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Orientational relaxation in a colloidal Heisenberg model
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We study orientational relaxation in a suspension of directed spheres interacting with a Heisenberg

pair interaction. Translational diffusion is neglected. Rotational diffusion is described by a generalized

Smoluchowski equation. The wave-number- and frequency-dependent diffusion coefficient characteriz-

ing the decay of the rotational dynamic scattering function is calculated to first order in volume fraction.
The single-particle orientational correlation function is evaluated to the same order.

PACS number(s): 82.70.Dd, 05.20.Dd, 61.20.Lc, 75.10.Nr

I. INTRODUCTION II. DESCRIPTION OF THK MODEL

Orientational relaxation of molecules in liquids can be
observed by various experimental methods [1]. Due to
the complexity of the coupling of translational and rota-
tional motions, the theory is less well developed than the
theory of atomic liquids [2]. Most effort has been direct-
ed towards the study of dielectric relaxation [2—8].

In the following we investigate a simple model in
which translational motion is completely neglected. We
consider a suspension of oriented spheres which interact
via a distance-dependent Heisenberg pair interaction.
The diffusion in orientation space is described by a gen-
eralized Smoluchowski equation [9]. We neglect hydro-
dynamic interactions [10,11]. The time correlation func-
tion of polarization Auctuations is evaluated as an aver-
age over an equilibrium ensemble of positions, corre-
sponding to a disordered system.

In a previous article [12] we have derived general ex-
pressions for the time correlation function of polarization
fluctuations and the single-particle orientational relaxa-
tion function of a colloidal suspension of spheres, valid to
first order in volume fraction. Here we show that for the
Heisenberg model these expressions can be evaluated ex-
actly. The explicit results contain a wealth of informa-
tion on the process of orientational relaxation. For
Heisenberg interaction of moderate strength, at least four
relaxation times are necessary for an accurate description
of the memory function characterizing the frequency
dependence of the rotational diffusion coefFicient. The ro-
tational dynamic scattering function for ferromagnetic
Heisenberg interaction is markedly different from that for
antiferromagnetic interaction.

The present model is of interest as the classical limit of
spin-glass systems studied in solid-state physics [13].
However, the Heisenberg interaction is not very realistic
for actual colloidal suspensions. Nonetheless, the model
serves as a useful guide in the study of real physical sys-
tems. We have employed the method developed here in
the study of liquid crystals and ferroQuids. We hope to
report on that work in future presentations.

P (X, t) =PT,q(XT )Ptt (X~,t;XT ), (2)

where Pr, (XT) is the equilibrium distribution of posi-
tions and Pz(X+, t;XT) is the orientational distribution
function for fixed positions XT. We assume that the
latter obeys the generalized Smoluchowski equation

BP~
=&PR

Bt

where 2) is the Smoluchowski operator defined by

We consider N spherical particles immersed in a Quid

at temperature T. The whole system is enclosed in a
volume Q. The orientation of a sphere is indicated by the
direction of a unit vector u at its center. The spheres are
assumed to interact via a direct pair potential of the form

U(r, u„uz) =Uo(r)+ J(r)u, u2,

where r =
~ Rz —R, ~

is the distance between the centers of
two spheres. Hydrodynamic interactions will be neglect-
ed. If R,- denotes the position of the ith sphere, and u; its
orientation, then the positions of all spheres are described
by the 3N-dimensional vector XT=(R&, . . . , R&), and
the orientations are described by the 3X-dimensional vec-
tor Xz =(u„. . . , uz ). The total configuration is sum-

marized in the 6N-dimensional vector X=(XT,Xz ). In
Eq. (1) negative J implies ferromagnetic interaction. In
solid-state physics, the Heisenberg interaction between
two spins is usually defined with the opposite sign.

We consider an ensemble of configurations X, de-
scribed by a time-dependent probability distribution
P (X, t), which obeys the generalized Smoluchowski equa-
tion [9—11]. We assume that rotational diffusion is fast
compared with translational diffusion. On the basis of
the separation of time scales, we study the relaxation of
orientations for a fixed set of positions XT. Finally, we

average over an equilibrium ensemble of positions XT.
Thus we approximate the distribution function by
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&PR =DRL ILPR+&«~'»R] . (4) y (k, 0)= lim —(M(k)M( —k)) .
N~co Q

By isotropy, the diffusion tensor takes the form

Dii(k, co) =Disci(k, co)kk+D~, (k, co)(1—kk) .
Lj=Uj X a

BUj
(5)

The susceptibility tensor takes the form

Here, Dz is the rotational diffusion coefficient for a single
sphere, and L =(Li, . . . , L&) is a rotation operator with
components for sphere j:

(16)

Furthermore, I3= 1/kii T and the potential N(X) incorpo-
rates both a wall potential and the direct pair interaction
(1). The Smoluchowski equation (3) describes how the
distribution function P~(X~, t;Xr) tends to the equilib-
rium distribution

y (k, O) =
3P—nop [Si(k)kk+S, (k)(1 —kk)], (17)

with static structure factors S&(k) and S,(k). Clearly, the
scattering function can also be decomposed into longitu-
dinal and transverse parts.

Pii,q(Xii, Xr) =exp[ I3@(X—)]/Zii (P;Xz-) (6) III. SHORT- TIME ROTATIONAL DIFFUSION

in the course of time. The partition function Z~(P;Xr)
normalizes the distribution to unity. The complete equi-
librium distribution is given by

P,q(X) =Pr,q(Xr)Pii, q(Xii', Xz. ) . (7)

We consider equilibrium Auctuations of polarization at
wave vector k. The corresponding variable is

N
M(k)=p g u e (8)

where p is the dipole strength. The time-dependent
orientational scattering function is defined by

F~ (k, t) = lim —( M(k, t)M( —k) ),1

~ 2V
(9)

where the time dependence is governed by the adjoint
Smoluchowski operator X, such that

M(k, t) =exp(Xt)M(k, O), M(k, 0)=M(k) . (10)

The operator X is given by

X=D~[L —P(L4)].L .

The angular brackets in Eq. (9) indicate an average over
the equilibrium distribution (7). Finally, we take the
thermodynamic limit X—+ ~, 0~~ at constant
n0 =N/Q. Since there are no applied fields, the system is
homogeneous and isotropic in the thermodynamic limit.

The one-sided Fourier transform of the scattering func-
tion is given by

In the following we restrict ourselves to consideration
of a semidilute suspension. The diffusion tensor DR (k, co)
will be evaluated to first order in the volume fraction oc-
cupied by spheres. The susceptibility tensor y (k, O) will
be evaluated to second order.

We consider first the susceptibility tensor. The struc-
ture factors S&(k) and S,(k) are given by

Si(k) =1+—,'no[le(k)+2hD(k)],
(18)

S,(k) = 1+—,
' no [0~(k)—hD(k) ],

where fD(k) is the Fourier transform of the pair-
correlation function hz(r), and hD(k) is the Hankel
transform of the pair-correlation function hD(r), as
defined in Hansen and McDonald [2]. To zeroth order in
volume fraction, the pair-correlation functions are given
by

h~(r)=, f u, u, [e ~"—1]du, du, ,
16m.

(19)
hD(r)=

2 f [3u, rr. u2 —u, u2][e '—1]du, du2 .
327T2

For our system the function hD(r) vanishes due to isotro-
py. The transform fz(k) in Eq. (18) is given by

fa(k) =4mfjo(kr)h. ~(r)r dr . (20)

1f(u„u2) = exp[ —Ku, u2]/Yo(K),
16~

(21)

In order to evaluate the integral, we consider the two-
particle distribution

Crii(k, co)=no f e' 'Fii(k, t)dt .
0

From Eqs. (9) and (10) we find the expression

(12) with normalization integral

1
Yo(K) = exp[ —Ku, u2]du, du2 .

16m
(22)

Gi, &(k, co)= lim (M&( k)[ico+X—] 'M (k)) .
N —+ oo

(13)

The latter is easily evaluated as

Y (K)
smhK

(23)

The (k, co)-dependent diffusion tensor Dii (k, co) is defined
by

One also finds

,&x =0, (24)
Cxz(k, co) =kii T[ icol+2D—~ (k, co)] ' y (k, O), (14)

where y (k, O) is the zero-frequency susceptibility tensor
where the angular brackets with subscript K indicate an
average over the distribution f(u„u2). Furthermore,
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=1 1(uu ) =———cothK 1.2 K (2&)

1
( 2 ~B)= g (r, u„u2) /1 *(r,u„u2)B(r, u„u2)

16m

Using these results in Eq. (19), one finds

hz(r) =3 exp[ —Pvo(r)] Y& [PJ(r)],
where

with weight factor
(26)

+d I' d U )d ll2

g(r, u„u2)=exp[ —Pv(r, u„u2)] .

(32)

(33)

d Yo sinhK coshIC
dEC It 2 IC

(27)
We define the two-body Smoluchowski operator for two
spheres centered at R&, R2 with distance vector
r=R2 —R, as

The function Y&(K) is odd in E and vanishes at K =0.
For hard spheres of hard-core radius a, the volume

fraction is defined as $=(4vri3)noa . To first order in
volume fraction, the diffusion tensor is written as

Dg (k, rv) =Dpi [ 1+[A~ (k)+a~ (k, co)](f ], (28)

with a tensor aii(k, co) which tends to zero at high fre-
quency, so that A,z (k) represents the density correction at
high frequency. The tensor A,z(k) may be expressed in
terms of the static structure factors. We have shown else-
where [12] that at any density the high-frequency limit of
the diffusion tensor is given by

X„=Dz [L P(Lv )—] L, (34)

We abbreviate

ik r/2+u e ik r/—2—Uie 1l2e (36)

We have shown elsewhere [12] that with this notation the
tensor A,z(k) may be expressed as

with L =(L&,L2). The corresponding operator DzL for
free diffusion is denoted as Xf,. The perturbation opera-
tor V, is defined as the difference

V„=X„—Xi;= 13D~(L—v) L .

D~(k)= kk+ (1—kk) .
Si k S, k

(29) (k)=—,(k~ V„~k) .
16~a D~

(37)

(k)=A, (k)1, A. (k)= — 0 (k) .
4~a

(30)

This represents a virial-type correction to the diffusion

coefficient.

For purely ferromagnetic interaction
[J(r) (0], the scalar A,z(0) is negative; for purely antifer-
romagnetic interaction, it is positive. To give a numeri-
cal example, we consider an interaction vo(r), which van-
ishes for r )2a and is infinite for r &2a, and an interac-
tion J(r) which takes the constant value J in the range
2a &r &2x&a and vanishes elsewhere. For this interac-
tion we find

A,~(0)= —8(x, —1)Y,(PJ) .

Substituting from Eq. (18) and using the vanishing of
hD(r), we find that the tensor Ai, (k) is given by

We abbreviate

~
Vk) = V„~k) =U„(k) . (38)

We have also shown [12] that the tensor ai, (k, cv) may be
expressed as

9
aR(k, m)=

16~a D~
Vk Vk

1

i CO+
(39)

In order to evaluate the effect of the inverse operator, we
must solve the two-sphere Smoluchowski equation. This
is conveniently done in a matrix representation of the
operator.

It turns out that for the chosen interaction (1) the ma-
trix representation is relatively simply. For this interac-
tion the perturbation operator V, is given by

This shows that for /3J = —1 and x& =2, the interactions
cause an appreciable slowing down of collective rotation-
al diffusion. For antiferromagnetic interaction of the
same magnitude, the rotational diffusion is speeded up.
We recall that the short-time rotational diffusion of a sin-
gle sphere is not affected by the interactions [12].

V„=—D~E(r)(u, Xu2) (L, —L2),

with IC (r) =PJ(r). We define the vector functions

P'i "(ui, u2) =(ui'u2) ui

Pi (u»u2)=(u, u2) u2,(2) j —1

(40)

(41)

IV. MEMORY EFFECTS

The dependence of the rotational diffusion tensor on
frequency is due to memory effects. In this section we
discuss the frequency dependence to first order in volume
fraction, as given by the tensor az(k, cv), defined in Eq.
(28). The tensor may be calculated from a solution of the
two-sphere Smoluchowski equation. We shall show that,
like the tensor A,z (k), it is proportional to the unit tensor.

We introduce the scalar product between two functions
A (r, u„u2) and B(r,u„u2) as

for integer 1=1,2, . . . . The action of the free diffusion
operator on the first function is given by

(L +L )P' =2(/ —1)(/ —2)Pi

+2(/ —1)Pi ', —2/ Pi" . (42)

(u, Xu2) ~ (L& —L2)Pi"
=2(/ —1)Pi" i+Pi ' —(2/ —1)Pi'+i, . (43)

The action of the operator appearing in Eq. (40) is given
by
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The action of the operators on the function P(l ' is found
by an interchange of superscripts (1) and (2) in Eqs. (42)
and (43). It is evident that we can evaluate the expression
in Eq. (39) in a matrix representation defined by the func-
tions (41).

V. MATRIX REPRESENTATION

f' '(u„u„co)= g [A,'"'(co)p', "(u„u2)
1=1

+ A' '(co)P' '(u„u2)],

with coefficients given by

A' "( )= A" '(co) A' '(co)= A'"'(co)

(55)

(56)

[i co+A„]f„(k)=U„(k) .

By linearity we can put

(44)

In order to find the matrix representation of the ex-
pression in Eq. (39), we consider the equation Hence it follows that the upper sign in Eq. (54) corre-

sponds to the subspace of functions which are even under
interchange of particle labels, and the lower sign corre-
sponds to functions which are odd under interchange.
From Eqs. (40), (43), and (47), one finds

q() ) ik r/2+ q(2) —ik r/2 (45) U"'= DRK[u—2 (u, u2)u—,], (57)

where g(" satisfies the equation

[Ico+X'„]i/i" ' =U" ',
with U'" defined by

U'"=V,u, U"'=V„u2.r 1

(46)

(47)

so that

U'"'=E5, U" '= —K6I 12 I 11 (58)

It suffices to solve the two sets of equations (53). The ma-
trices M —read explicitly

The solution g' ) is obtained by interchange of super-
scripts (1) and (2). We expand the function g") as

M!~I. =(2l +K)5II' 21(l+ l)5I I

+ 2l ( I +K)5I I. ,
—(2l —3 )K61 I +, . (59)

it!'"(U„U2,co) = g [ Ai'"'(co)PI "(u„u2)
1=1

Introducing the variable s = —i'/D~, we can write the
equations as

and the function U" ' as

+ A (12)(~)p(2)(u U )] (48)
sAI' +—+ g Mii, Ai*. =K[+5I) 5(2] . —

I'=1
(60)

U'"(ui, u2)=DR g [Ui""Pi"(u„u2)
1=1

+ U(12)p(2)(u U )] (49)

Substituting the solution g„(k), given by Eqs. (45), (48),
and (55), back into Eq. (39), we perform the angular aver-
ages to get

We define matrices M and N by

X„P(i"= DR g [Mii Pi"+—Nil. p'I '] .
I=1

By interchange of superscripts,

Xrpi ' — DR y [NII Pi—'+M[I Pi '] .
I=1

(50)

(51)

(1) — (2)(U1PI )K = (U2PI )K
0

(2) (1) Yl(K)
(U1Pi )K (U2Pi )K

0

where the function Yi(K) is defined as the integral

1
Yi(K) =

2 (u) U2) exp( —Ku( u2)du)du2 .
16~

(61)

(62)

In matrix representation Eq. (46) becomes

icoAI' DR g Mii Ai' ——=DR Ui' ——
,

I'=1

with the definitions

(53)

I ~ A I DR X [MII' A!' +Nll' A I' ] DR UI

(52)
i~A(") D, y„—[N, , A,(,")+M A'"']=D U'"'

I'=1

Adding and subtracting the equations, we get

This generalizes the definitions (22) and (25). Clearly,
I

d sinhK
I

The functions Yi(K) are given by

I+1
YI(K)= $ f (l m)K™sinhK

m=1

I

g g(l, m)K coshK,
m=1

(63)

(64)

P 1+—g (11)+g (12) U1+ —U(11)+U(12)
I I — I ~ I I — I

M —=M+iY .

By interchange of superscripts, we get

(54) f (l, m)=(m —1)f(l—l, m —1)+g(l —l, m),

g (i, m) =(m —l)g(l —l, m —1)+f (l —l, m),
(65)

with coefficients which follow from the recursion rela-
tions
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with initial values

f(1,1)=0, f(1,2)=1, g(1, 1)=1 .

The angular integration in Eq. (39) yields

1
2 exp[ —Ku, uz]U„*(k)@„(k)du,du&

16~

,'D~K—1y [r,+,(K) r, —
,(K)]

1=1

(66)

It is easily seen that the solution vectors of Eq. (60) have
the related symmetry

A '
(
—K,s) =(—1)'+'A '+(K s)

It therefore suffices to consider just one of the sets of
equations. We choose the upper sign and simplify nota-
tion by dropping superscripts, but add a hat to indicate
Laplace transform. The set of equations to be solved
reads, therefore,

X [AI "~cosk r+ AI»~] .

This shows that the tensor az(k, co) is isotropic:

a~(k, co) =a„(k,co)1 .

The scalar a~ (k, co) is given by

3 Pv0a~(k, co)= g f e 'W, (K)[A,'"'cosk r
8ma' I

(67)

(68)

sAi+ g MD, Ai, =K[5ti —5(2] .
1'=1

By use of Eq. (54), we find the related symmetry

A'"'( —K )=(—1)'+'A""(K,s),
A" '( —K,s)=( —1)'A" '(K, s) .

The functions Y'&(K) have the symmetry

(77)

(78)

where Wt(K) is defined by

+ A " ']dr (69) Yt( —K)=( —1)'Yt(K) .

From Eqs. (73) and (74) we find the symmetry relations

WI(K)= K[ It+—( K)
—I'i, (K)] . A( —K, co)= A(K, co), B(—K, co)= B(K,co) . — (80)

The integration over angles can be performed and we are
finally left with the sum of radial integrals:

We regard the coefficients A(K, co) and B(K,co) as
one-sided Fourier transforms of functions A(K, t) and
B(K,t),

az(k, co) = 3 g f e 'WI(K)[ A&'"'(co)jo(kr)
2a

+ A" '(co)]r dr

(71)

A(K, co)= f e' 'A(K, t)dt,
0

B(K,co)= f e' 'B(K, t)dt .
0

From Eq. (80) we find the symmetry property

(81)

We recall that K=13J(r) and that the coefficients A&'"'

and AI" ' depend on r via K. We conclude this section by
casting the scalar az (k, co) into the final form

az(k, co) = f e [A (K,co)+B(K,co)jo(kr)]r dr,
2a

(72)

with A(K, co) defined by

A(K, co)= g Wt(K)Ai" '(K, co)
1=1

and B(K, co ) by

A( K, t)=A(K—, t), B( K, t)=—B(K,t) . —(82)

It therefore suffices to study the functions A (K, t) and
B (K, t) for positive values of K.

In Fig. 1 we plot the coefficients A (K, O) and B(K,O) in

1.2-

1.0-

0.8

B(K,~)= g W, (K) A,""(K,~) .
Jt =1

(74) A
-10 8

0.6

The coefficients A&""(K,co) and AI"' '(K, co) follow from
Eqs. (54) and (60). 0.4

VI. SYMMETRY 0.2

MI( (
—K)=( —1) +

Mti (K) . (75)

The coefficients A(K, co) and B(K,co), introduced in
Eqs. (73) and (74), possess an interesting symmetry prop-
erty with respect to the sign of the Heisenberg interac-
tion. It follows from Eq. (59) that the elements of the ma-
trices M+ and M are related by

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

FIG. 1. Plot of the time integrals A(K, O) (solid curve) and
—10B(K,O) (dashed curve) as a function of interaction strength
K.
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the range 0 & E & 2, as found by numerical solution of Eq.
(77) for s =0. The values at K = 1 are

1
[1—a~( ~,0)P],

2DR
(93)

A (1,0)=0.2617, B(1,0) = —0.0197 . (83)

It sumces to use / values up to l,„=7 to achieve the
quoted accuracy. At E =2,

A (2,0)= 1.2020, B(2,0)= —0. 1375 . (84)

One needs / values up to l „=10to attain the same ac-
curacy.

VII. SINGLE-PARTICLE RELAXATION

C"'(t)=(u, (t) ui), (85)

with time evolution governed by the adjoint Smolu-
chowski operator as in Eq. (10). The integral relaxation
time ~, is defined by

C'"(t)dt . (86)

The one-sided Fourier transform

Before studying the set of equations (77) in more detail,
we note that our calculation also yields information on
single-particle relaxation. The orientational correlation
function for a single sphere is defined by

is always larger than the short-time relaxation time
I/2D~. From the symmetry relation (80) it follows that
the correction term (92) is even in the sign of the interac-
tion J(r).

We consider again the model studied at the end of Sec.
III. For that model,

a~ ( ~,0)= —4(x, —1)2 (f3J,O) . (94)

This shows that the coeKcient easily attains appreciable
values.

VIII. MEMORY FUNCTION

F~ (k, t) = —2D~ (k)F~ (k, t)
dt

—f M~(k, t —t')F~(k, t')dt' .
0

(95)

The time evolution of the scattering function FR(k, t)
is expressed conveniently in terms of a memory function.
Before studying the scattering function itself, we consider
the memory function Mz(k, t). It is defined from the
integro-differential equation

C'"(co)=f e' 'C'"(t)dt
0

may be expressed as

(87)

(88)

Its one-sided Fourier transform

M~(k, co)= f e' 'M~(k, t)dt

is found from

D~(k, co)=D~(k)+ —,'Mii(k, co) .

(96)

(97)

with a frequency-dependent relaxation time rs(co). We
have shown elsewhere [12] that in the absence of hydro-
dynamic interactions, the relaxation time is given to first
order in volume fraction by

To first order in volume fraction,

M~ (k, co) =2D~a„(k, co)$1 .

From Eq. (72) we find

(98)

r~(co) = [1+az.(co)P],1

R

with a coefficient ar(co) given by

(89) Mg (k, t)

3Dz 1 f —e '[ A (K, t) +j 0(kr)B (K, t) ]r dr.
a o

—3
a&(co) =

S~a'DR
(90)

By use of the equations in Sec. V, one finds that this may
be expressed as

ar(co)= —a~( ~, co) .

It clearly suffices to study the functions A (K, t) and
B (K, t). From Eq. (60) we find the initial values

3 (K,O)=KWi(K), B(K,O)= KW2(K—) . (100)

Typical values are

From Eq. (72) we find for the coefficient az ( ~, co),

az(~, co)= — f e A(K, co)r2dr .
2a

(92)

3 (1,0)=0.7358, B (1,0)=0.1431,

A (2,0)=3.8975, B (2,0) = 1.4074 .
(101)

The integral relaxation time is given by r, =rz(0). We
recall that the short-time relaxation time equals I /2Dz.

It follows from the expression (39), and the fact that
the Smoluchowski operator X„ is negative definite, that
at zero frequency az(k, O) is negative. In particular,
az( ~,0) is negative, so that the integral relaxation time
T] y

A (K,O) is always larger than B(K,O). It follows from
general properties of the Smoluchowski equation that the
function 2 (K, t), and the expression in square brackets in

Eq. (99), decay monotonically with time. In Fig. 2 we

plot the initial values 2 (K, O) and B(K,O) in the range
0(K (2. From Eq. (82) it follows that 3 (K, O) is even
in K, and B (K, O) is odd in K.

We write 3 (K, t) and B(K,t) as a sum of two terms,
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4.0

3.5-

3.0

2.5-

A(t) = g T exp[ s—D~t] .
j=1

In components,

A l ( t) = g T!J'exp['s,—Dz t)
j=1

(108)

(109)

A
2.0-

1.5-

1.0-

The time dependence may be summarized in the infinite-
dimensional matrix T with elements TI, and the set of ei-
genvalues [s~}. From the initial value A(0)=h, it fol-
lows that the vectors T satisfy the sum rule

0.5-
g T, =h.
j=1

(110)

0.0 I

00 02 04 06 08 10 12 14 16 18 20
We introduce the constant vector W with components

W&(K), as defined in Eq. (70). The functions A +—(K, t) are
given by the scalar products

FIG. 2. Plot of initial values 3 (K,O) (solid curve) and
B(X,O) (dashed curve) as a function of K.

A*(K, t)=+W A (t)=—+ g W T,—exp[ s, D~t—] . —
j=1

corresponding to the decomposition in Eq. (54):

A(K, t)=-,'[A+(K, t)+A (K, t)],
B(K,t) =-,'[A+(K, t) A—(K, t)] .

(102)

The coefficient a —(K) in Eq. (103) therefore equals
+ + J
+W T—.In Sec. IX we show how the spectral decompo-
sition may be put to practical use.

A —(K, t) = g a*(K)exp[ s +(K)D~ t)—,
—

j=1
(103)

where [s +—. (K) } are the eigenvalues of M —(K). It is easy
to see that for K =0 the matrices M +—(0) both have the
set of eigenvalues [s—(0)} with s+—(0)=2j . As we shall
see, for moderate values of K the low eigenvalues are not
much di6'erent from the unperturbed eigenvalues
[sj—(0)}.

In order to find the coefficients [a~
—(K) } in Eq. (103),

we consider the formal solution of Eq. (77). In vector no-
tation the equation reads

s A+M. A=h . (104)

The time evolution of A +(K, t) is governed by the matrix
M+(K), and that of A (K, t) by the matrix M (K). We
have chosen the signs such that A (K,O) is positive. By
expansion in terms of the eigenvectors of M (K), we get—

IX. ELIMINATION OF FAST VARIABLES

We have not been able to find the explicit eigenvectors
of the matrix M(K) for arbitrary values of K. However,
we can find accurate values of the functions A +—(K, t) for
moderate values of K by the method of elimination of fast
variables [14,15]. We decompose the matrix M(K) into
submatrices as

P Q
R 5 (112)

where P is a finite p X~ matrix comprising the first p in-
dices I. The vectors A(s) with components [ Ai(s)} are
decomposed correspondingly as A=(x, y), where x
comprises the first p indices l. For p we use the minimum
value 2. The vector h on the right-hand side of Eq. (104)
is decomposed as h=(g, O). Only the first two com-
ponents of g are nonvanishing. We can now rewrite Eq.
(104) as

The formal solution is

A(s) = [s1+M ]
' h . (105)

sx+P x+Q y=g,
sy+R.x+S.y=O .

(113)

This has the spectral decomposition

QO

A(s)= g $+s (106)

We eliminate the fast variables y by neglecting the first
term in the second equation. This leads to the reduced
description

In components,

Al(s)= g S +Sj
(107)

sx' '+M'~' x' '=g—red

with the reduced p Xp matrix

MIl,'dl =P —QS 'R .

(114)

(115)

By inverse Laplace transformation, we see that the time-
dependent vector is given by

It is clear that the reduced description becomes exact in
the limit p~ ~. The initial value of the vector xl~'(t),
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corresponding to x'~'(s) by inverse Laplace transforma-
tion, agrees with the exact value I for p ~2. Further-
more, the value of x'~'(s) at s =0 agrees with the exact
value x(0). In formula,

x'~'(0) =x(o), x'"'(o) =x(o) . (116)

x' '(s)=[sI'"'+M,'I,'] ' g' '.
This can be decomposed as

T(P)
x"'(s)= y s+s ~

(117)

(118)

The inverse Laplace transform reads

The second equality implies that the time integral of
x'~'(t) coincides with the exact value. In practice it
suffices to use modest values of p, provided the interac-
tion parameter E is not too large. This method is partic-
ularly effective, because the vector h happens to have a
small number of nonvanishing components.

The formal solution of Eq. (114) is given by

M,—,' ' = —K 8+K + 4+4K+X—, (123)

0 18+%+Y—

where the additional terms X—+ and Y—may be calculated
from the matrix QS R, as indicated in Eq. (115). The
terms are given by

—3K

of values considered, the dynamics of the system may be
described in terms of a relatively small number of vari-
ables.

We calculate the functions A (K, t) and B(K, t) from
the scheme presented in Secs. VIII and IX. As men-
tioned before, it suffices to consider positive K. In the
range 0 (E ( 1.3, the approximation of order p =4 in the
elimination scheme of Sec. IX does not differ appreciably
from the approximation of order p=3. Although the
higher-order approximation adds the pair of eigenvalues
s4' i, the functions A —' '(K, t) are numerically almost
identical to the functions A —' '(K, t) H.ence it suffices to
consider the approximation of order p =3. At K =1.378,
the eigenvalues s3 4 '(K) turn complex, indicating a
breakdown of the approximation scheme at this point.

In the approximation of order 3, the matrix M,—,d
'

reads explicitly

2+% +2+2E —4

y'I'(t)= —S 'R x'~'(t) . (120)

The corresponding approximation to the fast variables is
given by

X+=60K(S+ ')«, -

Y—=30K[(+1 K)(S '—)44+4(S—— ')~4] .
(124)

A ''(K, t)=—+W A —'i'(r) . (121)

In our case the vector R.x'~'(0) vanishes for p )3. For
such values,

A+-'&'(K, O) = A -(K,O) .

In practical calculations we do not need to go beyond
p =4. The eigenvalues [

—s,I~'] are found analytically as
roots of the characteristic equation

D'~'(s) —= ~sI'~'+MI~„'
~

=O . (122)

The determinant is a polynomial of degree p. The matrix
elements T,"~' are found as residues at —s'~' from the
solution (117) in explicit form by Cramer's rule.

These are slaved to the slow variables. The vector A(t)
is approximated by

A'~'(t) = [x'~'(r), y'~'(t)] .

The order p approximation to the functions A —(K, t) is
given by the scalar product

The components of the vector x ' '(x) may be calculated
from Eq. (117). The components of the vector y

—' ' are
given by Eq. (120) as

y;+"'=SK(S+--')„x;+"' , i=45, . . . . (125)

The inverse of the matrix S—may be ealeulated numeri-
cally by truncation at sufficiently high dimension.

The numerical results for the functions A (K, t) ca—n

be described in simple terms. It turns out that in the ex-
pression (103) only the coefficients a —, (K) and a2 (K)
yield an appreciable contribution. Moreover, the ratios
a i+2(K)/A (K,o) and a i 2(K)/A (K, O) hardly vary
with K. The ratio a —, (K)/A —(K,o) tends to —,

' as K tends

to zero, and the ratio a2 (K)/A —(K, O) tends to —,'. In

Fig. 3 we plot the corresponding eigenvalues si (K) and

sz (K) as a function of K. These are also practically con-
stant in the range considered. However, the difference
s i+ (K)—s i (K) is crucial for the calculation of the func-
tion B (K, t). The functions A (K, t) are appro—ximated
very well by a sum of two terms

A +(K, t) =a —, (K)exp[ —s —,
—(K)Dz t ]

X. CALCULATION OF THE MEMORY FUNCTION +a~ (K)exp[ —s2 (K)D„t] . (126)

In this section we study the functions A (K, t) and
B (K, t) which are related to the memory function by Eq.
(72). We consider a limited range of values 0 & iK i

& 1.3,
corresponding to an interaction strength

~

J
~

of the order
of k~T. For larger values the orientations are strongly
correlated, which gives rise to sharply peaked orienta-
tional distribution functions, requiring a large number of
spherical harmonics in their representation. In the range

In Fig. 4 we plot the initial values for the corresponding
contributions to the functions A (K, t) and B (K, t),

a,+~(K)+a, ~(K)
2A (K,o)

a,+2 (K)—a, 2 (K)
2B (K,o)
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-6-
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B

0.6
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0.0
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-10
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FIG. 3. Plot of the values —s,+(K) (solid curve), —s2+(K)
(dashed curve), —s

& (k) (dot-dashed curve), and —s2 (K) (dot-
ted curve) as a function of K.

FIG. 5. Plot of the reduced memory functions
A (K, t) / A (K,O) (solid curve) and B (K, t) /B (K,O) (dotted
curve) as functions of ~=D& t for K = 1.

Again, these ratios hardly vary in the range of K con-
sidered. All four coeKcients are positive. The function
2 (K, t) decays monotonically to zero, as required by the
spectral properties of the two-sphere Smoluchowski
operator. On the contrary, the function B (K, t) changes
sign as a consequence of the fact that s, (K) &si+(K).
The exponential

a, (K)exp[ —s, (K)D~t]

dominates at long times. In Fig. 5 we plot the ratios
2 (K, t) iA (K, O) and B (K, t) lB (K,O) as a function of t
for K = 1. The negative tail of the function B (K, t) is
conspicuous.

XI. SCATTERING FUNCTION

Upon substitution of the functions 3 (K, t) and B (K, t)
into Eq. (99), one can evaluate the memory function
M~(k, t). The k dependence of the memory function is
determined by the distance dependence of the interac-
tions. In the following we consider the simple model, al-
ready studied at the end of Sec. III, for which the interac-
tion vo(r) vanishes for r & 2a and is infinite for r & 2a, and
the interaction J(r) takes the constant value J in the
range 2a &r &2x&a and vanishes elsewhere. For this
model we evaluate explicit results for the scattering func-
tion.

For the simple model the static structure factors are
given by

1.0
SI(k) =S,(k) = 1+3$Y,(K)» [G(2kax, )

—G(2ka)],1

0.8-

with the function

0.6
G(z)=sinz —z cosz . (129)

0.4

0.2

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

0.00.0 0.2 0.4 0.6 0.8
I

1.0 1.2

FIG. 4. Plot of contributions to the initial values A (K,O) and
B(K,O) from coefficients corresponding to different eigenvalues.
We plot a, (K) (solid curve), az(K) (dashed curve), P, (K) (dot-
dashed curve), and P2(K) (dotted curve), as defined in Eq. (127).

In Fig. 6 we plot SI(k) as a function of ka for interaction
strength K = 1, range x

&
=2, and volume fraction

/=0. 03. At k =0 the factor Si(0) is less than unity for
positive K, and larger than unity for negative K. Accord-
ing to Eq. (29), this implies a speeding up of collective re-
laxation, as compared with single-particle relaxation, for
antiferromagnetic interactions, and a slowing down for
ferromagnetic interactions.

To the order of density calculated, the scattering func-
tion is isotropic. Its one-sided Fourier transform
Crit(k, co) reduces to a scalar Gz(k, co) multiplying the
unit tensor. To lowest order in density, the scalar is
given by
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-9-

-10
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FIG. 6. Plot of the static structure factor SI(k) as function of
ka for K = 1, x, =2, at volume fraction /=0. 03.

FIG. 7. Plot of poles of the scattering function as a function
of ka. We plot r&(k), . . . , r, (k) for the Heisenberg model with
K = 1, x, =2, at volume fraction / =0.03.

S,(k)
G~(k, co)= 3nop- ico+2D—tt [1+[A~(k)+a~(k,co)]P]

(130)

We have shown above that for moderate values of E the
function az(k, co) may be approximated by a function
with four poles on the negative imaginary co axis, of
which the two largest relaxation rates almost coincide.
In this approximation the function Gz(k, ro) has five
poles on the negative real s axis, where s = —iso/Dz, cor-
responding to roots of the denominator in Eq. (130). In
the limit k~0, the function az(k, co) is determined only
by 2+(K, t) and may be approximated by a function with
only two poles. Correspondingly, in this limit the scalar
Gz (k, co) may be characterized by only three poles.

Decomposing the function Gz(k, co) into partial frac-
tions, we find in the above approximation:

[ci(k)] show a strong dependence on wave number. For
our choice of parameters, A,z (0)=20.601, corresponding
to S&(0)=0.382. For comparison,

a~ (0,0)= —4(x, —1)[A (1,0)+B(1,0)]

takes the value —6.776. The speeding up of relaxation of
long-wavelength modes for strongly antiferromagnetic in-
teractions is manifested by a shift of the weights towards
the shorter relaxation times.

Finally, in Fig. 9 we plot the roots r„.. . , r 5 as a func-
tion of ka for ferromagnetic interactions with K = —1,
x1 =2, at volume fraction 0.03, corresponding to
SI(0)=1.618, Az(0) = —20. 601, and az(0, 0)=—7.879.
In Fig. 10 we plot the corresponding coefficients c1, c2,

c (k)
G~ (k, co) = ,'nop2S((—k)

Dtt . , s —r (k)
(131)

1.0

0.8—

with roots [r (k)] and residues Ic (k)] which satisfy the
sum rule

5

g c (k)=1 . (132)

0.6

The coefficient c4(k) corresponds to the root r„(k), which
lies between the two closely spaced poles —s~+(k) and—sq (k), and turns out to be negligible.

In our numerical calculations we have replaced the
terms I+A,z(k)P in the denominator in Eq. (130) by the
complete short-time value 1/S&(k). In Fig. 7 we plot the
roots r&(k), . . . , r5(k) as a function of ka in the range
0 & ka & 3 for antiferromagnetic interactions with K = 1,
x

&
=2, and at volume fraction / =0.03. In Fig. 8 we plot

the coefficients c1, c2, c3, and c5 for the same choice of
parameters. Both the roots [r, (k)] and the coefficients

0.4

0.2—

0.0
0.0 0.5 1.0

—I—

1.5 2.0 2.5 3.0

ka

FIG. 8. Plot of the coefficients c&(k) (solid curve), c2(k)
(long-dashed curve), c3(k) (dotted curve), and c5(k) (short-
dashed curve), corresponding to the poles plotted in Fig. 7.
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C"'(r)=, lim F~(k, t),=3
p k~~ (133)
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as we have shown in Sec. VII. Hence, it follows that for
ferromagnetic interactions, the correlation function is
well described by a sum of three exponentials, whereas in
the case of antiferromagnetic interactions, one needs a
sum of four exponentials for an accurate description.

XII. DISCUSSION

-8-

-9-

-10
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FIG. 9. Same as in Fig. 7 but for K = —1.
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and c3. Again, the coefficients show a strong dependence
on wave number. In this case, at small k, the slowest
mode gets the largest weight. For small k, the relaxation
is dominated by just two modes. The results presented in
Figs. 7—10 show a dramatic difference in the collective
relaxation between ferromagnetic and antiferromagnetic
interactions. The increase of Sl(k) at small k for fer-
romagnetic interactions indicates a minimum in the free
energy for collectively ordered states and signals the ap-
proach of the ferromagnetic phase transition. There is a
corresponding slowing down in the relaxation of long-
wavelength polarization Auctuations. On the contrary, in
the case of antiferromagnetic interactions, such long-
range correlations are rapidly destroyed.

For the present system, where translational diffusion is
neglected, the single-particle orientational correlation
function is related to the scattering function at large wave

We have studied orientational relaxation in the col-
loidal Heisenberg model with neglect of translational
diffusion. We have derived explicit results for the wave-
number- and frequency-dependent rotational diffusion
coefficient and the single-particle frequency-dependent re-
laxation time, valid to first order in volume fraction. To
this order the memory function characterizing the fre-
quency dependence may be expressed as a radial integral
of two contributions, a self-term A (K, t), and a mutual
term B(E,t), with K=J(r)lk~T for distance-dependent
Heisenberg interaction J(r). The initial values of these
functions can be calculated and are given by Eq. (100).
Typically, the initial value of the mutual term is much
smaller than the initial value of the self-term. The self-
term decays monotonically in time, whereas the mutual
term shows an interesting reversal of sign. For Heisen-
berg interaction of the order kz T, the decay of both func-
tions is well approximated by a sum of four exponentials.

We have studied the rotational dynamic scattering
function for a specific model in which the Heisenberg in-
teraction is constant in the range between one and two di-
ameters and vanishes elsewhere. For this model the
Fourier transform of the scattering function has a
discrete spectrum of poles. For ferromagnetic interac-
tions with J

~

of the order of k~ T or less, the scattering
function is well approximated by a sum of three exponen-
tials, whereas for antiferromagnetic interactions a sum of
four exponentials is needed for accurate description.

For distance-dependent Heisenberg interaction the
time dependence of the scattering function is more com-
plicated. Its Fourier transform is characterized by a
spectrum in which the discrete poles of the simple model
have broadened into continua. It will be of interest to
study the time dependence in more detail for various in-
teractions.

Our investigation has revealed that the colloidal
Heisenberg model exhibits a rich variety of behavior,
even at low volume fraction. The exp1icit solution we
have obtained can serve as a guideline for the study of
other systems —for example, polar liquids or ferrocol-
loids. The Heisenberg model itself deserves further
study. We have considered only interactions of limited
strength, and it would be desirable to explore the conse-
quences of stronger interactions. Also, it would be of in-
terest to study the effect of translational diffusion.

FIG. 10. Plot of the coe%cients c&(k) (solid curve), c&(k)
(dashed curve), and c3(k) (dotted curve), corresponding to the
poles plotted in Fig. 9.

ACKNOWLEDGMENT

We thank the Deutsche Forschungsgerneinschaft for
financial support.



48 ORIENTATIONAL RELAXATION IN A COLLOIDAL. . . 1153

[1]P. A. Madden, in Liquids, Freezing and Glass Transition,
edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin
(North-Holland, Amsterdam, 1991),p. 547.

[2] J. P. Hansen and I. R. McDonald, Theory of Simple
Liquids (Academic, London, 1986).

[3] C. J. F. Bottcher and P. Bordewijk, Theory of Electric Po
larization (Elsevier, Amsterdam, 1978), Vol. II.

[4] S. A. Adelman and J. M. Deutch, Adv. Chem. Phys. 31,
103 (1975).

[5] J. McConnell, Rotational Motion and Dielectric Theory
(Academic, London, 1980).

[6] B.J. Alder and E. L. Pollock, Annu. Rev. Phys. Chem. 32,
311(1981).

[7] P. Madden and D. Kivelson, Adv. Chem. Phys. 56, 467
(1984).

[8] B.Bagchi and A. Chandra, Adv. Chem. Phys. 80, 1 (1991).
[9] P. N. Pusey and R. J. A. Tough, in Dynamic Light Scatter

ing and Velocimetry: Applications of Photon Correlation
Spectroscopy, edited by R. Pecora (Plenum, New York,
1982).

[10]J. A. Montgomery and B. J. Berne, J. Chem. Phys. 67,
4589 (1977).

[11]R. B.Jones, Physica A 150, 339 (1988).
[12]B. U. Felderhof and R. B. Jones, Phys. Rev. E 48, 1084

(1993).
[13]K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge

University Press, Cambridge, England, 1991).
[14]U. Geigenmuller, U. M. Titulaer, and B. U. Felderhof,

Physica A 119,41 (1983).
[15]N. G. van Kampen, Phys. Rep. 124, 69 (1985).


