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Critical droplets on a wall near a first-order wetting transition
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For critical droplets on a wall near a first-order wetting transition we discuss the crossover behavior
from the partial wetting to the prewetting regime. The droplet shape changes smoothly from a spherical

cap in the former to a Aat cylinder in the latter regime. For sufficiently long-ranged molecular interac-
tions the crossover behavior can be described by scaling forms which in a number of special cases reduce
to results previously obtained by de Gennes and co-workers. van der Waals forces form a limiting case
in which we recover logarithmic anomalies. For interactions of shorter range we present some mean-

field results, although fluctuations might be important in this case.

PACS number(s): 68.45.Gd, 64.60.Cn

I. INTRODUCTION H[f]= fd" 'x +(V'f) +V(f) hf—(2.1)

Wetting transitions occur at the coexistence of two
Quid phases in the presence of a wall which prefers one of
these phases [1]. Above the transition temperature T, a
macroscopic layer of the preferred phase forms on the
wall through a first- or second-order phase transition. In
the case of a first-order transition the nonwet wall can ex-
ist above T in a metastable state. The decay of this state
starts with the nucleation and growth of supercritical
droplets sitting on the wall. In the description of the nu-
cleation process, the critical droplet plays a crucial role
[2], which for wetting has recently been discussed
theoretically [3—5] as well as experimentally [6].

In our work [5] we have discussed the temperature
dependence of the height, radius, and excess free energy
of the critical droplet. We now want to determine the
dependence of these quantities on temperature T and
chemical potential p. This allows us to move off bulk
coexistence p =p, and to approach the partial-wetting re-
gime T & T,p ~ p, as well as the regime T)T,
p ~ p ( T) near the prewet ting line p, =p~ ( T). The
behavior of droplets in these regimes has been discussed
before in some detail by de Cxennes and co-workers [7].

In Sec. II, we discuss qualitatively the phase diagram
and the properties of the droplets in different regions near
the wetting transition point. This discussion is made
quantitative in Sec. III, where, within mean-field theory,
we consider the partial-wetting regime, the prewetting re-
gime, and the crossover behavior between both. In our
conclusions, we briefly comment on the possible inAuence
of Auctuations. We also discuss qualitatively the stability
of a macroscopic film against undercooling and the ap-
pearance of critical nuclei in that case. Finally, we men-
tion some dynamic effects in the growth of supercritical
droplets.

&—:V(fo) (2.2)

implies the behavior 5 —T —T near the transition tem-
perature T„[1].

v

where the field f (x) refers to the local thickness of the
wetting layer on the (d —1)-dimensional surface of the
wall. The first term in (2.1) is the area of the interface (to
lowest order in Vf) multiplied by the surface tension y
between the two bulk phases. In the last term, h —=p —p,
measures the distance from coexistence of these phases.
For a first-order wetting transition, the effective potential
V(f) is of the form shown in Fig. 1. In a mean-field pic-
ture, the two minima at f =fo and f = ac represent the
nonwet state of the wall, and the state with an infinite
(macroscopic) layer on the wall. At the transition, h =0
and V (fo ) = V( ao ) —=0, which for the spreading
coefficient

II. QUALITATIVE PICTURE

Our discussion will be based on the effective Hamil-
tonian [8]

FICx. 1. The effective potential V(f) in the case of a first-
order wetting transition with minima at the nonwet state f=fo,
and the wet state at f= ~. Also shown is the height f &

of a
critical droplet.
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f„( )
d —2f ( )

i BV(f (r))
af (.) (2.3)

with boundary conditions f'(0)=0, f(~)=f0, and
r = x~. In an often-used analogy [4], the droplet profile
is identified as the trajectory of a fictitious particle which,
according to (2.3), moves in the potential P(f)/y from-
the top of the hill at fo up to f i and back to fo. The
shape of the droplet profile is illustrated by Fig. 5 for
S)O, h =0 and Fig. 6 for S &O, h &h .

It is also well known [4] that a linear stability analysis

If h )0, an infinite layer on the wall is stable even
below T, since the full potential P(f):V—(f) h—f then
inevitably goes to minus infinity for f~ ~ (see Fig. 2).
In the region h &0, T & T, a thin layer corresponding to
the lower minimum of P(f) is stable, so that the coex-
istence line h =0 between the two bulk phases simultane-
ously is a coexistence line of a surface transition up to
point T = T . From here (as a kind of continuation of
this line) a line of first-order prewetting transitions
h =h (S) [1] extends into the region h (0,T) T, end-
ing in a prewetting critical point at T „h~, (see Fig. 3).
Along the prewetting line the two minima of P(f) have
equal height, and the transition is between layers of
thickness f o and f i, which are the locations of the two
minima.

Above the full first-order line, there is a region of me-
tastability where P(f ) still has a local minimum at
fo( T, h ) corresponding to a metastable thin layer (as in
Fig. 4). This region is enclosed by an upper classical spi-
nodal line h, (S) determined by P'(fo)=P"(fo)=0 (see
Fig. 3). In our conclusions, we will briefiy discuss the ap-
pearance of an additional region below the first-order
line, where a thick layer is metastable against dewetting.

We now want to discuss the appearance of critical
droplets on the wall of the system in the upper metastable
region. In mean-field theory, the shape of such a droplet
follows from the saddle-point equation 5H /5f=0 sup-
plemented by suitable boundary conditions. Assuming
rotational symmetry around the normal of the wall, we
find, for model (2.1),

FIG. 3. The phase diagram in the ( T, h) plane.

of the profile f (r) leads to a Schrodinger-type equation
for the fiuctuations 5f (x), and that 5f (x)-f'(r) is a
(d —1)-fold degenerate marginal mode which describes
translations of the droplet on the wall. For d =2, it then
follows that there is only a single unstable mode corre-
sponding to the ground state of the Schrodinger problem,
since f'(r) obviously has only one node. For d )2, the
arguments of Ref. [4] show that the rotational symmetry
of a critical droplet is linearly stable. However, the ex-
istence of only one rotational-symmetric unstable mode
can presently only be stated as a conjecture. The unsta-
ble mode leads to growth of a supercritical and shrinkage
of a subcritical droplet, and consequently can be
suppressed by fixing the volume of the droplet. In this
case h has to be considered as a Lagrange parameter
determined by the fixed-volume condition.

When, in the metastable region of Fig. 3, the classical
spinodal is approached, the critical droplet and, accord-
ingly, F, =f, fo shri—nks t—o zero. On the other hand,
from Fig. 2 one can conclude that F2 goes to infinity
when the section T~ T,h =0 of the coexistence line is
approached. Along the prewetting line, F, decreases
from infinity at T to zero at T, . Although the maximal
height of a critical droplet thus stays finite close to an in-
terior point of the prewetting line, the size of the droplet

FIG. 2. The potential P(f)= V(f) hf in the partial-wetting—
regime. FIG. 4. The potential P(f) in the prewetting regime.
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Again, one may replace P(f) by that part which dom-
inates the large-f behavior and for nonretarded van der
Waals forces is proportional to f [1]. For d =2, Eq.
(2.3) then can be solved exactly and yields the upper half
of an ellipse.

FIG. 5. The critical droplet for S & O, h =0.

III. QUANTITATIVE BEHAVIOR

We now want to determine the crossover behavior of
the critical droplet between the di6'erent near-coexistence
regimes of the upper metastable region. For this pur-
pose, we change from the differential equation (2.3) with
the boundary condition f'(0) =0, and with f (0)—=f„to
the integral equation

s (f)= V(f) V(fi)+—h(fi f)—

V'(fi(T, h~(&)))=h~(&) . (2.4)

In the region T ~ T,h =0, the droplet is neither a spher-
ical cap nor a cylinder, and has previously been described
[5] by a scaling behavior for the height and the radius.

diverges because its radius grows to infinity (see below).
It has been pointed out by de Gennes and co-workers

[7] that the macroscopic form of a droplet is very
difFerent in various regimes near the coexistence line. In
the partial-wetting regime T & T,h ~0, the macroscopic
portion (sufficiently far from the wall) of a droplet is dom-
inated by the field term hf in P(f).—If only this term is
taken into account, and if (V'f ) /2 in H is replaced by the
exact expression )/1+(Vf) of the capillary energy [9],
then the condition oH/5f =0 means that the droplet
surface has constant mean curvature and therefore the
form of a spherical cap. Of course, this also stays true
approximately for model (2.1), which is designed to de-
scribe the behavior near the wetting transition and corre-
spondingly assumes (V'f) ((1.

Near the prewetting line, a droplet has the form of a
fiat cylinder (called a pancake droplet by de Gennes
et al. ) which resembles the superposition of a kink and an
antikink of a Ginzburg-Landau model. In accordance
with that, the curvature of the profile at the center of the
droplet vanishes due to (2.3) and the obvious relation

(3.1)

r(f)= ff s(f)
(3.2)

(3.3)

As in [5], we define the height and the radius of the criti-
cal droplet (here marked with subscripts c) by

F,:f, fo, R, —= f— — (3.4)

with fz chosen as the turning point of the droplet profile,
i.e., f2

=f (R, ),f"(R, ) =0. The excess free energy of the
critical droplet is given by

for the (inverted) droplet profile and its slope
s(f)=——f'(r(f)).

Since the second boundary condition r (fo ) = oo im-
plies s (f0) =0, we find, from (3.1) and (2.2),

V(f, ) h(f, —fo)+(d —2)y—f df = V(fo)s(f)
0

=S+O(h ) .

(3.5)

where Ad, is the surface of the (d —1)-dimensional unit
sphere.

Near the wetting transition point S =h =0, we may ig-
nore the term 0 (h ) in (3.3)„and we expect
=f, ))fo,f2, so that the large-f behavior of V(f) will
dominate in (3.1)—(3.5). In the following, we assume

V(f)=&/f ' for f~co, cr)1, (3.6)

FIG. 6. The critical droplet for S & 0,0 & h & h~.

which corresponds to a molecular interaction potential
W(r) —r " [1].

We now apply these formulas to the partial-wetting re-
gime and consider a droplet at constant S &0 in the limit
h ~0. Then for sufficiently large f, the potential terms in
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(3.1) can be neglected compared to the field term. This
yields

s (f)= h(F, —f),2

y d —1
(3.7)

and via (3.2) a parabolic profile near the center of the
droplet. If this is extrapolated down to f =0, one obtains

+ =1,F R2
(3.8)

with

F, =(d —1)~S h ', R, =&2y(d —1)~S~'/ h

d —2

E = 0 2(d+ )/ (d —1)/2 (d —1)
c d —1 y d+1

X iSi(d+1)/2h 1 —d

(3.9)

(3.10)

Not unexpectedly, the h dependence of (3.9) and (3.10)
resembles the behavior of a critical droplet in the bulk.
From (3.7) and the first Eq. (3.9) we recover Young's rela-
tion for the contact angle

cos8= 1 —
—,'s (f =0)= 1+S/y .

For not-too-long-ranged interactions, a line tension

AE,
7 =

Qd 2Rc

(3.11)

(3.12)

can be defined, where AE, is the difference in excess free
energy of the exact droplet and a parabolic droplet of the
same curvature at f =f, . The latter requires the re-
placement h —V'(F, ) for h in Eqs. (3.7)—(3.10) which
does not affect the asymptotic behavior for h ~0. In this
limit, ~ is finite provided the interactions decay with an
exponent (T )2 [7,10]. This can be seen by expanding the
integrand of b,E, in powers of v(f)—= [V(f)—V(f))—V'(f, )(f f, )]l[V(f, )+ V—'(f, )(f f, )] follo—wed

by the substitution y=f /f i. Then the—term y' dom-
inates near the lower limit of the integration, and AE,
thus diverges for o. ~2. The dependence of ~ on S at
h =0 will be discussed below.

Next we consider the behavior of droplets near the
prewetting line h =h~(S), which follows from Eqs. (2.4)
and (3.3) by eliminating f, . When the prewetting line is
approached at constant S)0, the droplet height F, stays
finite, whereas R, and E, diverge according to

R, —[h —h (S)]

E, —[h —h~(S)]

(3.13)

(3.14)

which agrees with previous results by Joanny and de
Gennes [7] (for d =3). (3.13) follows from the saddle-
point equation which at r =R, reduces to
(d —2)ys(f2)/R, = p'(f2). From (3.1), it ca—n be seen
that s(f2) has a finite limit for h ~h (S), while p'(f2)
vanishes linearly in h —h (S). E, essentially consists of
two parts which both show the behavior (3.14). One con-
tribution comes from the top and bottom surfaces of the
cylindrical droplet and therefore may be defined as

F =ISI '"
—

~S~
—( +()/(2( —1)]~(h~S l( 1))——

( d ( )]( +1)/( ( )]@

(3.15)

(3.16)

30 1
do(cr ) =

(3.17)

(3.18)

for S,h ~0. From (3.9), (3.10), (3.13), and (3.14), we con-
clude that the scaling functions in Eqs. (3.15)—(3.17) have
the form

V(x) -x ', A(x) -x '/, 6"(x)-x ' (3.19)

in the partial-wetting regime and

A(x)-(x —x ) ', ( (x)-(x —x„) (3.20)

with x =x(h (S)) in the prewetting regime. When the
wetting transition point is approached from above at
h =0, all scaling functions reduce to constants [5]. On a
path S =O, h ~0, the S dependence in Eqs. (3.15)—(3.17)
should cancel everywhere, which yields the behavior

V(x)-x ', A(x)-x ' +"
—[d —do(o )](cr+ 1)/2o

( x-x (3.21)

This agrees with results by Joanny and de Gennes on
what they call small droplets [7].

The divergences which show up for o. ~ 3 lead to
modifications of F„R„and E„which we now discuss
along the paths S)O, h =0 and S =O, h )0. The diver-
gences do not affect the integral in (3.4) and generally im-

ply

R -F(~+1,)/2
C C

The excess free energy behaves according to

R, lnR for o.=3
Rd 2 for o-) 3

(3.22)

(3.23)

(3.24)

E, = [—$(f1)—(t(fo)]R," 'Qd il(d —1), with p(f, )—P(f0 ) —h —
h~ (S) and R, as given by Eq. (3.13). The

other is the difference E, —E, , and is proportional to
gR, , where g is a finite length for h (S))h, . In fact,
by expanding the saddle-point equation in f f2,—one
finds g =Qy /P" (f2 ).

Equations (3.13) and (3.14) show that the prewetting
critical droplets behave as spherical droplets in dimen-
sion d —1. The expression r=[E, E, ]—/[R," Qd 2]
can be regarded as a boundary tension, as introduced by
Widom and Clarke [11]. Its behavior close to the prewet-
ting line will be described below.

We now consider the crossover behavior of the critical
droplet from the partial-wetting to the prewetting re-
gimes. If, in Eqs. (3.1)—(3.5), we substitute y=flf„—

r( (p)= s(f) /f (1 ', and p((p)=r(f)lf(1'+ ', the in-
tegrals in (3.3) and (3.5) converge near the lower limit of
integration folf, for f,~~, provided o (3. In this
case, from (3.3)—(3.5) we obtain the asymptotic scaling
forms
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which comes from the lower limit of integration in (3.5).
From Eq. (3.3), the connection between F, and S at h =0
and between F, and h at S =0, respectively, follow as

F, lnF„h -F, lnF, for o. =3
S—.

~+ h —F ~+ for 0 &3
C C

(3.25)

(3.26)

According to (2.4) and (3.6), the prewetting line has the
asymptotic form

h —[F,(S)] (3.27)

close to the wetting transition point. Due to (3.15) and
(3.27), the relation between F, and S is F, -S '~' "for
cr &3, and for o ) 3 again is given by (3.25) and (3.26).
We finally point out the behavior of the line tension (3.12)
along the path h =O, S &0. From (3.16) and (3.17), we re-
cover the scaling behavior [10]

~S~' ' ( ' ") for 2&o &3
ln~S for o. =3
const for a. &3 .

(3.28)

(3.29)

(3.30)

The same behavior is found for the boundary tension
along the prewetting line h (S) without the restriction
o. )2. Although the introduction of a line tension for
h =O, S &0 seems to be somewhat arbitrary, we mention
that in this regime the ratio E, /R," also scales accord-
ing to (3.28)—(3.30).

IV. DISCUSSION

The whole discussion of the crossover behavior of criti-
cal droplets in the nucleation regime near the wetting
transition has been based on mean-field theory. Although
we are dealing with a first-order transition, fluctuations
may be important and lead to modifications of the drop-
let properties. The reason is that, near the wetting transi-
tion point, the effective interface potential develops a
broad minimum at infinity. In fact, it has been conjec-
tured by Kroll, Zia, and Lipowsky [12] that fiuctuations
may drive the wetting transition from first to second or-

der in the strong-fluctuation regime d &do(cr). More re-
cent renormalization-group calculations [13], however,
seem to allow the existence of first-order wetting transi-
tions in this regime above d =2.4. In d =2, the effect of
fluctuations has been discussed by transfer-matrix tech-
niques [14]. Fluctuation effects on the line tension near
first-order wetting transitions have recently been pointed
out by Indekeu and Robledo [15].

Another aspect of nucleation phenomena at wetting is
the existence of a metastable region below the first-order
line in the phase diagram bounded by another spinodal
line. A macroscopic film can be undercooled into this re-
gion and will decay via the formation of critical nuclei
which appear as dents in the film. When a macroscopic
layer is undercooled at h ~0, one always stays close to
the coexistence line so that critical nuclei will be very
large. Therefore, we expect an unusually long lifetime of
the metastable thick film, which recently seems to have
been observed experimentally [16] (and supported by a
different interpretation [17]).

Concerning dynamical properties of critical droplets,
one naturally expects that for supercritical droplets the
central height F(t) and the radius R (t) grow in different
ways. Within a purely relaxational model introduced by
Lipowsky [18], one finds I'(t) —t'~' +'~ and R (t) —t'~~

for t~bo [19]. For fiuid systems, a model with a con-
served bulk order parameter (which we currently investi-
gate) is more relevant. The asymptotic growth of the
droplet will still be anisotropic, but in addition we expect
the occurrence of a dynamical instability of the Mullins-
Sekerka type [20].
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