre-
lated noise [21] for the longitudinal inode. Since

g~~ g (~,
the RG is once again inconclusive. Simulations (Table I)
indicate different behavior depending on the sign of Ax.
This dependence on the sign of A&& is not too surprising
in view of the fundamental difference between behaviors
in quadrants II and IV of Fig. 2.

IV. NUMERICAL SIMULATIONS

In this section we discuss the numerical integration
of Eqs. (1.5), for various parameter values, to provide
a comparison to the RG results. Such simulations have
been quite successful in obtaining the scaling properties
of the interface growth equation [31]. We use the follow-

ing discretized equations:

r~~(z, t+ dt) = r~~(z, t) + D~~[r~~(z + 1, t) —2r~~(z, t) + r~~(z —1, t)]dt+ —[r~~(x+ 1, t) —r~~(x —1, t)] dt

' ) [r~, (z+ 1, t) —r~;(z —1, t)]'dt+ 2Tiidtvj)ii(z, t),
z

r«(z, t + dt) = r~, (z, t) + D~ [r&;(z + 1, t) —2r&; (z, t) + r&; (z —1, t)]dt

+ [r~;(z+ 1) t) —r~;(z —1, t)) dt + $2T~dt@~, (z) t).

(R (t, N)) = N"- f"
i

(4.1)

where the scaling functions f have the asyinptotic be-
haviors

lim f (u) = A u i' and lim f (u) = B, (4.2)
u~oo u —+0

with A, B' being constants. Therefore, the large-t, i.e.,

Here @ are random variables with zero mean and stan-
dard deviation of unity, independently chosen for each
time step and each site.

Simulations were carried out starting from a point ini-
tial state, with periodic boundary conditions. The time
step was chosen small enough to avoid short-range in-

stabilities, typically 0.005 to 0.05. At every step, the
center-of-mass motion of the polymer was subtracted
off, so that r (t) = 0. The scaling exponents were ex-
tracted as follows: The mean-squared radii (B (t, N)) =
((K P. i [r (j, t)] ) ~

) have the dynamical scaling
form

steady state, behavior of B scales as X",whereas the
large-N, s~all-t behavior grows as t ~' . For the steady-
state analysis, time averages (instead of ensemble aver-

ages, for computational convenience) of B (t, N) were
calculated for system sizes N = 16, 32, 64, 128, and 256
after the system reached steady state. For the dynamic
analysis, system width was calculated as a function of
time for N = 10000 to 60000, up to t = 300. Numer-
ical integrations were performed for different sets of pa-
rameters and for different values of n in Eqs. (1.5), with
emphasis on n = 1. A sample result for the parameters

D~I
——D~ ——1, A~)

= Ax = Ax = 20, T~~
——T~ ——0.01 is

shown in Fig. 7. Not all exponents correspond to the true
asymptotic values, due to 6nite-size effects. The results
of the integrations can be summarized as follows.

The exponents for n = 1, along with theoretical pre-
dictions, are indicated in Table I. Most of the theoret-
ical predictions are supported by these simulations. At
the point where GI and FD conditions hold, the expo-
nents match well with the theoretical values. We also
see the change in scaling behavior when A&& or A~ ap-
proach zero, as predicted by Eqs. (3.7). The values for
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&R &

0.8

0.6

0.4

0.2

0.1

&R &

0.8

0.6

0.4

0.2

10 100 System size N

Longitudinal, 1/z& ——0,33
+ Transverse, 1/z~ = 0.33

I I 1 I I I 1
i

I I I I I

& Longitudinal, vl = 0.48
+ Transverse, v~ = 0.48

the dependence of the velocity on the orientation and ex-
tension of the polymer. The nonlinearities are relevant,
and (for most values of parameters) lead to faster relax-
ation with a dynamic exponent z = 3. The structure
factor of the polymer becomes anisotropic as a function
of the driving force, and it is even possible for the poly-
mer to undergo a stretching transition. These results
could potentially be probed by diffraction and birefrin-
gence experiments on sedimenting polymers, or by exam-
ining conformations of polymers during electrophoresis.
There are other potential applications of the results to
defect lines in liquid crystals or flux lines in supercon-
ductors. However, our description leaves out a number of
potentially important interactions and constraints, such
as noise correlations, self-avoidance, and hydrodynamic
interactions, reparametrization invariance or arc-length
conservation [32]. A number of possible extensions and
generalizations are discussed below.

0.1
1 10

I

100 time t

FIG. 7. Top: The longitudinal and transverse sizes of the
polymer as a function of its length N. Bottom: Same quanti-
ties as a function of time t. The straight lines indicate fits to
scaling forms R oc N" and R oc t . Points corresponding to
transverse size are shifted up by 30% to avoid data overlap.
(R ) and t are in arbitrary units.

swelling exponents for small but positive values of A&&

or A~ signify a large crossover regime, with enhanced
effective swelling exponents. We expect that the expo-
nents will approach 1/2 at length scales beyond those
probed due to computational limitations. This crossover
is also evident in the RG equations (3.7), and the flows
in Fig. 2. In all cases where the RG method was incon-
clusive, simulations have either suggested (~~ g (~ or the
integration scheme has been unstable in the fully non-
linear regime. A more reliable (and computationally de-
manding) integration scheme must be used to determine
the true asymptotic behavior of these regimes.

It is interesting that even though the nonperturbative
properties apply to all n, the perturbative RG breaks
down for n & 4. We therefore integrated the equations
for different n at the point where GI and FD conditions
were satisfied, in order to search for a potential change
in scaling properties. Although the results (Table II) are
not completely conclusive, there is strong evidence that

& 3/2 & (~ for n ) 3, which is consistent with the
RG prediction D~ (E)/D~~ (E) i 0. It will be interesting to
study the large-n behavior of this system, where it might
be possible to obtain a 1/n expansion that becomes exact
for n —+ oo.

V. CONCLUSIONS AND EXTENSIONS

In this work we studied, on the basis of symmetry con-
siderations, a phenomenological model for the relaxation
of a polymer drifting due to an external force. In a lo-
cal description nonlinear terms are proposed to describe

A. Flux lines

A flux line is stretched parallel to the direction of the
external magnetic Geld. The flux line moves due to the
Lorentz force in a current. The fluctuations of such a
directed line are also described [17] by Eqs. (1.5). In this
case r~~ denotes fluctuations along the direction of average
motion, and r~; are the fluctuations in the remaining
n = d —2 directions.

B. Drifting manifolds

We can similarly consider the fluctuations of a mem-
brane drifting with an average velocity. In this case two
coordinates are needed to describe a point on the mem-
brane. More generally we can consider a d, -dimensional
manifold embedded in a d-dimensional space. (Yet an-
other realization is the coupling of a growing interface to
a set of scalar fields. ) Except for the change in the dimen-
sionality of the argument x = (zi, . . . , zg ), there is no
change in Eqs. (1.5). The only changes in the recursion
relations (3.7) come from the rescaling of noise and from
angular averages in A: space, which appear as overall con-
stants in the correction terms. In the absence of nonlin-
earities, the Langevin equations are scale invariant with

= 2, v = (2 —d, )/2. This swelling exponent is char-
acteristic of tethered manifolds [33]. Thus, for d, ) 2,
small nonlinearities rescale to zero and are irrelevant.
In such cases, there is also typically a strong-coupling
(A P 0) region that is not accessible by perturbative
methods. For d, & 2, which includes the case extensively
discussed, the nonlinearities are relevant, changing the
exponents. Perturbation theory breaks down at d, = 2,
and more careful analysis is necessary to obtain correct
results. Furthermore, the nonperturbative properties dis-
cussed, other than GI, no longer hold for d, g 1, limiting
our knowledge of the problem.
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C. Noise correlations

Starting from a microscopic point of view, Eqs. (1.5)
are obtained by removing the "fast" degrees of freedom
associated with the surrounding Quid. The resulting
noise g may acquire long-range correlations in both space
and time as a result of this coarse graining. The efFects
of such correlations have been studied extensively in Ref.
[21] for the case n = 0. It is straightforward, though
somewhat lengthy, to extend the analysis to n & 0. Con-
sider noise-noise correlations that asymptotically behave
as

(q(k, ~)g(k', ~')) k ~~ 8(k + k')b(w + (u'). (5.1)

The effects of these correlations on scaling exponents de-
pend on the relative signs of nonlinearities, as in the case
of uncorrelated noise. For example, for 8 = 0 (spa-
tial correlations only) it can be shown that when all
three nonlinearities have the same sign (quadrant I in
Fig. 2), the renormalized spectrum is white noise as long
as 2p ( 2p, = 3v —1 = 1/2. There are no corrections
to the scaling exponents calculated without any correla-
tions. The Quctuation-dissipation condition for uneorre-
lated noise suggests an efFective "mean-field" noise spec-
trum characterized by p = p, . It is precisely for this
reason that all correlations decaying more (or equally)
rapidly are irrelevant. For p ) p„ the noise spectrum is
unrenormalized, except for acquiring a white-noise part,
i.e. , T(k) = To + T~k ~. This results in modified expo-
nents, exactly given by the reduced z = (5 —2p)/(1+ 2p),
and the increased v = (1+2p)/3 as in Ref. [21]. On the
other hand, when A~ ——0, the scaling exponents change
for p ) 0, as the transverse noise spectrum is unrenor-
malized (except for acquiring a white-noise part) while
the longitudinal correlations are irrelevant for all p & 0.
The resulting RG exponents are

zii ——(4 —4P)/(2 + 4P) v(i = (2 + 4P)/3,

z~ = 4/(1+ 2p), v~ = (1+2p)/2.

The continuum description naturally breaks down when
the chain is fully stretched at v & 1. Temporal cor-
relations, 0 g 0, complicate the situation by breaking
Galilean invariance.

condition, the noise spectrum must be correlated with
2p = 1 —v and 0 = 0 in Eq. (5.1). Since our non-
linear fixed point also satisfies a Quctuation-dissipation
condition, as demonstrated in the previous section, such
noise correlations are not relevant, and do not modify
the exponents obtained from uncorrelated (local) noise.
As for the modified propagator, in d-dimensional space,
it acquires an additional term proportional to q"/, with
scaling dimension y~ = (—d/2. Thus for d ) 3 the long-
range hydrodynamic interactions can be ignored and the
scaling exponent ( = 3/2 is imposed by the nonlineari-
ties. In dimensions d & 3 the hydrodynamic interactions
are the most relevant, setting ( = d/2, and the nonlinear
terms are irrelevant. In d = 3 both terms are equally rel-
evant, and Axed points most likely occur at finite values
of both parameters. A more rigorous RG treatment is
required to confirm this picture and establish the behav-
ior when both efFects are present. In any case it is clear
that due to their marginal relevance, the interactions of
Eq. (1.2) will not substantially modify previous results.
However, once nonlocal terms are included there is no
reason to rule out the nonlocal nonlinearity obtained by
replacing 8 R in Eq. (1.2) by (8 R)2. This nonlinear-
ity also becomes important at the same point when the
(A) terms become important. It could have important
consequences which are left for future studies.

E. Steric interactions

Self-avoidance and entanglement efFects are important
in low dimensions. The latter are diQicult to incorpo-
rate and have not been satisfactorily explained. "Soft"-
core repulsions can be incorporated in a Hamiltonian and
the corresponding equations of motion as an additional
term proportional to b f dx'V(r(x) —r(2.")). The rele-
vance of this term is controlled by the scaling dimension
ysp, = ( —d/2. This is a rather surprising result, in that
the enhanced relaxation actually makes self-avoidance
less relevant. If this conclusion is indeed correct, the
added constraints should not significantly modify the re-
sults in d = 3.
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APPENDIX A: DERIVATION OP THE
EQUATION OF MOTION

In this appendix we present the derivation of Eqs. (1.5)
from Eq. (1.4). This is accomplished by a Taylor expan-
sion of F around B~B~ = 0 B = 0, up to second order
and ignoring higher-order gradients. Eliminating terms
inconsistent with symmetries, we obtain
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OtR~ = v~ + QPB Rp + 2TP~B~RpO~R~

+higher-order terms, (A1)

force K per monomer acts on this rod, the velocity of the
rod can be solved using Kirkwood theory, and the result
is (Chap. 8 in Ref. [1])

where v, Q, T are tensors of first, second and third rank,
determined only by e(z, t). Terms proportional to R
and 0 R are excluded because of the symmetries H. ~
K+ c and x ~ —x, respectively. The remaining terms
are of higher order in the derivatives. Since the exterri. al
field E is the only source of breaking isotropy, it appears
in these tensors as

v = aiE + (a28 + asE Ep)pep + O(llhell')

E. [I+ tt].(—ln v. )

4vrg, bp

In the above equation, g, is the solvent viscosity, I is
the identity tensor, t is the unit tangent vector, and r =
2b/bDN is the ratio of the width b to the half length boN/2
of the polymer. Direct comparison with Eqs. (Al) and
(A2) gives

&- = bih~+ b~E-Ep+ &(II«Il)

TP~ = ci(hPE~ + h~Ep)

(A2)
c2

Gy+ —=C, cy =C, c3=0,

+cgbp~E + csE EpE + C7(~~he~~).

Here a~, bz, and cz are constants, and we have neglected
(irrelevant) higher-order effects of Quctuations.

The first term in the expansion of v is a constant and
can be absorbed by defining

r(x, t) = H, (x, t) —a, Et.

Choosing the coordinate axes such that E~~
——E, E~,. ——

0, and defining

where C = (—ln I")/4vrg, bo. A more detailed calculation
of the force in the more general case of an arbitrarily
shaped slender body by Khayat and Cox [ll] shows that
nonlocal contributions to the force, which depend on the
whole shape of the polymer rather than the local orienta-
tion, are O(1/(ln v) ). Therefore, corrections to Eq. (Bl)
are small when N » b/bo Howe. ver, the calculation in
[11] assumes that the radius of curvature at every point
is O(Nbo), therefore one may argue that nonlocal cor-
rections are small only if the persistence length is much
larger than the polymer width. This analysis does not
give the value for ai, but an approximate expression can
be found by using the Rouse model, which is essentially
the A = 0 limit. In that case, the friction coeKcient for
a monomer of diameter bp is 3vrg, bp, i.e. ,

D~) ——bg + b2E,
D~ ——bg)

A~~
= (2ci + c2)E+ csE,

&x ——caE,
A~ ——cgE,

vy((
——(a.2 + asE )be(),

7)~ = G28cg,

(A3) which gives

3vrg, bp

3m', bp

we immediately arrive at Eqs. (1.5) and (1.6) with

Therefore, ai « C if
~

lnr~ && 1. We can now use
Eq. (A3) to calculate the nonlinearity parameters

(a2 + as E') '
( I I
»

I I
')

2T~ = d 'a'(llhell'). (A4)

A~~
= 4(C —ai/2)E, A„= 2(C —ai)E, Az = CE.

All three nonlinearities are positive in this low-field limit.

APPENDIX 8: DERIVATION OF LEADING
NONLINEAR TERMS FROM SLENDER-BODY

HYDRODYNAMICS

In this appendix we will derive the leading-order local
nonlinearities in the equation of motion (1.5) in the low
Reynolds number limit. In order to do this, consider
a rodlike conformation of the polymer with monomer
length bp where 0 r = bpt everywhere on the polymer,
so that the elastic (Rouse) force vanishes. If a uniform

APPENDIX C: PROPAGATOR
RENORMALIZATION

In this and the following appendix, the details of the
RG procedure are given for an arbitrary manifold di-
mension d„as mentioned in Sec. V. (The discussion
in Secs. I—IV involves the case d, = 1 only. ) We start
from the symmetrized versions of the one-loop expres-
sions depicted in Fig. 4. Thus, to leading order in the
nonlinearity, the propagators are given as
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(C1b)

Since we are interested in the hydrodynamic limit, we focus on the leading order in (k, o2). Using the bare propagators
(k, ~) = (D k2 —i~) ~, the w -+ 0 limit can be taken right away, modifying Eq. (Cla) to

d"*q dO
Gff(k) = G()ff(k) + Goff(k) „((i+"—,) (1—"-, ) k. (~+ -", )

~~ II

D~~ q —"-, +iO D2~~ q+-", +0'
n'~ x ~J TJ

D~ q —
2 +iO D& q+ 2 +0

Above and from now on, we use G(k) = G(k, 0). After performing the frequency integrals,

Gff(k) = Goff(k) & 1+, , + 2 2 T ) «4' (' ——)(*"'+—')
) J (2«)' (4+«oooe+ —,')2(2+ —,') (C3)

where x = k/q and k.q = kqcos O. We can now expand
the integrand in a power series in x, keeping only the
leading order since x oc A: —+ 0. The angular part of the
q integration can be readily done using the identities

d gf(q) = Sg. dq q
' 'f(q),

0

d"'icos Of(q) = 0,

f
A g A

d 'icos Of(q) = '
dq q

' 'f(q),
s O

where Sg is the surface area of a d, -dimensional unit
sphere. The result is

~ ~ ~ ~

k' S,.d".g. . . = — dq q" -'
~

———
~

. (C4)
2 (22r)" (2 d, )

This integral is infrared divergent for d, ( 2. The RG
procedure is used to overcome this problem. Integrating
over the larger momenta in an outer shell A(1 —bE)

q ( A, where Q' is infinitesimal, we obtain

bEKg
Golf(k) = Goff(k) 1—

(AIITII

)
(c5)

where Kg = Sg A" /(2a) '. An effective tension de-
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fined through GII (k) = 1/(DII k ) is now obtained as

&EKa (AIITII nAx AzT~ l
dg/(2 —d8) 4DII 4DIID

(C6)

Under a rescaling k ~ (1 —bI)k, w ~ (1 —(bI)cu, r -+
(1 —v SE)r, the effective tension DII scales as

DII DII + 6/ Dl~l [1 + hl(( 2
d8

Combining the two, we And the differential recursion re-
lation for Dll,

gg II +cg/(2 d )

(AIITII nAx AzTz )
x

(4D 4D D+

For d, = 1, this reduces to the form given in Eqs. (3.7).
Very similar steps are followed for the transverse prop-

agator. Starting from Eq. (Clb), we have

G (k) = G (k) + G (k)
A dd

(2vr)".
(q+-") (q —-") k (q+-")2 2

x g

&x&iT

Dll q 2 +iO D~ q+ —" + 0
A~ Tll

D~ q —
2 +iO Dll q+ "—

The frequency integrals are very similar, and upon performing them, we arrive at

G~(k) = Gpi(k) g 1+

1 —
4 2:cosO+

x A~ AgTg
Dz (1+xcos8+ 4 ) [(Dz+DII) (1+ 4 ) + (Dz —DII)xcos9j

1 —
4 x cos 0 +

+A~ Tll & ~

DII (1 + x cos 0 + 4 ) [(DII + Dz) (1 + 4 ) + (DII —Dz) x cos 0]
(C9)

Following similar steps as with Dll, the final result, after some rearrangement, becomes

dDg = Dg —2+ Eg
(AxT~/Di) + (A~TII/DII)I f 2 —d, l

2D~(D~ + DII) ( d. )

+ (Di —DII) Al (Axe/DL) —(AiTII/DII)] ( 1 l
(Dz + DII) Dz(Dz + DII) «.) (C10)

APPENDIX l3: SPECTRAL DENSITY-FUNCTION RENORMALIZAYION

Steps very similar to Appendix C are followed in order to determine the renormalization of the spectral density
function. We can take the (k, cu) ~ 0 right away to arrive at

2T~ = 2T~ + 2(—A~)
d".q

(2z) ~

d'q
2T = 2T„+ 2

I

——
I

II 2 y (27r)".

( A„l d~ q+2n ~—
2 ) (27r)~.

+ dg ( {2TI)'
(2~) (D'q4+ 0')'

+ dO ( (2T~)'q.q q. q

+ dO ( (2TII) (2T~)
(2~) (D2 4 + g2)(D2 4 + I/2)

Upon performing the rescaling and arranging the terms as usual, we obtain
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dTII ~
II

Tll= TII ( —2vII —d + Kg s + AKy'
4D3II 4D~~

'

dT~ a~T„= TJ ( —2P~ —d +Kg
~ DII+D~

(D4)

APPENDIX E: VERTEX RENORMALIZATION

First, we calculate the effective three-point vertex functions rII, r&&, and 1 ~ in the w ~ 0 limit. Let k; = (k;, v;).
All the diagrams up to one-loop order are shown in Fig. 6. After averaging over shell momenta, the first correction
term for Fll is

i, i,r(. k, ;
—'+i:, , * ' —k,

I

=)-
+ dO

(2')

x 2TII Gpll

kg - kg
rpII ' ki' —+ k» ——k2
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I I
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I (q k2)
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—+ q, 0
I GpII I

——q, —0
I GpII (q —k2, 0)

) &2 )
(El)

JL

+ k~ k k~) = (~ll/2)k kbGpll(k )GoII(4) is the bare vertex function. It is enough to consider only
the leading term in the propagators, which simplifies the evaluation. Upon performing the frequency integral, this
equation simplifies to

d q 2 4 cos Oi —y cos 02
IIa oII 2Ds

II 4

where x = kq/q, y = k2/q, kq. q = kqqcos8q, k2. q = k2qcos82. The spherical part of the integral is now easily
computed to give

A2Tr( —ggr
IIa oII ( g ) 2DsS

II

Other correction terms are computed similarly. For example,

I
~~~
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d" q
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which gives

A2Tr( =-wr
( (g. ) 4Ds (E5)

I

also adding up to zero. Thus, to this order, I
II

does not
have any corrections due to renormalization, giving the
recursion relation

In the limit ki, k2 ~ 0, I'Ilb
——I'

ll
. Therefore, the sum

of the contributions from the three diagrams adds up to
zero. The remaining three diagrams are almost identical
to the first three and they contribute

2(Ax /AII) A LT~

g~s)
r( r( ~~r (Kd. &~ ( ~/ II) ~T~

Ilf

~II(~ + ~ll 2). (E7)

For the calculation of the corrections to I'~ and I'~, it
is useful to observe the simple rules that will give us the
correct result by inspection of diagrams, rather than do-
ing the very similar and lengthy calculation over again.
First, it is clear that leading-order terms are sufFicient
for the propagators. This makes it easy to evaluate fre-
quency integrals. Also, the momentum shell integral al-
ways gives the contribution Q'K~ /d, . An important rule
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determines the overall sign of each contribution. Dia-
grams of type j. II, where the noise contraction is adja-
cent to both outgoing propagators, have a positive overall
sign whereas diagrams where the noise contraction joins

the incoming propagator to an outgoing one are negative.
These set of rules simplify the task of calculating vertex
corrections to evaluating simple frequency integrals, and
yield the final results

I „=I',„ I+hE
~

r'Kd l
)

I' = I'o~ I+ A
i

fKd )
)

+ Tll

IID&(DII + D&)
AiAxT

Dl (D~~ + D~)

AIIAxTg

D~(DII + D~)'
AgAx Tg

2Di(DII + Dz)

A~&TII

4D~~IDg+D~)' I
All A~TII

II+

All Ax Ti ~ll A&TII

DIID&(DII + Dz) DII(DII + Dz)

AIIA&TII(3DII + Dz)
2DII (DII + Di)
~J ~xTJ (3D L + D

2Di(DII + D~)'

(E8)

(E9)

After rescaling and rearranging terms, these give rise to the recursion relations given in Eqs. (3.7), with the substitution
of Kd, /d, for Ki in the d, -dimensional case.
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