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Orientational relaxation in a colloidal suspension of spheres
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We study orientational relaxation in a colloidal suspension of spheres on the basis of the generalized
Smoluchowski equation. The time dependence of the polarization correlation function is characterized
by a wave-vector- and frequency-dependent rotational-diffusion tensor. In the absence of hydrodynamic
interactions the short-time decay of the correlation function is governed by free translational and rota-
tional diffusion. This observation leads to a simple expression for the high-frequency limit of the
rotational-diffusion tensor. We also derive a concise and transparent expression for the wave-vector- and
frequency-dependent rotational-diffusion tensor of a semidilute suspension.

PACS number(s): 82.70.Dd, 05.20.Dd, 61.20.Lc, 61.25.Hq

I. INTRODUCTION

Orientational relaxation is an important feature of the
dynamics of liquids. It governs the frequency depen-
dence of the dielectric constant of polar liquids [1], and
manifests itself in nuclear magnetic resonance, Raman
scattering, and other instances [2]. A liquid suspension
of spheres constitutes a useful model for the study of
orientational relaxation. In such a system inertial effects
may be neglected. On a slow time scale the dynamics of
the macroparticles is governed by translational and rota-
tional difFusion [3]. The time dependence of the
configurational probability distribution is described by a
generalized Smoluchowski equation [4—7]. Ferrofluids
consist of ferromagnetic particles suspended in a liquid
[8], and constitute an important example of the system
under study.

In this paper we consider general features of orienta-
tional relaxation of a single particle, as well as collective
reorientation, on the basis of the generalized Smolu-
chowski equation. The time dependence of the polariza-
tion correlation function is characterized by a wave-
vector- and frequency-dependent diffusion tensor. We
show that in the absence of hydrodynamic interactions
the initial decay of the correlation function is governed
by free translational and rotational diffusion. This obser-
vation leads to a simple expression for the high-frequency
limit of the rotational-diffusion tensor. The result is im-
portant, because it shows that the short-time relaxation
time depends strongly on wave vector, and may be calcu-
lated from the equilibrium structure. Though the expres-
sion for the short-time rotational-diffusion tensor is a
straightforward generalization of an analogous expres-
sion for translational diffusion [4,6], it seems not to have
been derived before.

We also derive a concise and transparent expression for
the eave-number- and frequency-dependent rotational-
diffusion tensor of a semidilute suspension. For such a

suspension the diffusion tensor may be calculated from a
solution of the pair Smoluchowski equation.

The theory of orientational relaxation in dipolar liquids
has been reviewed by Adelman and Deutch [9], Bottcher
and Bordewijk [1], McConnell [10], Alder and Pollock
[11],Madden and Kivelson [12], and Bagchi and Chan-
dra [13]. More general aspects have been discussed by
Madden [14] and Hansen and McDonald [15]. We gen-
erally follow the latter monograph in our notation.

Brilliantov et al. [16] have determined a
concentration-dependent rotational-difFusion coefFicient
of spherical proteins from nuclear-magnetic-resonance
measurements. Recently it has become possible to mea-
sure the rotational-diffusion constant more directly by
depolarized light scattering from a suspension of spheri-
cal particles with intrinsic optical anisotropy [17—19].

II. TRANSLATIONAL AND ROTATIONAL
DIFFUSION

We consider N spherical particles of radius a immersed
in an incompressible Quid of shear viscosity g and at tem-
perature T. The whole system is enclosed in a volume Q.
The orientation of a sphere is indicated by the direction
of a unit vector at its center. The translational-diffusion
coefficient of a single sphere is Do=k&T/6vrga, and its
rotational-diffusion coeKcient is Dz =k~T/Saga . The
spheres interact via a direct pair potential which depends
on orientation. In addition there may be many-body hy-
drodynamic interactions mediated by the Stokes Qow
response of the solvent Quid to the motion of the suspend-
ed macroparticles. If R; denotes the position of the
center of the ith sphere, and u; its orientation, then the
locations of all spheres are described by the 3N-
dimensional vector Xz =(Ri, . . . , Rz), and the orienta-
tions are described by the 3N-dimensional vector
XR=(u„. . . , nest). The total configuration is summa-
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2)P= D +P Pa ar ae
(2)

Here D(X) is the 6XX6X diffusion matrix, which de-
pends on configuration due to hydrodynamic interac-
tions. Furthermore, P=1/k~T and the potential @(X)
incorporates both a wall potential and direct pair interac-
tions. The rotational part of the gradient operator is
defined as a/ax+ = (a/aul, . . . , a/au& ) with

8 I=e +e
Bu J BO ~J sinO 8

J

(3)

in spherical coordinates (Oj, pj ) with corresponding unit
vectors e& and e . Alternatively, the rotational dift'usion

J J
may be expressed [2,3,20] with the aid of operators
LJ =u~ X(a/auj ). The concise form (2) is convenient for
formal calculation. The Smoluchowski equation (1) de-
scribes how the distribution function P(X, t) tends to the
equilibrium distribution

P, (X)=exp[ —P@(X)]/Z(P) (4)

in the course of time. The partition function Z(P) nor-
malizes the distribution to unity.

We consider thermal-equilibrium fluctuations of polar-
ization at wave vector k. The corresponding variable is

M(k)=p g uje

where p is the dipole strength. The time-dependent
orientational scattering function is defined by

F~(k, t)= lim —(M(k, t)M( —k)),
N —+ oo

(6)

rized in the 6N-dimensional vector X=(xz,xz ), corre-
sponding to 5N degrees of freedom.

We consider an ensemble of configurations X, de-
scribed by a time-dependent probability distribution
P(X, t), which obeys the generalized Smoluchowski equa-
tion [4—7]. In abbreviated form this reads

ap
at

where 2) is the Smoluchowski operator defined by

The one-sided Fourier transform of the scattering func-
tion is given by

Gz(k, co)=no f e' 'F~(k, t)dt .
p

From Eqs. (6) and (7) we find the expression

Gz &(k, co)= lim (M&( k—)(ico+X) 'M (k)) .
N —+oo 0

(9)

(10)

y (k, O)= —(M(k)M( —k)) .
Q

(12)

Here and in the following the thermodynamic limit is un-
derstood. In the case of electric- or magnetic-dipole in-
teractions one requires the response of the polarization to
the average Maxwell field, rather than the applied field.
The corresponding susceptibility tensor is given by

y(k, co)=y (k, a))[1—4mkk yo(k, co)] ', (13)

where k=k/k.
From the isotropy of the system it follows that the sus-

ceptibility tensor takes the form

y (k, co) =yI(k, co)kk+y, (k, co)(1—kk) . (14)

For systems with dipolar interactions the tensor y(k, co)
takes the same form, as follows from Eq. (13). The scalar
susceptibilities are related by

gI (k, co)
yI(k, co)=,y, (k, co) =y, (k, co) .

1 —4m.yt (k, co)

For systems with short-range interactions the longitudi-
nal and transverse susceptibilities are equal in the long-
wavelength limit,

XI(O, ri)) =X,(O, co) . (16)

In linear-response theory, the polarization response to an
applied field, varying as a plane wave with wave vector k
and frequency co, is described by the dimensionless sus-
ceptibility tensor y (k, co). This is related to the tensor in
Eq. (9) by

(k, co)=y (k, O)+icoPG~(k, co) .

The zero-frequency susceptibility is given by

where the time dependence is governed by the adjoint
Smoluchowski operator X such that

For systems with dipolar interactions one has instead

Xt(0&co) =X,(O, co) . (17)
M(k, t)=exp(Xt)M(k, O), M(k, O)=M(k) .

The operator X is given by

a ac a
ax ax ax

(7) In Eqs. (16) and (17) it is understood that the thermo-
dynamic limit is taken before the limit k —+0.

At zero frequency

y((k, O)= ,'Pnop S((k), y,—(k,O)= —,'Pnop S,(k),

The angle brackets in Eq. (6) indicate an average over the
equilibrium distribution (4). Finally, we take the thermo-
dynarnic limit N~ ao, Q,~ ~ at constant n p =N/Q. In
the absence of applied fields, the system is homogeneous
and isotropic in the thermodynamic limit.

SI(k) =1+ ,'n [tot, (k)—+2hD(k)],

S,(k) = 1+—,'no[6 a(k) —hD(k)],
(19)

where S&(k) and S,(k) are longitudinal and transverse
static structure factors. In conventional notation
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where fz(k} is the Fourier transform of the pair-
correlation function h&(r), and hei(k) is the Hankel
transform of the pair-correlation function hi) (r), as
defined in Hansen and McDonald [15].

We shall also study the single-particle orientational
time-correlation function

with short-time difFusion tensor Dz (k) given by

D~ (k) = —
—,
' ( IXM(k)]M( —k) ) ( M(k)M( —k) ) ' (27)

and with memory function Mz (k, t ). The one-sided
Fourier transform defined in Eq. (9) may be expressed as

C'"(t)=(u, (t) u, (0)), (20)
G~(k, co) =k~ T[ ice—1+2D~(k, co)] ' y (k, O), (28)

where the time dependence is governed by the adjoint
Smoluchowski operator, as in Eq. (7).

III. RELAXATION TIMES

In this section we recall forrnal definitions of relaxation
times characterizing the process of reorientation. We
consider first reorientation of a single particle, and subse-
quently collective reorientation.

The integral correlation time ~& is defined by

with (k, co }-dependent difFusion tensor

Dz(k, co) =Dz(k, ~ )+—,'Mz(k, co), (29)

where Dz (k, ~ ) =Dz (k), and Mz (k, co) is the one-sided
Fourier transform of the memory function. By isotropy
the diffusion tensor takes the form

D~(k, co) =D~)(k, co)kk+D~, (k, co)(1—kk) . (30)

We may define the corresponding k, co-dependent relaxa-
tion times

r, = f C")(r)Ch .

From Eq. (20) we find the formal expression

(21)
r)(k, co) = [2D~i(k, co)]

r, (k, co) =I2D~, (k, co)]
(31)

1 i= (ui'X ii)) (22)

More generally, we may consider the one-sided Fourier
transform of the time-correlation function

(23)

and define a frequency-dependent relaxation time rs(co)
from the expression

p (i)(~)— 1

col+ rs( co )
(24)

—1
+S S( (25)

Clearly ri=rs(0).
It follows from the generalized Smoluchowski equation

that at short times the correlation function C'"(t) decays
linearly with time. Evaluating the time derivative at t =0
one finds for the high-frequency limit of rs(co)

Dz) (0,co) =e(0,0)Dz, (0,co), (32)

where e(0,0)= I+4m'&(0, 0) is the dielectric constant at
zero wave number and zero frequency.

In the limit of large wave number only single-particle
terms survive. The zero-frequency susceptibility tends to

y (~,0)=—,'Pni)tu, 1 .

The tensor Cxz (k, co) tends to

Cs~(k, co)= ,'n()p ( —ico+Dsk —
) '1 as k~~,

(33)

(34)

It follows from Eq. (16) that for systems with short-range
interactions the diffusion tensor is proportional to the
unit tensor in the limit of zero wave number,
Dz&(O, co)=D~, (O, co). From Eq. (17) it follows that for
systems with electric-dipole interactions the two
coe%cients are related by

In general, the short-time relaxation time rs divers from
the integral relaxation time ~, .

Analogous relaxation times may be defined for collec-
tive reorientation. On the basis of the generalized Smolu-
chowski equation the time evolution of the orientational
scattering function may be expressed by means of the
equation of motion

Fd~( kt) = —2D F~~ ( k, t )
dt

(26)

where D& is the short-time translational self-diffusion
coefficient. Both r)(k, co) and r, (k, co) tend to I/(Dsk )

in the limit of large k.

IV. SHORT-TIME DIFFUSION

In the absence of hydrodynamic interactions the ex-
pression (27) for the short-time difFusion tensor simplifies,
in analogy to that for the translational diffusion
coefficient [4,6]. The first average on the right in Eq. (27)
reads explicitly in the absence of hydrodynamic interac-
tions

D0
([XM (k)]Mp( —k)) = f e ~ Mp( —k) —p ~ M (k)dx

a ae
z(p) f )' ax, p ax, M (k)dx .a

ax~
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Integrating the first term in each integral by parts we transform this to

&[XM (k)]Mii( —k)&= — ' f e
-~

Mp( —k) M (k) dX
BXz. BX

fe ~ Mp( —k) M (k) dX.
R R

(36)

The integrals are easily evaluated and we find

&[XM(k)]M( —k)&= —Np [Dak &u&u, &

PgA =
& AM( —k) &&M(k)M( —k) & 'M(k) . (40)

The orthogonal projector Q& is defined by

+Dz(1 —&u, u&&)] . (37) Qq=1 Pq . — (41)

Note that we have not used isotropy. Substituting into
Eq. (27) we obtain

D„(k) = —,'Pn Dp [Dak & u, u, &

The memory function Mz (kt), may be written as the au-
tocorrelation function of a random force,

M~(k, t)= —
& f~(k, t)f~( —k) &&M(k)M( —k) &

+D„(1—&u, u, &)][y (k, O}] (38) (42)

In the absence of applied fields the system is isotropic and
the expression becomes

where

f~(k, t) =exp(Q+t )Q&XM(k}, (43)

D~ +—,'DDk ~~ D~ +—,'Dak
D~(k)= kk+ (1—kk) . (39)

I t

We therefore find slowing down at the peaks of the static
structure factors, in analogy to de Gennes narrowing of
the dynamic structure factor of a dense liquid [21].

For a system with strong dipolar interactions the trans-
verse structure factor S,(k) is much larger at small k
than the longitudinal factor S&(k). For such a system
transverse-polarization fluctuations decay much more
slowly than longitudinal-polarization fluctuations. The
ratio of short-time relaxation times equals the ratio
St (k) /SI (k).

The result in Eq. (39) was proposed by Chandra and
Bagchi as an approximation in a theory of dipolar sus-
pensions [22]. The expression (39) is exact for isotropic
systems in the absence of hydrodynamic interactions and
with time evolution governed by the generalized Smolu-
chowski equation. In the presence of applied fields the
more general expression (38) holds. One can derive a
generalization in the presence of hydrodynamic interac-
tions by performing an integration by parts in Eq. (27) in
analogy to that in Eq. (36). The result (39) implies that
the initial rate of change of the scattering function is
governed by free diffusion. The static structure factors
appear as a consequence of the initial value
Fg(k, O)=(k&Tln0)g (k, O). For a discussion of the
mechanism and a comparison with corresponding results
for atomic liquids we refer to Pusey [6).

V. MEMORY FUNCTION

The memory function appearing in Eq. (26) may be
studied in the framework of the Mori-Zwanzig
projection-operator formalism, which allows convenient
mathematical formulation [15]. We define the projection
Pz A of a configuration variable A (X) onto the polariza-
tion Auctuation by

and fz( —k)=fz( —k, O). The one-sided Fourier trans-
form of the memory function is therefore given by

M~(k, co)= & [(ia)+QgÃ) 'fa(k)]f~( —k) &

X & M(k)M( —k) & (44)

X & M(k)M( —k) & (46)

with the current variable Jz(k) defined by

J~(k)=QkXM(k) .

We note that the current variable may be replaced by

J~ (k) =Qj, (X—X~ )M(k),

(47)

(48)

where X& is the free-difFusion operator. The current vari-
able differs from zero because of interactions.

Explicit results for the memory function may be evalu-
ated at low density by cluster expansion [24] of the first
average in Eq. (46). Because of the property (48) there is
no single-particle contribution. To lowest order in densi-

ty, the projection operator QI, may be omitted in (48),
and we find a contribution from the two-particle term

3+a(k, co)= lim
2 f dR&dR2duiduzn0(1, 2)~~ 32m-2N

X [ [ico+X(1,2) ] U~~(1, 2}]

XU~ q(1,2)+O(na), (49)

This may be transformed to a form involving the actual
time-evolution operator, rather than the projected one.
Following the procedure developed by Mori [23] we find

M~ (k, co) = 4~ (k, co) I 1+[ical —2D~ (k) ] '@~(k, co)]

(4&)

where the tensor @~(k, co) is given by

e, (k, ~)=
& [(i~+X)-'J,(k)]J, (

—k}&
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with

U~i, (1,2) = [X(1,2) —X/(1, 2)](u&e '+u2e ') .
([(X—X&)M(k)]M( —k)) = no f drdu, duzg

1V

(50)

Furthermore, no(1, 2) is the low-density limit of the two-
particle distribution function, and X(1,2) is the adjoint
Smoluchowski operator specialized to two particles. We
introduce center-of-mass and relative coordinates

with the variable

X [ V„(k)M„(k)]

XM„(—k)

+O(no),

R= —,'(R&+R2), r=R2 —R, . (51)
M (k) —+(u eik r/2+u e

—ik r/2). (59)

Taking the thermodynamic limit in Eq. (49) we find

3
@z(k,co)=

2 no f drdu&du2g(r, u„u2)
3 2'.2

X t [ico+X„(k)] U„(k)]

XU„(—k)+O(no ),
where the distribution function g(r, u&, uz) is given by

g(r, u], u~) =exp[ —Pu(r, u), up)]

(52)

(53)

y, (k)( ue
"'ir+u e i 'r

)

with an operator

(54)

for two-particle direct interaction U(r, u&, u2). The opera-
tor X„(k)differs from the operator X(1,2) only in the re-
placement of the gradient operator r}/r}R, by
—

—,'ik —(i3/Br), and of the gradient operator i3/BR2 by
—

—,'ik+(r}/r}r). The current variable U„(k) may be ex-

pressed as

To lowest order the second average in Eq. (57) may be re-
placed by —,'Np 1, in the absence of applied fields. To first
order in density we therefore find

D~ (k) = (D~ +—,'Dok ) [I+X~ (k)p], (60)

XM„(k)drdu, du2 . (61)

We have used the symmetry of the tensor. It is con-
venient to use a shorthand notation. We introduce the
scalar product between two functions A(r, u„u2) and
B(r,u„uz) by

1
(A ~B)=

z g(r, u„u2)A*(r, u„u2)
16~

where P=(4m. /3)noa is the volume fraction and the ten-
sor A,R(k) is given by

(D~+ ,'Dok—)A~(k)=— 9
4(4ma ) p
X gM„—k V, k

&„(k)=&,(k) —X/„(k), (55) XB(r,u„u2)dr du, du2, (62)

which differs from zero only due to hydrodynamic and
direct pair interactions.

VI. ROTATIONAL-DIFFUSION COEFFICIENT

and abbreviate

ik r/2+. it —r/2.—u&e u28

We find

(63)

X/M(k) = (Dok +2D~ )M(k) . —

Hence we find

(56)

We are now in a position to write down expressions for
the (k, e)-dependent rotational-diffusion tensor of a semi-
dilute suspension. We consider first the high-frequency
limit.

In the absence of hydrodynamic interactions, the
short-time diffusion tensor is given by the simple expres-
sion (39). In the more general case we return to Eq. (27).
In the first average on the right we write

Xf+Xf and use

A, (k)=—, , (k(V„(k)~k) .9
8vra (2D~+Dok )

(64)

This is similar to an expression derived for translational
diffusion [25]. In the limit k ~0 the tensor reduces to a
scalar A,z multiplying the unit tensor for systems with
short-range interactions. The value of Xz has been calcu-
lated for hard spheres with mixed slip-stick boundary
conditions [3,26]. For systems with dipolar interactions
the tensor A,z(k) remains anisotropic in the limit k~0.
The difference of the longitudinal and transverse
coefficients A+i(k ) and A~, (k) for this case is given by

D (~k)=(D~+ ,'Dok )1— zi(0) —Az, (0)=
a

(65)

—
—,
' ( [(X—L/)M(k)]M( —k) )

X (M(k)M( —k) ) (57)

as follows from Eq. (32).
In analogy to Eq. (60) we write the k, co-dependent

diffusion tensor as

The first average on the right may be evaluated by cluster
expansion. The single-particle term vanishes. To first or-
der in the density we find as in Eq. (52)

Dz(k, co)=(D++ —,'Dok )[1+[A~(k)+a+(k,co)]P],

(66)
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with a tensor at, (k, co ) which tends to zero at high fre-
quency. We abbreviate

I Vk) = V„(k)ik) =U„(k) . (67)

9a„(k,co) =
8ma (2Dz+Dok2)

1

ia)+X„(k)

Using symmetry of the tensor we find from Eqs. (29), (45),
and (52)

1
& [(X—X~)u, ]u, &

= no
16~
X fdrdu&du2g[V„(0)u&]u&

+O(no) . (75)

To first order in density the short-time relaxation time is
therefore given by

( I+A, rg)
R

(68)
with coefncient

Again this is quite similar to an analogous expression for
translational diffusion [25].

3&r=
3 fgu, V„(0)u,drdu, du2 .

2(4n.a ) D~

In shorthand notation

(77)

VII. SINGLE-PARTICLE RELAXATION TIME

C»(t) =
& u, (t)u, (0) &, (69)

and the corresponding short-time relaxation time tensor
+s g'"en by

(Hs) = &(Xu~)u~&&u~u~& (70)

We may find analogous expressions for the frequency-
dependent single-particle relaxation time rs(co) of a semi-
dilute suspension. We consider first the high-frequency
limit in the general case.

It is convenient to consider the tensor correlation func-
tion

A z. = (u, .
i V„(0)iu, ) .3

Sea D~
(78)

In analogy to Eq. (76) we write the frequency-
dependent relaxation time as

r (co)= [1+[A, +a (co)]P],
1

(79)
R

with a coefficient az(co) which tends to zero at high fre-
quency. We abbreviate

i Vu, ) = V„(0)u& . (80)

By the same method as used for the rotational diffusion
tensor we find

By the method explained in Sec. IV one finds for the first
average on the right

—3ar(co) =
Sea D~

1

i co+A„(0) (81)

& (Xu&)u& &
= —

& (1—u&u, ).Dztt&& (1—u&u, ) & . (71) The expressions (78) and (81) are analogous to Eqs. (64)
and (68).

1

2D~
(72)

independent of the nature of the direct interactions.
More generally, the short-time relaxation time of an iso-
tropic suspension is given by

1 =Tr&(1—u&u&) Dzz». (1—u&u&)& .
+S

(73)

In order to obtain an explicit expression for the short-
time relaxation time in the presence of hydrodynamic in-
teractions, and valid to first order in volume fraction, we
return to Eq. (70) and replace the operator X in the aver-
age by X—%&+X&. This yields

In the absence of applied fields the suspension is isotro-
pic. In that case rs=/zl and &u, u, &= —,'1. In the ab-
sence of hydrodynamic interactions the rotational part of
the diffusion matrix is just the unit matrix multiplied by
the coefficient D~, so that then the short-time relaxation
time is simply

VIII. DISCUSSION

We have discussed relaxation of orientation for a sus-
pension of spheres on the basis of the generalized Smolu-
chowski equation. An important result is embodied in
Eq. (39), which shows that in the absence of hydro-
dynamic interactions the initial decay of the polarization
correlation function is governed by free diffusion. The
short-time diffusion coefFicient shows a strong wave-
vector dependence due to the equilibrium structure of the
suspension at the initial time. The result is a straightfor-
ward generalization of an analogous expression for the
translation diffusion coefficient, but seems not to have
been derived before.

We have also derived convenient expressions for the
wave-vector- and frequency-dependent rotational
diffusion tensor and the single-particle relaxation time of
a semidilute suspension. The expressions are valid to first
order in volume fraction and are a convenient starting
point for explicit calculation. In a forthcoming paper we
shall use these expressions to study orientational relaxa-
tion in a colloidal Heisenberg model.

& (Xu, )u, &
= ', D„ I &+[(X—X~—)u—, ]u, & . (74)
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