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Interface growth and Burgers turbulence: The problem of random initial conditions
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We study the relaxational dynamics of the deterministic Burgers equation, with random initial condi-
tions, in an arbitrary spatial dimension d. In this paper we concentrate mainly on initial distributions
relevant to interface growth rather than Burgers turbulence (although we shall present results for this
system in d=1). By using an analytic approach, we are able to calculate both the short- and long-time
forms for the kinetic energy of the fluid (or equivalently the roughness of the interface. ) We find ex-

ponents describing the early-time behavior of the system.

PACS number(s): 47.10.+g, 05.40.+j, 68.10.Jy

I. INTRODUCTION

The Burgers equation is one of the simplest models of
fiuid turbulence [1]. This equation may be derived from
the Navier-Stokes equation by taking the fluid to be
infinitely compressible and vorticity-free. The Burgers
equation for the fiuid velocity v(x, t) has the form

t),v=vV v —
—,'V(v ),

where v is the viscosity. This equation is deterministic
and describes the relaxation of the fluid from some (tur-
bulent) initial condition Q[v(x, O)]. The addition of a
stochastic source to the right-hand side of (1.1) is ap-
propriate to the problem of a randomly stirred fiuid [2].
This equation has applications in many areas other than
Quid turbulence due to the fact that it is one of the sim-
plest nonlinear diffusion equations. The transformation
v= —

A,Vh (recall that VXv=0) produces the Kardar-
Parisi-Zhang (KPZ) equation [3] P [ho] =Q p(ho(x„)), (1.3)

known for this problem is due to Burgers [1]—by exact
analytic methods he showed that in d =1 there exists a
scaling regime for the asymptotic (t ~ oo, v~O) behavior
of the system. The scaling may be expressed in terms of a
characteristic length scale L ( t) t ~ —Dim. ensional
analysis then indicates that the kinetic energy
E(t)= —,'(v ) &

-t (where the angled brackets indi-

cate an average over the ensemble of initial conditions
which in this case are Gaussian). Extension of his
method to higher dimensions is very difficult. In the
present work we shall present a new formulation of this
problem which allows one to work in higher dimensions
without too much extra difficulty.

The outline of the paper is as follows. In Sec. II we
shall describe some simple steps which lead to a path-
integral representation for E (t) for a given distribution of
initial conditions. An exact evaluation of the path in-
tegral is possible for an initial distribution which is
decoupled in space:

t), h =vV h+ —(Vh) (1.2)

which is a popular model of interface growth. [The pa-
rameter k that appears in (1.2) allows h to have dimen-
sions of length appropriate to its interpretation as the in-
terface height. ] Again note that the above equation is
deterministic and so describes the relaxation of an inter-
face from some (disordered) initial condition. Interface
growth in the context of ballistic deposition is described
by (1.2) with the addition of a noise term. The stochastic
versions of these equations have been extensively studied
and are well understood in d =1. In higher dimensions
there is little consensus on the values of the dynamic ex-
ponents related to the Burgers equation [3—8]. This is
due to varying results from simulations (whose micro-
scopic rules are assumed to be described by (1.2) in the
long-wavelength regime [9]) and a lack of analytic results
for d ~2.

In this paper we shall concentrate on the deterministic
relaxation of these models. For purposes of calculation
we shall exclusively use (1.2) (purely because it is simpler
to deal with a scalar field). The most important result

where ho is the initial value of the field h and the product
is over all sites in the discretized space. In Sec. III we
shall evaluate the exact form of the energy for both short
and long times for a variety of such distributions. Clearly
these results are relevant to interface relaxation [where
E(t) =A, ((Vh ) )p/2 is a measure of the interface rough-
ness], since the corresponding fiuid distribution is ill
defined. One of the most interesting results we shall
derive is that for a distribution of the form (1.3) with p a
bounded, continuous function, the short-time evolution
of the energy has the form E(t)-t where
t7=2(d+I)/(d+2). In Sec. IV we concentrate on the
case where P [ho]-exp —f (Vho) ddx which is relevant
to the Burgers fluid and also to interfaces with smooth
(continuous) initial profiles. We shall see that in this case,
the path integral derived in Sec. II may now be interpret-
ed as a field theory. The corresponding action is seen to
be closely related to the Liouville model of string theory
[10]. We evaluate the path integral in d =1 and confirm
the main results of Burgers. Extensions of this method to
higher dimensions are brieAy discussed. Section V con-
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eludes this paper with a summary of our results and a dis-
cussion of future directions of research using this
method.

II. PRELIMINARY STEPS

In the present work we shall calculate the kinetic-
energy density of the Quid

E(t) = r" f ()((u)exp[ r—/2$(u)] —1
0 u

where

P(u)= —w f d y ln
1

2E

(3.1)

E(t) =——,'(v ) g= ((&h ) )p,Q (2.1) X [E,(ue ) E, (ue— )] (3.2)

E ( t )= 7(.d, ( h ( x, t ) ) (2.2)

where ( )~ indicates an average over the distribution R.
We stress that the methods to be presented may be ap-
plied to other quantities of interest such as velocity-
velocity correlation functions. This will be the subject of
future work. We note from (1.2) and (2.1) that

and E, (z) is the exponential integral [12]. In (3.1) and
(3.2) all lengths are scaled to have units of l.

The function P(u) is quite rich. We may simplify it
greatly by taking E ))1. This corresponds physically to
the strong turbulence limit. Using integration by parts
and the series expansion for the exponential integral we
6nd

where we have used translational invariance to drop the
diffusion term.

An exact solution of (1.2) in terms of ho is possible by
use of the Hopf-Cole transformation h = (2v/A, )lnw
which leads to a simple diffusion equation for w(x, t).
We therefore have as the solution of (1.2)

2KI —+1 P(u) = f dy y" (1 —exp —ue ~)
2 0

+O(K ') .

We now rewrite (3.1) as

(3.3)

h (x, t)=a 'ln f d "y g(x —y, t)exp[aho(y)], (2.3) (3.4)

where a=A/2v and g(x, t)=(4mvt) "/ exp[ —(x /4vt)]
is the heat kernel.

It is clear from (2.2) and (2.3) that in order to evaluate
the energy, we need to perform an average over the loga-
rithm of a space integral. One possibility is to express the
right-hand side of (2.3) as an arbitrary power of the space
integral by use of the replica trick [11]. This is not a
promising direction to take. We prefer to use the follow-
ing representation of the logarithm function:

r=r(2K) =4~vt
A,H

2 jd

where

F(r)=r / f P(u)exp[ —r" P(u)],
~ du—

0 u

with P(u) =2K/(u) and

(3.5)

(3.6)

lnz = e "—e
0 u

(2.4)

E(t)=2vB, f [e "—g(u, t)],
0 u

(2.5)

We now have to perform an average over the exponential
of a space integral, which is a far more familiar task.

So combining (2.2) —(2.4) we have

We see that w is the only relevant parameter and we shall
now find the form of E(t) in the limiting cases of r &(1
and 7))1.

It is clear from (3.5) that for r (& 1 the integral over u
is dominated by large u. We therefore need the asymp-
totic form of P(u) for u ))1. We find from (3.3) that for
u ))1

where

(Mte) (exp —e J=d yg(y, t) e'
)e . (2.6)

(lnu)d/2+1 (lnu )d/2

I (d/2+2) I (d/2+1)
(3.7)

We now proceed with the evaluation of f for a given
initial distribution P.

III. DISCRETE INITIAL DISTRIBUTIONS
where y is Euler's constant. Using this asymptotic form
for P(u) we find from (3.5)

In this section we shall investigate the form of E(t) for
discrete initial distributions —i.e., those which decouple
in space as in (1.3). It is necessary in this case to bound
the range of h0. Let us consider the simplest possible
case —a uniform distribution for which ~ho~

& H. Intro-
ducing a lattice cutoff l and performing the rescalings
u ~u =ul "e r, y~y =y(r/vr) ' (where r=4~vt
and K =aH) we have, after evaluating the path integral,

2 d+4
(d+2) d+2

I [(d +4)/2]
—d/2
7

+O(1) . (3.8)

Inserting (3.8) into (3.4) we have the following result for
the energy:



SERGEI E. ESIPOV AND T. J. NEWMAN

(
4A, d+4

(d+2) d+2

HI [(d +4)/2]
(4 )d/2(gt )(d+)) (3.9)

So for "short times" (in the strong-turbulence limit the
crossover time may in fact be very large) such that
t «(4rtv) '(A,H/v) /" we find that the energy decays as
E(t)-t where o. =2(d +1)/(d +2).

The case of w)&1 is much simpler to analyze. Here we
need the small-u form of P which is easily found to be

P=u —2 '"+ ' u +O(u ) .

Inserting this expansion into (3.5) we have

F(r) =1+ ,'(2r) "/ +—O(r ) .

Therefore using (3.11) and (3.4) we find

(3.10)

(3.11)

2( 8vrv )" t
(3.12)

for ~ &) 1. This result corresponds to simple diffusion.
We expect the above results (i.e. , the exponents for the

energy decay) to be valid for any initial distribution of the
form (1.3) so long as the single-site distribution function
is continuous in h, and bounded. This may be verified ex-
plicitly for the case of a bounded Poisson distribution.
An interesting alternative is to consider a discrete single-
site distribution function. We shall brieQy discuss the
case of

section.
For the case of ~)) 1 we obtain

( 8 )
d /2 t d /2+ i (3.17)

and then to take the limit

C(r, t)
2 r~0 p'

(3.19)

This calculation has been performed for the case of the
uniform initial condition and the results are the same as
those obtained above. [In order to calculate C(r, t) one
simply applies the logarithm representation (2.4) twice
and then proceeds similarly to the above analysis. ] Of
course C(r, t) is very interesting in its own right. One
would like to calculate it explicitly in order to determine
the existence of scaling and so forth. So far we have only
been able to calculate the limit expressed in (3.19).

IV. CONTINUOUS DISTRIBUTIONS

Coritinuous distributions are more relevant to the
study of Burgers turbulence. An interesting case to study
1s

which is again the result corresponding to late-time
diffusion.

As a final comment in this section we point out that an
alternative way of calculating E(t) is to evaluate the
two-point correlation function

(3.18)

p (ho) =
—,
) 6(ho+H)+ —,

) 6(ho H), —(3.13) P [ho] -exp[ —(1/4D) f (Vho ) d x], (4.1)

r —"+1 P(u) =u f dy y"
2 o 1+exp —ue

+O(
—2K) (3.14)

The relevant parameter is now simply ~=4~vt. For
r (& 1 we again need the large-u form of P which is found
to be

i.e., a bimodal distribution.
Following the familiar steps the energy may be ex-

pressed as in (3.1) with

which corresponds to a simple Gaussian initial condition
for the Burgers Quid. This distribution function is also
relevant to strongly disordered, but smooth interfaces.
Referring to (2.5) we see that the same expression holds
for the energy, where now

g(u, t) = f2)hoexp( —S[ho; u, t) ]) . (4.2)

This is written in the form of a field theory defined by the
following action:

ln2 ln u
(3.15)

S[ho', u, t]=f d"x ' (Vho) +ug(x, t)e 0 . (4.3)

We then obtain from (3.1) and (3.15)
2/d

I [(d+2)/d] I (d/2+1)
7Td ln2

(3.16)

for r(&1. This result of E(t)—t independent of d
may be understood by considering that the early-time
fiuctuations in the bimodal case relax independently [13]
(in the language of Burgers turbulence, there is no coales-
cence of shock waves in this case). Interaction processes
only occur for initial Quctuations which have a continu-
ous range of sizes as in the first example studied in this

This is closely related to the Liouville model which has
received some attention in string theory [10], but differs
by the existence of the symmetry breaking heat kernel
that multiplies the "potential" term. The study of this
action using field-theory methods (saddle-point approxi-
mation, renormalization group) is an interesting topic for
future research. In the present work, we shall limit our-
selves to studying the case d = I, where the problem may
be recast in the form of a Schrodinger equation, the solu-
tion of which will lead us to obtain the asymptotic form
of the energy E(t)—t / in agreement with the earlier
work of Burgers. Before continuing we note that the
above field theory has an upper critical dimension of
d =2 which implies that the asymptotic (t ~~ ) evolu-
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FIG. 2. Log-log plot of a(h ) vs t The .slope is 0.3334(1).

diffusion. For the case of a uniform single-site distribu-
tion, we found a new, nontrivial exponent for the energy
(roughness) decay in the early-time regime: E(t) —t
where o. =2(d + I)j(d +2). For the bimodal initial con-
dition we found the ¹independent exponent o. =2.
Forms for the crossover times were calculated explicitly.

In Sec. IV we studied the case of a continuous initial
profile, which corresponds to a simple Gaussian initial
condition for the Burgers Auid. In this case, the use of
(2.4) leads one to a natural field-theory representation for
the energy (and velocity-velocity correlation functions)
which closely resembles the Liouville model of string

theory. We solved the case d =1 by using the correspon-
dence of the path integral to a quantum-mechanical tran-
sition amplitude, and recovered the result of Burgers:
E(t)-t . The asymptotic form of the energy for
d )2 was noted to be diffusive due to the upper critical
dimension of the field theory being d =2.

There are several interesting directions to explore using
the present description of Burgers turbulence. First one
may study (4.3) using standard field-theory techniques in
order to have a more complete understanding of the ener-

gy decay (crossover times etc.) in arbitrary spatial dimen-
sions. Also one should be able to calculate correlation
functions using similar steps to those presented here.
This is crucial for a complete understanding of scaling
behavior in these systems. It would be nice to obtain
more exact results from this method, since then the
Burgers equation could serve as a testing ground in the
field of nonequilibrium systems for the application of oth-
er methods such as mode-coupling theories and the dy-
namic renormalization group.
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