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Thermal conductivity of a shearing fluid
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A recently derived Green-Kubo formula for the thermal conductivity of a shearing Quid has been used

to calculate the thermal conductivity of a strongly shearing Lennard-Jones Auid in the limit of zero tem-

perature gradient. Using nonequilibrium molecular-dynamics simulation methods, we find that the diag-

onal elements of the thermal-conductivity tensor are independent of the strain rate y up to approximate-

ly y=1.0. At higher strain rates, the xx and yy elements increase weakly with strain rate while the zz

element decreases weakly. The xy and yx elements of the thermal-conductivity tensor decrease, initially

linearly, with increasing strain rate from their equilibrium value of zero. These results are in agreement

with conclusions obtained from symmetry arguments.

PACS number(s): 66.60.+a, 05.60.+w, 83.50.Sp

I. INTRODUCTION

A consequence of the theory of linear nonequilibrium
thermodynamics is that couplings between Auxes and
forces of diFerent tensorial rank such as the heat-Aux
vector and the strain-rate tensor are forbidden [l]. Fur-
thermore, the phenomenological coefficients are assumed
to be independent of the thermodynamic forces, so the
thermal conductivity is taken to be independent of both
the temperature gradient and the strain rate in a weakly
shearing Auid. When the thermodynamic forces are
large, these assumptions are no longer valid. The materi-
al may become anisotropic under the inhuence of strong
thermodynamic forces. Nonlinear constitutive relations
introduce the possibility of couplings that are not present
in the linear theory and the transport coefficients may be-
come dependent on the thermodynamic forces.

Two methods have commonly been used to calculate
the linear thermal conductivity by computer simulation.
One is to evaluate the well-known Green-Kubo formula
relating the thermal conductivity to the correlation of
fluctuations in the heat-Aux vector in an equilibrium sys-
tem. The other is to perform nonequilibrium molecular-
dynamics (NEMD) simulations in which a synthetic
"heat field" is used to generate a heat Aux. The thermal
conductivity can then be obtained by extrapolating the
Aux-force ratio to zero field, giving the linear thermal
conductivity.

In previous work, we [2] have shown that the Green-
Kubo method can be extended to a strongly shearing
Quid, giving the strain-rate-dependent zero-temperature-
gradient limit of the thermal-conducitivty tensor. It has
also been shown that no simple, efficient NEMD method
exists for calculating this quantity [3].

In this paper, we use the Green-Kubo formula derived
previously to calculate the thermal-conductivity tensor A,

as a function of strain rate in a strongly shearing atomic
Quid.

II. GREEN-KUBO RELATION

The linear thermal conductivity is defined by the linear
constitutive relation for heat Bow (Fourier's law)

I dt(J~(t) J~(0))o,
3k~ T

(2)

where JE(t) V is the zero wave-vector hmit of the Fourier
transform of Jz(r, t). The 0 subscript indicates that the
average is carried out at equilibrium. The microscopic
expression for JE(t)Vis

J (t)V=+ e; ——g r; F;.Pi 1 Pl

l EJ {WE)

(3)

where p; is the momentum of particle i, m is the particle
mass, r; is equal to r —r, , F; is the force on particle i
due to particle j, and V is the volume of the system.
Equation (2) is evaluated at equilibrium, so the time-
averaged fiuid velocity u(r) is zero. In this case, the
internal energy per particle e; is given by

Pt 1e;= + —gP;2m 2 (~)
(4)

where P," is the potential energy of particle i due to in-
teraction with particle j.

Now consider an atomic liquid subjected to steady
homogeneous shear with an average streaming velocity
given by u(r) =iyy where i is a unit vector in the x direc-
tion and y is the strain rate. Such a system can be de-
scribed by the Sllod equations of motion [5] (so named be-
cause of their close relationship to the Dolls tensor algo-
rithm)

Jz(r, t)= A, VT(—r, t),
where Jz(r, t) is the heat-liux vector in the Eulerian pic-
ture of hydrodynamics in which each hydrodynamic vari-
able is a function of the position vector r and the time t.
In general, the thermal conductivity is a second-rank ten-
sor. This is important when considering anisotropic ma-
terials. The linear thermal conductivity of an isotropic
Quid reduces to a scalar given by the well-known Green-
Kubo relation [4,5]
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PEr;=
m

+iyy;,
(5)

=r; ( t) t u; (s)ds . — (6)

Note that at time t =0, we have q;(0)=r, (0). These mi-
croscopic Lagrangian coordinates are analogous to the
macroscopic Lagrangian coordinates used in Auid dy-
namics. However, there is an important difference be-
tween the two. In the macroscopic case, a point in the
Lagrangian coordinate system moves with the Auid at the
local macroscopic Auid velocity. In the case of planar
shear Aow, the macroscopic Auid velocity has only an x
component, and it is not possible for a fluid "particle" to
move from one streamline to another. In the microscopic
case, this is not so. The velocity of a given particle con-
sists of a thermal part and a streaming part. The thermal
component (represented by the Sllod momentum p;) al-
lows a molecule to move from one streamline to another.
For the streaming component of the displacement to be
completely removed, allowance must be made for a varia-
tion in the local streaming velocity experienced by the
molecule, as is done in Eq. (6). This is easily seen when
u; =iyy, is substituted into Eq. (6), giving

q;(t) =r, (t) —iy f y, (t)d . s

pi =Fi ~Xpiy ps ~

where, at low Reynolds number, p, is now the peculiar
momentum of particle i, defined as m [v; —u(r,. )], and
F;=g F; . a is a coefficient determined from Gauss's
principle of least constraint that makes the kinetic tem-
perature or total energy of the system a constant of the
motion.

Due to symmetry considerations, the shear cannot in-
duce a heat Aow in this system, but it can affect the
thermal conductivity, which now becomes a tensor.

Two descriptions of hydrodynamics are commonly
used. One is the Eulerian description in which the hydro-
dynamic variables are specified at a given time and a fixed
point in space. The other is the Lagrangian description,
in which the hydrodynamic variables are specified at a
given time and a particular point moving with the Auid.
Evans [2] has shown that it is possible to derive a Green-
Kubo relation for elements of the strain-rate-dependent
thermal-conductivity tensor. In this derivation, micro-
scopic Lagrangian coordinates q; are introduced where

& p;(s)
q;(t)=r, (0)+f ds

o m

The thermal-conductivity tensor is defined in terms of a
linear constitutive relation between the Lagrangian heat-
Aux vector and the gradient of the Lagrangian internal
energy density Auctuation. The use of a linear constitu-
tive equation is valid because the internal energy density
gradients are assumed to be small. After Fourier trans-
forming with respect to q and Fourier-Laplace trans-
forming with respect to t, the result

JL (k, co) = ' ike(k, co)
A,(k, co)

P~v
(10)

is obtained. This is simply the k and co space version of a
generalization of Eq. (1) that allows for spatial and tem-
poral memory in the Lagrangian frame. Note that the
constant volume specific heat arises from the fact that we
have expressed the constitutive equation in terms of
internal energy gradients rather than temperature gra-
dients. A derivation very similar to that used to obtain
the equilibrium thermal conductivity [2] leads to the final
result for the thermal-conductivity tensor [5]

III. SIMULATION DETAILS

The homogeneous shear NEMD method was used to
simulate planar Couette Aow, using the equations of
motion given in Eq. (5). A constant kinetic temperature
thermostat with a in Eq. (5) given by

&(F; p; —y~.;~„)

f dt(JL (t)JL (0))
k T,'

Here, ( ) denotes an average over an equilibriumr
canonical ensemble of systems that have been brought
into a shearing steady state using constant energy dynam-
ics. It is assumed that the strain rate was applied at time
t = —~ and that a steady state has been achieved by the
time t =0. Note that a canonical ensemble of systems
that have been brought into a shearing steady state using
constant energy dynamics has the same energy Auctua-
tions as the equilibrium ensemble from which it was gen-
erated. This means that the zero time value of the corre-
lation function of internal energy density Auctuations is
the same as it is at equilibrium. This, in turn, is related
to the specific heat and the temperature T, of the gen-
erating equilibrium ensemble. Therefore the temperature
appearing in Eq. (11) is the equilibrium temperature, not
the kinetic temperature of the nonequilibrium steady
state [2]. Note that, at equilibrium, Eq. (11) reduces to
Eq. (2).

The microscopic Lagrangian internal energy density is
given by gp,'

(12)

e(q, t)=pe;(t)5(q —q, (t)) .

This leads to the following expression for the zero-wave-
vector Lagrangian heat-Aux vector [2]:

JL(t)V=+ e, ——g q; F; .Pt 1 Pt

m ' 2--(~1)

yP,„(t)V—
gp, /m

(13)

where P „ is the yx element of the pressure tensor, was

was used for equilibrium simulations and a constant ener-
gy thermostat with a given by
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used for some equilibrium and all nonequilibrium simula-
tions. Linear proportional feedback was used to cancel
the small drift in temperature or energy introduced by
the finite numerical accuracy of the differential-equation
solver and the finite Aoating-point representation of num-
bers. The same method has previously been used to com-
pensate for the drift in bond length constraints due to nu-
merical errors in simulations of rigid molecules [6].

Equation (9) shows that both the laboratory position
and the Lagrangian position of each particle are needed
for calculations of the heat-Aux vector and the thermal-
conductivity tensor. In NEMD simulations of planar
Couette Aow, periodic boundary conditions that are com-
patible with the shear are necessary. Lees-Edwards (slid-
ing brick) boundary conditions are usually used. Howev-
er, different periodic boundary conditions are required
for the Lagrangian coordinates, because they are calcu-
lated from "shear-free" equations of motion. This is easi-
ly seen by taking the time derivative of Eq. (6). Therefore
both shearing and shear-free periodic boundary condi-
tions are required.

The correlation functions were calculated by creating a
"shift register" of values of JL, ~, reduced time units
long. When the shift register was filled, a correlation
function was calculated by multiplying the time zero
value by the subsequent values. Then the Lagrangian
coordinates were reset to equal the laboratory coordi-
nates, the shift register was refilled, and another correla-
tion function calculated. This method differs from the
usual way of calculating correlation functions at equilib-
rium, in which the values of the observable are simply
shi.fted and the first value in the shift register taken as the
time zero value. It is also less efficient, because each
correlation function accumulation is performed after z,
time steps instead of after each shift register update.
However, it was necessary to calculate the correlation
functions in this way because of the explicit appearance
of the time origin in the definition of the Lagrangian
coordinates. In practice, it was found convenient to split
the correlation functions into those parts that could be
accumulated at each shift register update, and those that
could only be accumulated every ~, time steps.

The simulated system was a Lennard-Jones fluid with a
potential given by

IV. RESULTS AND DISCUSSION

The values of the linear thermal conductivity A, ob-
tained from an equilibrium simulation at constant kinetic
temperature using Eq. (2) was 7.38+0.3. Nonequilibrium
simulations at constant kinetic temperature using the fol-
lowing equations of motion [5]:

P&r;=
m

p; =F;+(e; e)F&(t—) —g F—; [r; F&(t)]
N

j=1
N

+ QF,„[r,, Fg(t)] —ap, ,
j,k

(15)

with a heat field F&, of 0.2, give A, =7.17. Both of these
values are in good agreement with the results of Evans
[7], who found a linear thermal conductivity extrapolated
to zero heat field of 7.25+0. 1, and a negligible depen-
dence of A, on the heat field F& up to F =0.2.

Equation (11) for the thermal-conductivity tensor of a
shearing Quid can be written in the form

thermal conductivity of a Lennard-Jones Quid as a func-
tion of strain rate at reduced density p=0. 8 and reduced
internal energy per particle of —0.8979. The correlation
function was evaluated as a time average over a trajecto-
ry at fixed internal energy equal to the average internal
energy of the constant temperature equilibrium system.
This differs slightly from Eq. (11) in which the ensemble
average is over an initial equilibrium canonical ensemble
of systems that are brought into a shearing steady state
using constant energy dynamics, but we do not expect
this to have an effect on the results [9].

The equations of motion were solved using a Gear
predictor-corrector algorithm with a reduced time step of
0.002. The results quoted here were typically the result
of an average over three runs, each of 8 X 10 time steps
(or 1.6X10 reduced time units).

—12 —6'
(14) =A.E+A, ', (16)

with c. and o. set equal to 1. The potential was truncated
at 2.5o. and shifted so that the potential was zero at the
point of truncation. The reduced temperature was 2.0
and the reduced density was 0.8, corresponding to a su-
percritical Quid. This state point was chosen because the
linear thermal conductivity of this system has been calcu-
lated previously from nonequilibrium molecular-
dynamics simulations [7]. All results are expressed in re-
duced units, with o.the unit of length, m the unit of mass,
and c. the unit of energy.

From the equilibrium simulations, the average reduced
internal energy per particle was calculated to be—0.8979. Equation (11) was then used to evaluate the

J'(t) V= —g iy f y,"(s)ds F,".1 . t Pi

i,j (%1)
(17)

This term can be seen as a contribution to the energy Aux
due to the convective motion induced by the shear and it
must be subtracted to find the diffusive energy Aux. Note
that it is zero for those particles whose y coordinates are
equal for the interval 0 to t.

Elements of the correlation function tensor Cz(t) eval-
uated at a strain rate of y =2.0 are shown in Fig. 1. The

where J'(t) =JL (t) Jz(t) and we have —used the fact that
JL, (0)=J~(0). When u(r) =iyy, J'(t) can be written ex-
plicitly as
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FIG. 1. Diagonal and off-diagonal elements of the correlation
function tensor CE(t) at a strain rate of @=2.0. Elements not
shown were zero within errors. The functions were evaluated to
a reduced time of 1.0, but were essentially zero in the interval
0.5 to 1.0.

diagonal elements are positive and the off-diagonal ele-
men s arets are negative. The off-diagonal elements not plot-

rs. Ele-ted were equal to zero within experimental errors. e-
ments of the correlation function tensor C'(t) evaluated
t strain rate of y=2. 0 are shown in Fig. . Figure 2

1-shows that only the xx and xy elements of the therma-
conductivity tensor are affected by the distinction be-
tween r," and q;. . It is apparent that these correlation
functions become very noisy at long times. This is due to
the fact that q,- becomes large on the time scale required
for the calculation of the correlation functions because
particles close enough to interact at time t may have had
very different initial positions and therefore streaming ve-
locities at time t =0. The time taken for particles to sam-
ple all streaming velocities is related to the time for a par-
ticle to diffuse from the top of the box to the bottom.
Another reason for the larger noise amplitude in the
correlation functions compared to thhe C correlation
functions is that the GE can be evaluated using every

~ ~

time step as a time origin, whereas a new time origin can
only be selected once every ~, time units in the calcula-
tion of C'.

The integrals of CE(t) and C'(t) for y=2. 0 are shown
in Figs. 3 and 4. The integrals of all correlation functions

FIG. 3. Integrals of the nonzero diagonal and off-diagonal
elements of the correlation function tensor CE(t) at a strain rate
of y=2.0. The values of the integrals were taken at a reduced
time of 1.0, but they were well converged at t =0.5.

appear to have converged sufficiently by t =0.5. To re-
move the effect of the noisy tail on the G' correlation
functions, the value of A,

' was taken from the integral at a
time after the decay of the peak in the correlation func-
tion but before the increase in the noise (approximately
t =0.4-0.5).

The strain-rate dependences of the diagonal and off-
diagonal elements of A,E are shown in Figs. 5 and 6, re-
spectively. k „, A, „, and A,„are independent of strain
rate to within the errors up to y=1.0. The average of
the zero strain-rate values is 7.33+0.05, in agreement
with the results of the NEMD constant temperature
simulations of Evans and the equilibrium Green-Kubo re-
sults mentioned previously. Note that long runs at zero
shear and constant energy with the energy per particle set
to —0.8979 actually gave a kinetic temperature of 2.03,
slightly higher than the target value of 2.00.

The only nonzero off-diagonal elements of A,E are the
xy and yx elements. The strain-rate dependences of k„
and A, „are clearly initially linear in y.

The Lagrangian corrections to the thermal conductivi-
ty are shown in Fig. 7. Only the corrections to the xx
and xy elements are shown, because all of the others are
zero. The xx element is quadratic in y and the xy ele-
ment is linear in y. Both corrections tend to reduce the
magnitude of the corresponding elements of the thermal-

0.15

0.10

0.05

0.00

0.04

0.03

0.02

0.01

0.00

XX
-----xy

XZ

-0.05 -'

-0.10
0.0 0.2 04 0.6 0.8

-0.01

-0.02

-0.03
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Elements of the correlation function tensor C'(t) at a
strain rate of y =2.0. FIG. 4. Integrals of the diagonal and off-diagonal elements of

the correlation function tensor C'(t) at a strain rate of y =2.0.
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FIG. 5. Diagonal elements of the thermal-conductivity ten-
sor A,E as a function of strain rate y.

FIG. 7. Corrections to the xx and xy elements of the
thermal-conductivity tensor as a function of strain rate y.

conductivity tensor, with the result that the corrected
value of X is closer to Atyy and the corrected value of Xzy
is further from A.„„,as shown in Figs. 8 and 9.

Symmetry arguments can provide some insight into the
strain-rate dependence of the thermal-conductivity ten-
sor. A Quid undergoing planar shear How is symmetrical
with respect to a rotation of m. about the z axis. Applica-
tion of this symmetry element to the general form of A,(y )

leads to A, , ky Al ky 0, in agreement with our
simulation results. The behavior of A,(y) with respect to
reversal of the shear can be found by the following
method. The strain rate, y=Bu /By, can be reversed by
inverting either the x or the y axis. Considering inversion
of the x axis first, we find that since J is inverted and
BT/By remains the same, A,„must be an odd function of
y. Likewise, we find that A, is also odd in y. Both J
and 0T/Bx change sign on inversion of the x axis, so 1,
must be even in y. Inversion of the y axis leads to the
conclusion that kyy is an even function of y. Inversion of
either the x or the y axis leaves the equation for J, un-
changed, so k„must be an even function of y. This
analysis is valid for arbitrary values of y and the con-
clusions are consistent with our simulation results. They
should also hold for other vectorial processes such as

diffusion in shear Aow. This appears to be the case when
previously obtained results for diffusion in shearing atom-
ic tluids are examined [8].

The macroscopic constitutive equation [Eq. (10)] that
we have used to define A, is a linear constitutive equation.
The nonlinear dependence of the heat-Aux vector on the
strain rate has been absorbed into the strain-rate depen-
dence of the thermal-conductivity tensor. One way of ex-
plicitly revealing the strain-rate dependence of the
thermal-conductivity tensor is to expand the Aux in terms
of the strain rate and the temperature gradient about its
value when the thermodynamic forces are zero. Of
course this expansion is only valid if the faux is an analyt-
ic function of the forces and for small values of the
forces. The question of analyticity is related to the ex-
istence of long-time tails in correlation functions. Near
the critical point, the effects of long-time tails are pro-
nounced. At low density, high-temperature state points,
and for finite systems, the long-time tails may be
sufficiently weak for analytic behavior to be observed.
Furthermore, the long-time tail effect is much weaker for
the heat-Aux correlation function than it is for the veloci-
ty autocorrelation function or the stress autocorrelation
function [7]. With these reservations in mind, we expand
the heat Aux as a truncated generalized Taylor series

xy
x yx

10

8
li

7

~ zz
xx

6

FIG. 6. OfF-diagonal elements of the thermal-conductivity
tensor A,E as a function of strain rate y.

FIG. 8. Diagonal elements of the thermal-conductivity ten-
sor A, as a function of strain rate y, where the xx element has
now been replaced by the corrected xx element.
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yx
~ xy

only nontrivial isotropic second-rank tensor is the
Kronecker or unit tensor so the first term on the right-
hand side just reduces to the standard Fourier, law for iso-
tropic Auids. However, there are no nontrivial polar iso-
tropic third-rank tensors, so the second term is zero (i.e.,
to linear order, a strain rate cannot generate a heat Aow
in an isotropic fiuid). The symmetry considerations used
so far are well known in linear nonequilibrium thermo-
dynamics, and are collectively known as Curie's principle

The terms resulting from the second-order partial
derivatives can be written as

FIG. 9. OF-diagonal elements of the thermal-conductivity
tensor A, as a function of strain rate y, where the xy element has
now been replaced by the corrected xy element.

BJJ(x, ,xz)=J(0)+ Q X;
) BX;

2 2 ()2J+
. ,&„&,ax, ax, .=.:""

2 2 2 $3J

3!, , ,k, BX;BX BXk

( ~ )[']x,x,x„
X=0

(18)

2

( ~ )["]X["]=A[].VT+8[:Vu .
[n]

1 ax- x=o
(19)

The phenomenological coefficient tensors A[ ] and 8[ ]

are properties of the equilibrium Quid, and so must be
isotropic tensors. The heat-Aux vector and the tempera-
ture gradient are polar vectors, and the strain-rate tensor
is also polar, so At and B must both be polar. The

Note that the expansion is performed about the equilibri-
um state so we immediately see that J(0)=0. As it is
written, Eq. (18) involves only vector forces, but the gen-
eralization to arbitrary tensor forces is obvious. In the
present case, the thermodynamic forces X& and X2
represent the temperature gradient V T and the strain-
rate tensor Vu. The standard linear constitutive relations
of linear nonequilibrium thermodynamics are equivalent
to Eq. (18) truncated at the linear term. However, it is
instructive to look at the higher terms in order to deter-
mine the leading contributions due to the strain-rate ten-
sor corresponding to planar Couette Row Vu =jiy. First,
we consider the linear terms:

D p =sc, 5 p5 s+c25 ~5ss+c35 s5pr . (21)

The tensor 0 possesses intrinsic symmetry additional to
the symmetry related to the isotropy of the material be-
cause of the equality of the partial derivatives

()2J $2J

BVTBVu BVuBVT
(22)

This gives D =E and leads to the symmetry D~&&&
=

D&&~&

which, when applied to Eq. (21), yields c, =cz =c3. Now
it is straightforward to show that

D( )[ (VTVu+VuVT)=Li VT,
where L, is the second-rank tensor

(23)

L, = 2c, y

2ciy 0

0 0 (24)

0 0 0

The terms arising from the third-order derivatives can be
treated in a similar way. Once again, we use the fact that
the tensors of odd order are eliminated because there are
no polar isotropic tensors of odd rank. Then we are left
with

2 2 $2J
)[n +m]X[n]X[m]

=C[ ]:VTV T+ D[ ]( ~ )[ ]VTVu

+E[ ]( ~ )[ ]VuVT+F[']( ~ )[ ]VuVu . (20)

The phenomenological coefficient tensors must be isotro-
pic polar tensors, but all nontrivial isotropic tensors of
odd rank are axial, which eliminates the third- and fifth-
rank tensors C and F. A nonirreducible form of the gen-
eral fourth-rank isotropic tensor can be formed from a
linear combination of the three fourth-rank isotropic ten-
sors giving

( )["+-+']X["]X™XP=a[']( ~ )[']VTVTVT+ H[' ( ~ )
' VuVuVT1 8 J

3[,=„=,„=,ax["]ax™axe~,
+J[ ]( ~ )[ ]VuVTVu+K[ ( )[ ]VTVuVu . (25)

We will only consider terms linear in the temperature gradient, so the term proportional to V TV TV T will be ignored.



1064 PETER J. DAIVIS AND DENIS J. EVANS

The general sixth-rank isotropic tensor is a linear combination of the 15 sixth-rank isotropic tensors and can be written
as

H py$ g c]5 Py$5 g+c25 p5~ 5Qg+c35 p5~$5$ +c45 y5p$5 g+c55 @5' 5$g+c65 ~5pg5$

+c75a&5py5gg+ c 8 5og5py5$$+ c95(zg5py5$p+ c )p 5~$5p~5yg+ c 115a65@5yc

+c,26,5pq6 ~+c,35 ~5pq6, +c,45,5p~5 ~+c,55 ~5p, 5 ~ . (26)

where L2 is a second-rank tensor given by

ay 0
L2= 0 ay

0
0 (28)

0
3

Combining the above results, we see that the constitutive
equation for heat flow in a shearing system with a linear
velocity gradient can be written as

J= —A(y) VT, (29)

limA, (y)=
kp+by ay

kp+by (30)

+ y2

where A,p is the equilibrium thermal conductivity. This
equation shows that the assumed Taylor series expansion
combined with symmetry considerations will give strain-
rate dependences of the type observed in these simula-
tions. The initial strain-rate dependence of the thermal-
conductivity tensor seen in Figs. 8 and 9 is consistent
with Eq. (30) where b =0, and a = —2.2. The form of the
thermal-conductivity tensor given in Eq. (30) also shows
that the principal axes of the thermal-conductivity tensor
will be at 45 to the streamlines in the zero strain-rate
limit.

Away from the zero strain-rate limit, the Taylor series
expansion of the flux in terms of the forces is not expect-
ed to be valid and so there is no reason to expect Eq. (30)
to hold.

The partial derivatives defining the three sixth-rank ten-
sors H, J, and K are equal, leading to the additional sym-
metry H p &,&=H &,p &= Hp &,&. It is then straightfor-
ward to show that this implies that all constants c

&
to c &5

in Eq. (26) are equal. Then the third-order terms reduce
to

H( )(')(VuVuV T+VuV TVu+ V TVuVu) = L2 V T, (27)

I

calculate the strain-rate-dependent thermal-conductivity
tensor of a Lennard-Jones fluid. The nonequilibrium
molecular-dynamics Sllod algorithm was used to simulate
shearing steady states with fixed internal energy. We
have found that the diagonal elements of the thermal-
conductivity tensor were independent of the strain rate
until y=1.0, after which the xx and yy elements in-
creased weakly with y and the zz element decreased
weakly. 08'-diagonal elements of the thermal-
conductivity tensor were introduced because of the re-
duced isotropy of the sheared system compared to an
equilibrium system. The xy and yx elements of the
thermal-conductivity tensor were negative and decreased,
initially linearly, with increasing strain rate. Symmetry
arguments were used to show that the diagonal elements
of the thermal-conductivity tensor must be even in the
strain rate y, while the ofMiagonal elements must be odd
in y. Using a Taylor series expansion of the heat flux in
terms of the temperature gradient and the strain rate, we
found that the xy and yx elements of the thermal-
conductivity tensor were linear in the strain rate and the
xx, yy, and zz elements of the thermal-conductivity tensor
were quadratic in the strain rate in the zero strain-rate
limit.

The anisotropy of the thermal-conductivity tensor for a
shearing atomic fluid can be attributed to the anisotropy
of the liquid structure induced by the shear. We found

/ —,
' Tr(A, )= —0.26y below @=1.0, in reduced units.

In real units, this becomes A,, / —,
' Tr(A, )= —5.6X10 '

y
for argon, with y expressed in Hz. The largest strain
rates that are easily attainable experimentally are of the
order of 10 Hz, making the anisotropy unmeasurably
small for argon at the state point we have considered. In
more complex molecular fluids, an additional mechanism
for anisotropy of the thermal-conductivity tensor
exists —shear-induced orientation. Experimental studies
of the thermal conductivity of complex fluids such as po-
lymer melts have shown that the strain-rate dependence
of the thermal conductivity is measurable [10,11]. The
anisotropy of the thermal-conductivity tensor is expected
to be similar to that of the order tensor [10]. In future
work, we intend to calculate the thermal-conductivity
tensor for shearing molecular fluids.
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