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Second-order dichotomous processes: Damped free motion, critical behavior,
and anomalous superdifFusion
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We study damped inertial processes driven by dichotomous Markov noise in the absence of
a potential. We obtain exact differential equations for the joint probability density and for the
marginal densities of velocity and position. Several aspects of the critical behavior of the system are
examined in detail. The exact equation for the displacement of a free Brownian particle is also found,
and from this equation we study the damping effects on the mean-square displacement (X (t)), by
evaluating the dynamical exponent and showing a crossover from a superdifFusive motion of the form
(X (t)) ~ t to ordinary diffusion where (X (t)) ~ t.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

We call second-order processes (also called inertial pro-
cesses) to random processes X(t) whose dynamical evo-
lution is governed by equations of the form

X+/X+ f(X) = F(t),

X = F(t), (1.2)

where F(t) is dichotomous Markov noise alternately tak-
ing on values +a with an exponential switch probability
density function

g(t) = Ae "',
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(1.3)

where f(X) is—the force that determines the motion
of the isolated system and the other terms arise from
the interaction of the system with the surroundings as
determined by the damping force PX and a fiuctuating
force F(t) with known statistical properties. Even in the
simplest cases, the processes described by (1.1) are very
difficult to deal with mainly due to mathematical com-
plexity. One example of this is provided by the evalua-
tion of the probability density function for the output of
second-order filters driven by the random telegraph sig-
nal [1] where the only results available are Monte Carlo
simulations and other approximate results for second-
order Butterworth filters [2]. A large and dispersed lit-
erature surrounds this problem when the driving noise
F(t) is Gaussian. However, exact solutions and even ex-
act equations are essentially unavailable [3,4]. The usual
approach (sometimes called "the adiabatic approxima-
tion") consists in assuming that the damping coefficient

P is very large, so that the acceleration, X, becomes neg-
ligible and the evolution equation reduces to that of a
first-order process.

In a recent paper [5] we have studied the process (1.1)
in the driftless undamped case:

where A
i is the average time between switches. We

note that this F(t) is a colored noise with the correlation
function given by

(1 4)

where

l
7c

2

is the correlation time.
Our focus in [5] has been on the joint density p(x, y, t)

for the probability that the position X(t) lies between x
and x+ d2: and that the velocity X(t) lies between y and
y+ dy. We have also obtained exact equations for the
marginal probability density p(y, t) of the velocity and
the marginal probability density p(x, t) of the position.
The equation satisfied by p(y, t) is the ordinary telegra-
pher's equation with constant coefficients while the equa-
tion satisfied by p(x, t) is a telegrapher's equation with
variable coefficients. In the Gaussian white-noise limit,
this latter equation reduces to a difFusion equation with a
time-dependent diffusion coefficient which leads to anom-
malous "superdiÃusive" motion of the form

(X'(t)) - t'
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to be contrasted with ordinary diffusion where the expo-
nent of time is 1 and with deterministic motion where
the exponent is 2. The results of this analysis have been
recently applied [6] to the problem of chemical reactions
in constrained geometries where, in some cases, the ki-
netics of the reaction is "anomalous" in low dimensions
in the sense of being difFerent from the results of mass ac-
tion [7]. Most of the analysis of this problem deals with
the difFusion-limited regime, in which the particles dif-
fuse through the system and react instantaneously upon
contact. If we think of the motion of the particles as
being governed by a second-order process such as (1.1)
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X+PX = F(t), (1.6)

where F(t) is dichotomous Markov noise. Herein we ob-
tain exact differential equations and, in some cases, ex-
act analytical solutions for the joint density p(x, y, t) and
the marginal densities p(y, t) and p(x, t) of the process
described by Eq. (1.6). We also study the asymptotic be-
havior of these densities and show that p(y, t) and p(x, t)
behave in a very different way according to whether the
correlation time (2A) i is greater or smaller than the re-
laxation time P

We note that when F(t) is Gaussian white noise the
process (1.6) represents the free Brownian motion. From
the present formalism we also obtain the equation sat-
isfied by the probability density function p(x, t) for the
displacement of a free Brownian particle. From this equa-
tion we study the damping effects on the mean-square
displacement of the system by evaluating the dynamical
exponent and showing the crossover from superdiffusion
to ordinary diffusion.

The paper is organized as follows. In Sec. II we detail
the dynamics of the system and set the general equations.
In Sec. III we study the joint density and obtain exact
differential equations for this density. Section IV is de-
voted to the marginal density of the velocity; we obtain
its stationary distribution and the exact expression for
the characteristic function. In Sec. V the exact equa-
tion for the marginal density of the position is presented
along with a complete asymptotic analysis. In Sec. VI
the free Brownian motion is revisited and we study the
regions of superdiffusion and ordinary diffusion. Conclu-
sions are drawn in Sec. VII and more technical aspects
of the paper are in the Appendixes.

but with no drift term f(X) then the difFusion-limited
regime is the high-damping limit, that is, the adiabatic
approximation. The contribution of Araujo et aL [6] is
the investigation of these systems in the low-damping
limit, that is, as described by Eq. (1.2). They find that
the reaction kinetics changes drastically from that of the
high-damping regime, thus introducing a new series of
"anomalies" that had previously not been noticed.

It is precisely to consider the effect of the damping on
its complete scale that we will now extend our previous
results for the undamped case (1.2) to the more general
inertial process:

II. ANALYSIS

From a dynamical point of view the time evolution
of the process (1.6) with a dichotomous driving force
is given by two different dynamics z+(t;zp, yp), where
x+(t; zp, yp) [x (t; zp, yp)] is the solution of Eq. (1.6)
with E(t) = +a [

—a], and xp = X(0) and yp = X(0)
are the initial position and velocity of the process. The
system randomly switches between these two dynamics
at random times which are governed by a given proba-
bility density function Q(t). The explicit expression for
x+ (t; xp, yp) is

yp a ( 11x (t;xp, yp) = zp+ —+ —
~

t ——
~p p& p)

1( al——
I yov —

I
e ~'.

pE (2.1)

Let Y(t) = X(t) be the random process representing
the velocity. We see from Eq. (1.6) that Y(t) obeys the
stochastic differential equation

Y = —PY+ F(t) (2 2)

and the dynamics of this first-order process is given by

( al p, a
y (t;yo) =

I yo+ —
~

e ~'+ —.
p

(2.3)

Note that y+(t;yp) have asymptotically fixed stable
points at +a/P. Hence y+(t;yp) [y (t;yp)] relaxes to-
wards a/P [ a/P] with a—relaxation time w„= 1/P. More-
over, if the system does not initially lie in the interval

(—a/P, a/P) then at some later time the system will en-
ter the interval (—a/P, a/P) with certainty, but once the
system is inside the interval it stays there forever. There-
fore at sufficiently long times the velocity of our second-
order process (1.6) is always bounded by +a/P. There
is no such behavior for the position X(t) because, as we
see from Eq. (2.1), x+(t; xp, yp) is not bounded. This is
the reason why the velocity Y(t) possesses a stationary
distribution while the position X(t) does not.

We will now set the general formalism in order to
evaluate the joint density p(x, y; t) of the process (1.6).
Two intermediate functions denoted by 0+(x, y; t) and
0 (z, y; t) will be required in our analysis. They are de-
Bned as follows:

0+(x, y; t)dxdydt = Pr(a sojourn with F(t) = +a(—a) ends with the process (X(t),Y(t))
in the volume dxdy during the time interval (t, t + dt) ). (2.4)

We observe that these functions describe the state of the process at switching times. As we have mentioned, the
evolution of the process between switches is deterministic and is given by Eq. (2.1). Therefore the functions 0+(z, y; t)
obey the following set of coupled renewal equations:

t
0+(x, y; t) = 2h+(x, y; t/xo yo) + d&

0
dv h+ (x, y; ~/u, v) 0 (u, v; t —~), (2.5)

0 (x, y;t) = zih (x, y;t/xp, yp)+ d7
0 du/

dv h (z, y;v/u, v)A+(u, v;t —v). (2 6)
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The kernels h+(x, y; 7./u, v) appearing on the right-hand
sides of these equations are defined by

h+(x, y; r/u, v)—:b(x —x+(r; u, v))b'(y —y+ (r; v))@(r),
(2.7)

where x+ (7", u, v) and y+ (r; v) are given as in
Eqs. (2.1) and (2.3) and with a similar definition for
h+ (x, y; t/xp, yp).

Equations (2.5) and (2.6) are derived from the consid-
eration that when a sojourn in an ocurrence of the plus
(minus) state ends at time t, it is either the end of the
very first sojourn (accounting for the factor ~ in the first
term) or else a sojourn in the minus (plus) state ended at
time t r( t—, at which time the process was in the point
(u, v) of the phase space, and the subsequent sojourn in
the plus (minus) state lasted for a time r.

We decompose the joint probability density into two
components

III. THE JOINT PROBABILITY DENSITY

By
(a+Py)A +y +A(A+ —0 )—

Bx
= 0.

(3.2)

It also follows from Eqs. (2.5) and (2.6) that the func-
tions 0+(x, y; t) satisfy the initial conditions

In what follows we will assume that the switch den-
sity has the exponential form given by Eq. (1.3). With
this assumption we show in Appendix A that the set of
coupled renewal equations (2.5) and (2.6) is equivalent
to

BA+ + BQ+

g
(a —py)A+ —y +A(A+ —0 )+ =0,

Bx Bt

(3.1)

p(x, y;t) =p (x, y t)+u (x y t), (2.8) 0+(x, y;0) = 2iAb(x —xo)~(y —yo). (3.3)

where, for example, p+(x, y; t) is the probability density
for (X(t), 'Y(t)) to be equal to (x, y) at time t while in the
plus state, with an analogous definition for p (x, y; t).

It is not difficult to convince oneself that the densities
p+(x, y;t) obey similar equations to that of 0+(x, y; t)
just by replacing the g's by @'s, where 4'(t) is the prob-
ability that the time between switches is greater than t,
i.e.,

1
q(x, y; t) = —[0+(x,y; t) —0 (x, y; t) ], (3.4)

then from Eqs. (3.1) and (3.2) we obtain the system

As we have shown in Sec. II, when g(t) is exponential
the joint density is given by Eq. (2.13). Thus, if we define
the auxiliary function

@(t) = dt'Q(t'). (2.9) aB pB (y q)—+y +2Ae+ —=0,Bp B Bg Bg

By By x (3.5)

That is,

p+ (x, y; t) = —,
' H+ (x, y; t/xo, yo)

—p (y p)+yB +Bq B Bp Bp

y y Bx t (3.6)

+ dr

xA (u, v;t —r),

dv H+(x, y;7/u, v)

(2.10)

Two differentiations of Eq. (3.5) with respect to y and
the use of Eq. (3.6) yield

~0BBpBpgBpgg2Bp
By Bt2+'"B*Bt+"B*~+(P " ')By~

where

H+(x, y; r/u, v)
—= b(x —x+(r; u, v))

xb(y —y+(r; v)) @(r) (2.11)

—2Py —2Py + (2A —3P)ty yx t

+2(A —2P)y

and

@r(t)
—A' t (2.12)

and a similar definition for H+(x, y; t/xp, yp).
Equations (2.5), (2.6), and (2.10) furnish a formal so-

lution to the problem and can be a convenient starting
point for numerical analysis when no further analytical
treatment can be made.

We Bnally note that for an exponential switch density,

g = Ae "', we have

—2P(A —2P)y —2P(A —P)p
By

Bp Bp
+y , + = 0. (3.7)x~ xt

Equation (3.7) is a third-order partial difFerential equa-
tion with three independent variables that we will later
reduce to an ordinary differential equation of second or-
der. Before we note that in the Gaussian white-noise
limit

p(x, y; t) = —
[ n+(x, y; t) + n (x, y; t) ].

1
(2.13) a —+ oo,

6
D —=—& oo,
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Eq. (3.7) reduces to the well-known Kramers equation IV. THE MARGINAL PROBABILITY DENSITY
OF THE VELOCITY

Bp Bp B 1 B p+P (yP)+ 2Dt Bx y 2 y~

which corresponds to the random process

(3.8)
The marginal probability density of the velocity is de-

fined by

X+ PX = i7(t), (3.9) p(y, t) = p(x, y; t)dx, (4 1)

where i7(t) is Gaussian white noise. Moreover, for the
undamped case P = 0, Eq. (3.7) goes to the following
equation:

where p(x, y;t) is the joint density of the second-order
process. This marginal density is the probability density
function of the first-order process

Bp Bp 2Bp &Bp Op Bp+ 2y +y —a +2%—+ 2Ay Y+ PY = F(t). (4.2)

Bp Bp+ +y = 0, (3.10)
t x Bx~ Y= f(Y)+F(t) (4.3)

In the case of first-order processes driven by dichoto-
mous Markov noise

p(cu, y„t) = dye '~ *+""~p(x,y;t)

and then define new independent variables w and ( given
by

~ = Pt —ln
I

1—Pv&
~) (3.11)

The resulting equation for p(cu, p; t) is (see Appendix B
for details)

(1 —() —
~
r+ — (1 —()—+~ (P=O, (3.12)

2B~p ( 1
B('

where

au
0 (3.13)

which agrees with our previous result [5].
In order to reduce Eq. (3.7) to a second-order ordinary

differential equation we Erst perform the double Fourier
transform:

Horsthemke and Lefever [8] obtained a rather compli-
cated integro-differential equation for the probability
density function p(y, t) of the process. In the driftless
case [f(Y)—:0] this integro-differential equation reduces
to the telegrapher's equation [5,8]. They also obtained
the explicit expression for the stationary probability den-
sity p, (y) of process (4.3). In the case of a linear drift
this stationary distribution had been previously obtained
first by Wonham and Fuller [9] and later by Pawula [10]
and Klyatskin [11].

Prom the formalism presented in Sec. III we will now
readily derive a second-order partial differential equation
for p(y, t). This equation, which has a structure that
resembles the telegrapher's equation with variable coef-
ficients, is equivalent to the one derived by Sancho [12]
using a different approach. In [12] an exact expression for
p(y, t) was also obtained. Nevertheless, this expression is
of such a mathematical complexity that only very few re-
sults can be extracted from it. Notwithstanding that we
will obtain an exact solution for the characteristic func-
tion p(p, t) [i.e. , the Fourier transform of p(y, t)] since it
contains the same information as p(y, t) with the advan-
tage of having a simpler expression that clearly shows the
critical behavior of the first-order process (4.2).

p(~, ( = (; ~) = e ' (*'+&'~In) (3.14)

0—p(~ ( = t! ~) = o0 (3.15)

In Appendix B we also show that the initial conditions
to be satisfied by p(cu, (;~) are

a —P (y q)+2Aq+ —=0,p B Bq

By y t
(4.4)

A. The equation for p(y, t)

We start our derivation from Eqs. (3.5) and (3.6) that
combined with Eq. (4.1) yield

where —
PB (yu)+ B

=oBq B Bp

y By Bt
(4.5)

(=1—e (3.16)

We have thus reduced the problem of finding the joint
density of the process to solving a linear second-order or-
dinary difFerential equation with initial conditions. In the
following sections we will obtain two special and relevant
solutions to the problem.

q(y t) = q(x, y; t)dx (4 6)

where now p = p(y, t) is the marginal density (4.1)
and q = q(y, t) is the marginal auxiliary function [cf.
Eq. (3.4)]:
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The differentiation of Eq. (4.4), the use of Eq. (4.5),
and some reorganization of terms finally yield

This equation can be integrated once with the result

2

, + (2A —P)

—(a —P y )p. (y) + 2APyp. (y) = t-",
dy

(4.14)

By
(a —P JI ) +2P(A —P)yp+2Py

Bp
B'JI Bt

(4.7)

This equation agrees with previous results [12].
Let us now find the initial conditions attached to

Eq. (4.7). The first initial condition is obviously given

p(y, 0) = ~(y - yo). (4 8)

On the other hand, we know that [cf. Eqs. (3.3), (3.4),
and (4.6)]

C(y, 0) =o
The substitution of these two conditions into Eq. (4.5)
inmediately leads to the second initial condition

(y t) = Pyo~ (y —yo),
C=O

(4.9)

Bp+2 Bp zBp
Btz Bt By~

(4.10)

We also observe that in the Gaussian white-noise limit
Eq. (4.7) reduces to the Fokker-Planck equation:

where the prime denotes the derivative with respect to
the argument.

Note that for the undamped case (P = 0) Eq. (4.7)
reduces to the telegrapher's equation

where C is a constant of integration. If we assume that
C =—0 then the normalized solution of (4.14) is

P (1 P2y2/a2) —1+4/P

& (y) = & 2 + "~I3B(A/P, A/P)
, 0 otherwise,

(4.15)

where B(z, z) is the beta function. Equation (4.15)
agrees with previous results [9,11,10,12].

In Fig. 1 we show the different behavior of p, (y) in the
cases (i) A ) P and (ii) A ( P. In case (i) the stationary
density (4.15) vanishes at the fixed points y = +a/P and
attains its maximum value at y = 0. Nevertheless, in case
(ii) p, (y) diverges at y = ka/P and the probability of
finding the process in a neighborhood of the fixed points
is very large while it is precisely at y = 0 where now p, (y)
attains its minimum value. To get a deeper insight into
this kind of "phase-transition" behavior we will study
the "approach to the equilibrium, " in other words, the
asymptotic behavior of p(y, t) as time increases.

In order to obtain the asymptotic behavior of p(y, t)
we follow a reasoning based on the Tauberian theorems
[13]. We first Laplace transform Eq. (4.7) to get

, (a' P'y')p +-2P(A+ s) (y p)
By B'JI

= s(s+ 2A —P)p —(s+ 2A —P)6(y —yo)

+Pyo~ (y —yo), (4.16)

Bp B 1 Bp=P (y p)+ 2D
y 2 y' (4.11)

where p = p(y, s) is the Laplace transform of p(y, t) The.
asymptotic (in time) behavior of p(y, t) may then be ob-
tained by passing to the limit s ~ 0 in Eq. (4.16). The
small s approximation is found in this way to be

B. Stationary distribution and asymptotic behavior 2.0

As we have mentioned in Sec. I the process (4.1) has a
stationary distribution, p, (y), when t —+ oo. In order to
obtain the equation satisfied by p, (y) we write Eq. (4.7)
in the form

» (a' —P'y')Ji +»PB (y p)Byz By

1.5

1.0

0.5

+ (2A —3P) —2Py . (4.12)

In the stationary regime p(y, t) is independent of t and
Eq. (4.12) reduces to a second-order ordinary differential
equation for p, (y):

0.0
—1.0

I

0.0
I

0.5 1.0

d2„, (" P'y')p. (y) +»P „-yp. (y) =o. (4.13)—
dg dg

FIG. 1. The stationary probability density p, (y) of the ve-

locity. Parameter values: a = 1, P = 1, A = 0.5 (solid line),
and A = 3 (dashed line).
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2
(a' p—'y')j +2pA& (yi)gy2 - By

= .(2A —p)I —(2A p—)~(y —yo)

+pyo~ (y —yo).

The Laplace inversion of Eq. (4.17) reads

(4.17)

0.6

(a' —p'y')p +2pA (y S) = (2A —p) ~, (418)u 0.2

In writing this equation we have neglected the term
Pyo6 (y —yo)6(t) because it does not contribute to the
asymptotic behavior.

We observe that when 2A ) p Eq. (4.18) is a diffu-
sion equation with a state-dependent diffusion coefficient

0.0
—1 50 —07~ 000 0.75 1.60

a2 p2y2
(") =

A-P/2

Recalling that 1/2A = r, is the correlation time of the
dichotomous noise and that 1/P = r„ is the relaxation
time of the process we see that when w„) w, the system
approaches the equilibrium through a diffusion process.
Nevertheless, when r„( r, Eq. (4.18) is not a diffusion
equation. In this case the system goes to equilibrium
following a way which does not resemble at all that of
diffusion processes. This apparently surprising behavior
has a rather simple physical explanation, because when
p ) 2A the probability e ~, that the noise F(t) has
not changed its value at time t, is larger than the quan-
tity e ~~ which quickly becomes very small. Therefore
the random process Y(t) relaxes towards one of the fixed
points ka/P [cf. Eq. (2.3)],

FIG. 2. Same as in Fig. 1 with A = 1.5 (solid line) and
A = 1 (dashed line).

r = pt —ln/
(apl

)
ap

(4.21)

the characteristic function p(p. , t) obeys the ordinary dif-
ferential equation

d2P 2A dp( + ——+(» =o,d(' p d(
(4.22)

with the initial conditions

of the process (4.2). In Appendix C we show that in the
variables

a
v(t) - +—, P(( r) e ~Pilo(l~ (4.23)

in such a fast way that the noise has no time to switch
its value. As a result, we have a probability close to 1 of
finding the system in the neighborhood of +a/P. This
kind of behavior is totally oposed to that of the difFusion
processes.

We finally mention that the cases A = p and p ( A (
2P are singular since for the former the system has a
uniform stationary distribution [cf. Eq. (4.15)]

d—p(( r)

where

—7=e
If we define the function

(4.24)

(4.25)

if —a/p ( y ( a/pP.(y = 2a
0 otherwise,

(4.19)
where

C'(( r) = ( I (( r) (4.26)

while for the latter the stationary distribution has infinite
derivatives at the fixed points (Fig. 2).

C. The characteristic function

We will now And an exact expression for the charac-
teristic function

)2

then C ((, 7.) obeys the following Bessel equation:

dC dC+( +(( — )C =0,a('
whose general solution is

(4.27)

(4.28)

dye '""p(y, t) (4.20) (4.29)
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where J and Y„are Bessel functions and

n if2A&P
—a if2A)P. (4.3O)

The constants of integration A and B are easily deter-
mined from the initial conditions. In terms of the original
variables the final solution reads

{ t) I
)I —( A+P) / Y

I

O' —Pt
I
g

I

P
I

g
I

P —Pg
I Y P 'Pi)o P

2 (P) &+&(P ) 0 &qP) s+&), p ) p hap
if 2A ) P, and

t) = —
I

'" I.-&'"+»'/' Y
I

'" -~'
I

J
I

'"
I

—J
I

'" -~'
I
Y2&P) ~ '&P ~+'&P ~ '&P )

(4.31)

(4.32)

if 2A &P.
Equations (4.31) and (4.32) furnish the complete so-

lution to the problem and show the different behavior
of the system depending on the values of the correlation
time 2A i and the relaxation time P i. Let us now find
the asymptotic (in time) behavior of the characteristic
function. We observe that when t is large the quantity

z= e ~'ap

is small. Then, as z —+ 0, we have the approximations
[14]

The Fourier inversion of Eq. (4.35) reads [15]

P (1 P2y2/a2) —1+%/)3

&8(y) = & a 2 '+ ~—/pB(A/p, A/p)
, 0 otherwise,

which is precisely Eq. (4.15).
(4.36)

I

I"(o., p; z) [14] these two expressions can be written in
the following single expression valid for all values of A

and P:

and
' —I'(v) (z)—

Y z -&
cot ver z

, I'(1+ v) 2

ifv&0

if v(0

V. THE MARGINAL PROBABILITY DENSITY
OF THE POSITION

&(»t) = p(x, y; t)dy (5.1)

In terms of the joint density p(x, y; t) the marginal den-
sity of X(t) is given by

p. (c) = I'I 2+ —
I

(1 A) ap) ~

(ap&x cos
I

———
I
~ Ji

(1 A) (a)ul—sinl ———Im y; -~ &pr
(4.34)

if2A &P.
By means of the confluent hypergeometric function

provided that v is not an integer. Introducing these ap-
proximations into Eqs. (4.31) and (4.32) we get for the
stationary characteristic function, de6ned by

p, (p,) = lim p(p, t),

the following expressions:

1 A~ ( )u) s~ (
P (P) = r

I 2+ p)l li2p)l
2—;+&I

p
I

(433)

if 2A ) P, and

and its Fourier transform is

p(~, t) = p(~, p = 0; t), (5 2)

where p(w, p; t) is the joint Fourier transform of p(x, y; t).
The evaluation of p(2:, t) for inertial processes is usually

very involved [2,5,18] and there are few cases where exact
equations can be obtained. The reason for this difficulty
lies mainly in the fact that the position at a given time is
strongly dependent on the velocity and to get rid of this
dependence becomes almost impossible in many cases. In
spite of these technical difficulties in [5] we have obtained,
for the undamped case, an exact equation for p(2:, t). In
this section we will use an analogous technique to obtain
this marginal density for our damped process.

A. Equation for y(x, t)

Let us now derive an exact equation for the marginal
density p(x, t). The starting point of our derivation is
Eq. (3.12) that we write in the form
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(1 —()'»-"-
~

r+-
1

(1-()»-'+~'('» =0, (5.3) p(~, ( = (;r) = e '~(*o+uoC/p) (5.4)

where p = p(w, p, r) is the joint characteristic function,
( and r are defined by Eq. (3.11), r and o by Eq. (3.13),
and the primes denote derivatives with respect to (. The
initial conditions for Eq. (5.3) are [cf. Eqs. (3.14) and
(3.»)1

»'(~, ( = (; r) = 0, (5.5)

where (= 1 —e
It is shown in Appendix D that the solution to the

problem (5.3)—(5.5), ir. the original variables p and t, is

( ~ 1+r
-(i+alp~

)
4 2 iPp~i„ i Ji Pvi —ge „(Pp

i
i (i Pvt~i—gc)

2 P -p

yo ( p/ &x exp —uu xo+— (5.6)

where u(() and v(() are two independent solutions of
Eq. (5.3) such that

The substitution of Eq. (5.8) along with Eq. (5.12) into
Eq. (5.11) results in the following equation for C (cu, ():

(() = +0(( ) (~) = ~ + -(1+ )~ + &(~ ).
(5.7)

(1 —()', +(1 —4) I
r ——

I
+~'('C'=0,( 11 8C

Now setting p, = 0 and taking into account Eq. (5.7)
we obtain the marginal characteristic function of X'(t)

—(1+r)pt
p(u);t) =—,v'(1 —e P')—pt

~+

x exp —ku 2;0+ —1 —epo pg

Let us now find a closed equation for»i(x, t). We first
note that the function v((), where

or in the original time scale:

8'C ( e P' &8C
P1

a~+ (1 —e P') C' = 0. (5.14)

Finally the Fourier inversion of Eq. (5.14) yields [cf.
Eqs. (5.9) and (5.13)]

(=((t) —= 1 —e P',

is a solution to Eq. (5.3), that is,

(5.9) 82 eP' 8 ( yo
8t2 + 2~ —P 1 —e P' 8t ( P

(1 —() v" —
~

r + — (1 —()v' + cr ( v = 0. (5.10)

If we differentiate Eq. (5.10) with respect to ( and use
again Eq. (5.10) to write v in terms of v' and v" we get
the following equation for v':

(1 —0'd, —(1 —() I
r+ —

I d2 ( )

+ cr ( —r+ 2(r —1) 3 v' = 0. (5.11)

= —(1 —.—
) pl x+ (1 . P), t —~. (5—.»-)pr 2 8 ( -yo

P2 8x2 ( P

This is an exact equation for the marginal density p(x, t)
of X'(t) with the position, x, shifted to x + (yo/P)(1—
e P ). It is a relatively simple equation having the struc-
ture of the telegrapher's equation with time varying co-
eflicients. Nevertheless, the equation for p(x, t) is more
complicated and we will not write it.

We can easily see that in the undamped case, P—:0,
Eq. (5.15) reduces to the equation

We de6ne the auxiliary function

($(~ t) = e~~ uoC(~)/pe(~ 't)

or in real space

C(x, t) = pi x+ —((t), t i.yo

p

(5.12)

(5.13)

82 ( 11 8
8t2 ( t) 8t+

~

2A ——
~

—p(x+y, t, t)

= a t~ ~p(x+ yot, t), (5.16)

which, when yo = 0, agrees with our previous result [5].
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We now give the initial conditions that accompany
Eq. (5.15). The first one is obviously given by

P x+ —1 —e~, t =P xO = 2: —xp.yo
'

& ~=0

(5.17)

In order to find the second initial condition we write [cf.
Eqs. (5.8), (5.9), and (5.12)]

C'(, (( )) = '(0( ))2 ((t)

thus

equation and corresponds to a free first-order dichoto-
mous process. Indeed, if Pt » 1 then Eqs. (2.3) and
(2.1) read

y+(t;yo) = +—,

~ (t;2:o, yo) =~0+ —+ t, —Pp 6

but this corresponds to the first-order dichotomous pro-
cess:

x(t) = p-'F(t),

(1 —()'+" ( „1,
Bt 2( (1 —0) I

"K) —— '(0
I)

(5.is)

with X'(0) = 2:0 + yo/P and the probability density
function of X(t) obeys the telegrapher's equation (5.20).
Moreover, if the observation time t is also much greater
than the correlation time (2A) then the dominant bal-
ance technique implies [23,5]

Taking into account that [cf. Eq. (5.7)]

Bp Bp
t2 (( 2A

and Eq. (5.20) reduces to the difFusion equation

(5.21)

and noting that t = 0 is equivalent to setting ( = 0 we
see from Eq. (5.18) that

BpGBp
Bt 2AP& B~& ' (5.22)

—4(u), t) = 0.
~=o

Therefore the second initial condition for Eq. (5.15) reads

which is simply the Smoluchowski equation for the free
Brownian motion (see next section).

We now assume that the observation time is much
greater than the correlation time and that the relaxation
time is arbitrary. Let us now write Eq. (5.14) in the form

—p ~
~+ —(i —e-i"), t

I

= 0.
t' yo

i o

B. The asymptotic behavior

(5.19)
(1 —e ~')

~
+2A—

~

—Pe ~'pg fB B) iB
(Bt2 Btp

We will now perform the asymptotic analysis of
Eq. (5.15) in order to get a greater insight into how p(x, t)
evolves in time.

As in the case of the marginal distribution of the ve-
locity, there are two time scales involved in the process,
namely, the time scale given by P i that we call "relax-
ation time" because it represents the relaxation time of
the velocity X(t) and the correlation time of the noise
(2A) . We will now show that p(2:, t) has a different
asymptotic behavior depending on whether the observa-
tion time t is greater than one (or both) of these time
scales.

We first assume that t is much greater than the re-
laxation time and that the correlation time is arbitrary.
Thus Pt » 1 and Eq. (5.15) is approximated by

B2 B f yo ) a2 Bs yo2+2A —p~ x+ —,t
I
=

~ p x+ —,t ~.

(5.20)

G GJ+, (1 —e-i")' 4(~, t) =0

but if t » (2A) i then the dominant balance technique
[cf. Eq. (5.21)] applied to this equation yields

2A(l —e ~') —Pe ~'
Bt)

6 (d
(1 —e ~') C(u), t) = 0

and, after inverting the Fourier transform, we obtain the
difFusion equation

——D(t) pi x+ —(1 —e-i"), t
I
=0, (5.23)

B B ( yp

Bt Bx2 ( P

We observe that Eq. (5.20) is an ordinary telegrapher's with a variable diffusion coefficient given by
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a2 (] e—Pt)3

p2 2A(1 —e pt) —pe
t » (2A) '.

(5.24)

In this case we have only assumed that the observation
time t is much greater than the correlation time and that
the relaxation time is arbitrary. Depending on how the
relaxation time is we have two difFerent situations. Thus
if t » P i we get from Eq. (5.24)

a
D(t)

and Eq. (5.23) reduces to the Smoluchowski equation
(5.22). Qn the other hand, if t (& P i we have from
Eq. (5.24)

aD(t)-
2

and Eq. (5.23) agrees with our previous result on the
undamped case.

We now summarize the asymptotic results. It follows
I

from the preceding analysis that the orders of magnitude
of the correlation time (2A) i and the relaxation time
P i are crucial for the time evolution of p(x, t). When
both orders of magnitude are similar we see from above
that the asymptotic evolution of p(x, t) is given by the
Smoluchowski equation (5.22). Nevertheless, the evolu-
tion can be very difFerent when both orders are not com-
parable. In this situation two cases are involved.

(1) The correlation time is much greater than the re
laxation time,

In this case we distinguish two different time regimes. (a)
The observation time is much greater than the relaxation
time but still smaller than the correlation time:

P
' « t & (2A) '.

In this regime p(x, t) obeys the ordinary telegrapher's
equation (5.20). The solution to this equation can be
found in [5]. Therefore the time evolution of p(x, t) is
approximately given by

—Afp(x, t/xo, yo) - —e "' b(at —ix —xo —yo/Pi)

+ A (1/a)Io
~

—ga't' —(*—xo —yo/P)'
~

t A+ Ii
~

—gat2 —(x —xo —yo/P)2
~ga2t2 —(x —xo —yo/P) 2

xe(at —~x-x. -y. /P~) . (5.25)

(b) The observation time is much greater than the cor-
relation time:

t»(2A) '»P '.
In this regime p(x, t) obeys the Smoluchowski equation
(5.22) and the time evolution of p(x, t) is approximately
given by the Gaussian density

p(x, t) exp —,(5.26)
1 (x —xo —yo//3)'

2~p(t) 2p t

where

still smaller than the relaxation time:

(2A)
' « t (P '.

In this regime p(x, t) obeys the diffusion equation (5.23).
Note that now 2A » P hence the variable diffusion coef-
ficient (5.24) can be written in the form

D(t) =, (1 —e i' t) .

Therefore the time evolution is given by the Gaussian
density (5.26) where p(t) is now given by

a2t
P(t) =

A
(5.27)

a
p(t) = (-'« —-'+e "—-'e '")

AP3 2 4 4 (5.28)

(2) The correlation time is much smaller than the re
laxation time,

Again, we distinguish two time regimes. (a) The obser-
vation time is much greater than the correlation time but

As we will see in the next section this case corresponds to
that of Gaussian white driving noise. (b) The observation
time is much greater than the relaxation time:

t » P ' » (2A) '.
In this regime p(x, t) obeys the Smoluchowski equation



48 SECOND-ORDER DICHOTOMOUS PROCESSES: DAMPED FREE. . . 131

0.4

0.3

yp
p~ x+ —(1 —e ~'), t

~

= p(x, 0) =6(x —x ). (6.4)) ~=o

Equation (6.3) is a diffusion equation with a time varying
diffusion coefficient given by

x 0 P

0. 1

D(t) = (1 —e ~')2.
2P2

We can also write Eq. (6.3) in the form

(6.5)

0.0
—6

FIG. 3. Probability density of the position p(z, t) at t = 5.
Parameter values: 2:0 ——yo ——0, a = 1. Solid line: A = 1 and
P = 0.1 [Gaussian density (5.26) with (5.28)]. Dashed line:
A = 0.05 and P = 1 [telegraphic process (5.25)].

(5.22) and the time evolution of p(x, t) is approximately
given by (5.26) and (5.27).

Figure 3 shows the different behavior of p(x, t) accord-
ing to the order of magnitude of the correlation time
versus the relaxation time. Thus when (2A) ~ is of the
same order of magnitude or smaller than P ~ the density
p(x, t) directly evolves to a Gaussian density. However,
when (2A) is (much) greater than P this evolution is
also towards a Gaussian density but through a telegraphic
process.

VI. FREE BROWNIAN MOTION
AND ANOMALOUS DIFFUSION

In the Gaussian white-noise limit

82—+yoe ~ — (1 —e ~')2 p(x, t) =0.

where we also assume that ~yp]/P && x. In this case
Eq. (6.3) reduces to the Smoluchowski equation [19—21]

8 D 82

8t 2P. 8..-P( ') (6.7)

The other asymptotic result refers to the low damping
regime and this is equivalent to assuming that t « P
In this case Eq. (6.3) reads

8 1 8 1

8t 2
Dt (1 —Pt) -p(x+ ypt(1 ——Pt), t) = 0.

8x 2

(6.6)

It is in this form that the equation for the density of the
displacement of a Brownian particle was first obtained
by Mazo [16] and later by other authors using different
methods [17,18].

We easily get from Eq. (6.3) two relevant asymptotic
behaviors. The first one is the classic result of Smolu-
chowski. Thus, when the damping P is large, which is
equivalent to assuming that t ))P, we may write

x+ —(1 —e ~) x+ —-x,—p~ go

6D= —&oo, (6.1)
For the undamped case P = 0, we have

(6.8)

our dichotomous Markov noise F(t) tends (in probabil-
ity) to Gaussian white noise rl(t) and the second-order
process

8 1 2 8———Dt' p(x+ ypt, t) = 0.
8t 2 8x (6.9)

X+PX = g(t) (6 2)

is precisely the free Brownian motion. From the formal-
ism described above we can easily obtain the exact equa-
tion for the probability density of the displacement of
a free Brownian particle. Indeed, it is straightforward
to find that the Gaussian white-noise limit (6.1) turns
Eq. (5.15) into the following Fokker-Planck equation:

2

(1 —e- ')' p x+ —'(1 —e- '), t
~

= 0.
8t 2/2 8x2 P

(6.3)

This equation has to be solved under the initial condition
[cf. Eq. (5.17)]

When yp
——0 this equation agrees with our previous re-

sult [5].
Let us now exactly solve Eq. (6.3). We proceed as

follows. We Fourier transform Eq. (6.3) with the result

2(l —e ~') ~ P(~, t) = 0.
Bt

It is straightforward to And the solution to this ordi-
nary differential equation with the initial condition [cf.
Eq. (5.17)]

p(ur, 0) = exp ice xo+ —(—1 —e ~ )
Pp pg

This solution is
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ji(te, t) = exp( —ite xp+ —(1 —e e ) — 7(t)),yp p~
Du)2

p - ps

(6.iO)

where

(t) ~1 pt ~3 + Pt — ). —2Pt (6.ii)
The Fourier inversion of (6.10) leads to the following ex-
pression that was first given by Uhlenbeck and Ornstein
back in 1930 [22]:

(
p z, t

!&2»(t)r

-2
ps z —z() —yo(1 —e P')/P

2D q(t)

I

0

I () (pt)

FIG. 4. Dynamical exponent of the free Brownian particle.

(X2(t)) - t', Pt « 1 (6.1S)

(6.12)

A remarkable feature of both Eqs. (6.8) and (6.9) is
the following anomalous superdiffusive behavior:

In our case the exponent v(t) is given by

pt(1 —2e p' + e +")
pt 2 + 2e—pt ie—2pt (6.20)

(X2(t)) - t, Pt » 1. (6.14)

In fact, Eq. (6.13) as well as Eq. (6.14) can be obtained
as limit cases of the exact variance

in contrast with the ordinary diffusion behavior exhibited
by the Smoluchowski equation (6.7)

In Fig. 4 we have plotted v(t) in terms of lnPt and
the Bgure clearly shows that, as time increases, there
is a crossover from the dynamical exponent v = 3 to
v = 1. We remark that the damping is responsible for
this crossover since in the undamped ease the dynamical
exponent is always superdiffusive [5,6].

(t) = (x'(t)) —(x(t))'

of the process (6.2). Indeed, from Eq. (6.12) we have

D
(T(t) = —s(pt —22+ 2e p' —2e p'). (6.i5)

When Pt « 1 Eq. (6.15) goes to

o(t) = s'Dts

and when Pt » 1 it goes to

D
~(t) = , t. —

(6.16)

(6.17)

The transition from superdiffusion to ordinary diffu-
sion is clearly shown by means of the "dynamical expo-
nent, " v(t), of the process. We define this exponent in
an analogous way as is done in fractal theory to define
the differential fractal dimension, a quantity that char-
acterizes the random motion of particles [24—26]:

d ln o'(t)
dl (6.i8)

(T(t) = t ('1 (6.19)

Note that in the regions where this quantity does not
appreciably vary, the variance (T(t) can be written as

VII. CONCLUSIONS

We have studied damped inertial processes driven by
dichotomous Markov noise in the absence of a potential.
We have shown that the joint probability density func-
tion p(z, y; t) obeys a third-order partial difFerential equa-
tion which, in the Fourier domain and with a convenient
choice of variables, reduces to a second-order ordinary
differential equation.

The marginal probability density of the velocity p(y, t)
obeys a second-order partial differential equation. In this
case a complete solution has been provided for the char-
acteristic function of p(y, t). We have also obtained the
asymptotic evolution to the stationary distribution and
the stationary density itself, showing the critical behavior
of the velocity depending on the values of the correlation
time w, = (2A) ~ and relaxation time ~„= )9 ~ as can be
seen from Figs. 1 and 2.

The marginal probability density of the position obeys
the following telegrapher's equation with variable coeK-
eients:

c)2 e p' 8 ( yo
Bt2

+» - P —s l
z+ —(1-e-"),t

l1 —e-P& Ot & P

= —(1 —e ) p z+ —(1 —e p), t l.
—P~2(9 yo

P2 c)z2 P
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The asymptotic analysis of this equation also shows the
totally different behavior of p(x, t) depending on the val-
ues of ~, and r„. Thus when r, & 7'„ the density di-
rectly evolves with time to a Gaussian density, while
when ~, )) 7; the evolution is also towards a Gaussian
density but through a telegraphic process (Fig. 3).

The Gaussian white-noise limit turns the above equa-
tion into the following exact Fokker-Planck equation for
the displacement of a free Brownian particle:

(1 —e-~) sl*+ —(1 —e- ), t0 D ~ 2 82 t' yo p~

Ot 2P' orx& q P

In this limit the variance cr(t) of the process presents the
superdiffusive behavior

if t (& 7„, or the ordinary diffusion behavior

~(t) - t

if t )) ~„. This crossover eBect, which is due to the
damping, is clearly shown in Fig. 4.
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APPENDIX A: DERIVATION
OF EQS. (3.1) AND (3.2)

With the exponential density (1.3) the time Laplace
transform of the kernel h+(x, y; t/xo, yp) [cf. Eq. (2.7)j
reads

h+(x, y; s/xp, yp) = yp ~a/P ) y ~a/P
Pl y+ a/Pl & yea/P ) yoga/P

1 a yoga/P ixb x —zp+ —y —yp g —
~ lnP' y~a/P p

'

where e(z) is the Heaviside step function and

yo —a/P l t' ab t'a
! = e

I yp ——
! e(y. —y) + e

I

——y. ! e(y —yp)
y ./P i -& Pr

yp+a/P ) ( al ( ae
l

ln
y+a/P ) ( P)I

= e
l yo + —

I e(yo —y) + e
I

-- —yo I e(y —yo).
& P

We first restrict the initial velocity to be in the interval —a/P ( yo ( a/P and we will later remove this restriction.
In this case the Anal velocity lies also in this interval. Hence

!
= e(y —yo)

yo —a/P 'l

and

l

= (yp —y)y+a/P )
The x Fourier transform of h+ (x, y; s/xp, yp) reads

y+aIP '
. & y yo~

(~, y;s/xo, yo) = e(+(y —yo)) exp i~
l
*o——

y/a yoga

where

A+ s .aun~= +i

(A2)

(A3)

We observe that h+(u, v; s/x, y) = h+(x —u, v; s/y). Therefore the joint Fourier-Laplace transform defined by

0 (~, y;s) = dte dx e ' *0+(x,y; t)

turns Eqs. (2.5) and (2.6) into the following set of coupled integral equations:
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—1+A+A (u, y; s) = ~h (w, y; s) + —
Iy —a/pl

a/a

0 (Cd& Vj S) i~(y v)yP
I~ —a/PI" (A4)

0 (cu, y;s) = zh (a, y;s) + —Iy+a/pI
a/P 0 (a) vI s) i~(y v)/p-

l~+ a/pI

After differentiating these two equations with respect
to y we find that the set of coupled integral equations is
equivalent to the following set of first-order differential
equations:

B ~+ A

(a —py) + (i~y + A+ s —p)A —AA
By

(1 —()——iver(q = 0,p

where r and o. are defined in Eq. (3.13). By combining
Eqs. (B3) and (B4) we easily obtain Eq. (3.12).

I et us now obtain the initial conditions. Prom
Eq. (3.3) we see that

p(u p 0) = e ~(~*'+"w') q(cu, p, ; 0) = 0.

= —6(y —yo)e ' *', (A6)
A

Also from Eqs. (B2) and (3.11) we see that

M(a+ py)
By

—(iuy+ A+ s —P)A + AA

=-—~(y —yo)e "*' (A7)
2

(1-()—p
i=o

Now taking into account that t = 0 is equivalent to set-
ting ( = (, where ( = 1 —e, we get Eqs. (3.14) and
(3.15).

In writing Eqs. (A6) and (A7) we have taken into account

the expression of 6 (w, y; s/xo, yo) given by Eq. (A2) and
shat

since we are assuming that —a/p ( y ( a/p. In fact,
this last assumption can be removed because following
the above line of reasoning it can be easily shown that
Eqs. (A6) and (A7) are also valid for all values of y and
yo.

If we take lrlto accollrlt that 0 (x, y; t) satisfy tile irll-

tial conditions (3.3) then the Fourier-Laplace inversion
of the above set of equations Anally leads to the system
(3.1) and (3.2).

APPENDIX C: DERIVATION OF EQ. (4.22)

(B B&
I

—+ pp lq+2Aq+iapp=0,
gBt Bp) (C1)

('B B&
I

—+ pu I»i+ iapq = o (C2)

The change of variables (4.21) turns this system into

In terms of p(cu, »i; t) the characteristic function p(p„. t)
is given by

P(p, ;t) =»i(u) = 0, p;t).

In this case the system (Bl) and (B2) of Appendix B can
be written as

APPENDIX B: DERIVATION OF EQ. (3.12)
p(—+ 2Aq + ip(p = 0,

Q
(C3)

8 0
Bt
——(cu —P»i) q + 2Aq + iapp = 0,

B»i
(B1)

0 0
Bt
——(u) —P»i) p+ ia»iq = 0.

Bp
(B2)

The change of variables (3.11) turns this system into

(B3)

The double Fourier transform of the system (3.5) and
(3.6) reads

Op—+iq =0, (C4)

and combining these two equations we get Eq. (4.22).
Following a completely analogous reasoning to that of
Appendix B we obtain the initial conditions (4.23) and
(4.24).

APPENDIX D: DERIVATION OF EQ. (5.6)

We see from Eq. (5.3) that ( = 0 is a regular singular
point of the differential equation. This allows us to seek
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a series solution of the form [23]

p(~, (, r) = ) a„(~,r)(".
n=o

The substitution of Eq. (Dl) into Eq. (5.3) yields

p(~, (, r) = A(~, r)u(() + B(~,r)v((), (D2)

~[u(() v(()] =
(1 )~~„ (D5)

Combining Eqs. (5.4) and (5.5) with Eqs. (D2)—(D5) we

obtain

From Eq. (5.3) and Eqs. (D3) and (D4) we see that the
Wronskian of u(() and v(() is

u(() = 1 —so2( + 0(( ), (D3)

.(() = ('+ —'.(1+ )('+ —.'("+3r+ 2)('+ &((')
(D4)

where A and B are to be determined from initial condi-
tions, and

p(cu, (, r) = v'(~)u(() —v(()u'(()
1 +"

2

x exp( —i(u(xo + yo(/P),

where ( = 1 —e . In the original variables p and t,
Eq. (D6) yields Eq. (5.6).
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