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Chaos and order in a kicked anharmonic oscillator: Classical and quantum analysis
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The classical dynamics of a kicked anharmonic oscillator is analyzed in terms of Lyapunov exponents.
The influence of the quantum corrections on the behavior of the limit cycles and chaotic attractors is
considered. Phase portraits are presented. We have shown that quantum corrections destroy chaotic
motion even if the system is driven, dissipative, and classically chaotic.
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1. INTRODUCTION

In the past decade increasing interest has been devoted
to the study modifications introduced by quantum
mechanics into the dynamics of classical systems which
manifest deterministic chaotic behavior. This problem is
frequently referred to as ‘““quantum chaos” —for a review,
see Refs. [1,2]. It seems that the simplest and clearest
comparison of quantum and classical dynamics is to be
found in Wigner’s formulation of quantum mechanics—a
circumstance well known from quantum optics, where
Wigner-like distributions are widely used [3]. This ap-
proach makes it possible to treat quantum systems in a
“classical way” including all their quantum features and
to contrast the quantum and classical dynamics within
the framework of a phase picture [4]. The aim of this pa-
per is to study the dissipative classical and quantum dy-
namics of an anharmonic oscillator driven by a kicked
force—a train of pulses. Whereas the case of a coherent
driving force is well established [5], that of a train of
pulses has not, to our knowledge, been previously applied
to the calculation of the dynamical properties of the
anharmonic oscillator. Some aspects of the kicked dy-
namics, however, without damping and in the context of
discrete mappings, have been also studied by Berman and
Zaslavsky [6]. The quantum anharmonic oscillator plays
a significant role in applications not only in quantum op-
tics [5-10] (Kerr effect), but also in quantum statistical
physics.

The method used in this paper is similar to that applied
by Jensen and Niu [2] for the kicked rotator. However,
the difference is that whereas they applied discrete map-
ping, we study a continuous system (differential equations
for the statistic moments) using a Runge-Kutta method.

II. MODEL AND BASIC EQUATIONS

Let us shortly summarize what is well known about the
dynamics of an anharmonic oscillator. We write the
Hamiltonian in the form [5,9,10]

H=H,+H,+H, , (1)
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where
H1=ha)aTa+ﬁ2laT2a2 , )
H,=i#F(a"—a), 3)
Hy=#3 Qblb,+#3, (K;bja"+Kbla) . 4)
J J

In the single-mode Hamiltonian H,, the quantities a
(a') are the photon annihilation (creation) operators, re-
spectively; o is the frequency of the harmonic oscillator,
X is the anharmonicity parameter. The Hamiltonian H,
describes the interaction between the classical external
driving field F and the single-mode field. The loss mecha-
nism is described by the coupling to a heat bath governed
by the reservoir Hamiltonian H;. Here, the b; (bJT) are
the boson annihilation (creation) operators of the reser-
voir. Oscillations with the frequencies ; and K; are the
coupling constants of the interaction with the reservoir.
We treat the quantum losses in Louisell’s approach [11],
that is, on eliminating the reservoir operators we obtain
the master equation for the density operator p in the form

9 —i
= [Hi+Hyp]+Lilp] . ®)

The irreversible term L, [p] describes damping and has
the form

Lir=—72/—(2apaT~aTap—paTa)

+y{(n)a'pa+apa’—atap—paa’) . (6)

The parameter ¥ is the damping constant, and {n ) is the
mean number of reservoir photons. The quantum theory
of damping [11] assumes that the reservoir spectrum is
flat, so the mean number of reservoir oscillators
(n)={(b](0)b;(0)) =[exp(fiw/kT)—1]"! in the jth
mode is independent of j. Thus, the reservoir oscillators
form a thermal system. The case {n ) =0 corresponds to
vacuum fluctuations (zero-temperature heat bath). It is
convenient to consider the quantum dynamics of the sys-
tem (1)-(4) in the interaction picture. Then the master
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equation for the density operator p is given by [8,10]

9p _ —i[%aTza2+if7(aT—a )pl
oT
+—12“—(2apaT-—aJrap—paTa)

+T{nYa'pa+apat—atap—paa’), @)

where 7=ty is the redefined time, I'=v /y, and F=F /.
The Hamiltonian #oa ‘a does not appear in Eq. (7) as a
consequence of the interaction picture.

The above master equation can be transformed, apply-
ing Louisell’s technique [11], to a c-number partial
differential equation. Three kinds of equations can be de-
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operators; and third, an equation for the Wigner-like
function ®, related to normal ordering. The statistical
properties of the ® functions are discussed fully in the
book by Pefina [3]. These are quasidistribution functions
in the complex plane (a,a*), where the quantity « is an
eigenvalue of the annihilation operator a, ie., ala)
=al|a). Here, |a) is a coherent state.

For convenience we introduce the so-called s ordering
of the field operators a,aT. Then we can write
P(sym) = P0)y Py T P(—1) and Py =Dy,

From (7) we get the generalized Fokker-Planck. equa-
tion for the quasidistribution @ (a*,a;7) related to the s
ordering [10]:

rived from (7). First, an equation for the Wigner function 9% —K+0Q 8)
D (sym) Telated to symmetric (Weyl) ordering of the field or ’
operators a,aT; second, an equation for the Wigner-like
function @, related to antinormal ordering of the  where
|
K=iiuun—7+mMPw“H-a[ﬂr&—?—mﬂﬂ%@g+r@) i @ ,
da 2 Y7 dar : dada*
d 3 s @ (s*—1) @
o= 1—3) aq’(s) (1—s) a ‘D(s)+ 5P~ 5 at P+ " Y 9
da* 2 da 2 3a 4  Ja*’da
(s’~1) (1—s)
T4 aatear “T0 | T2 Badar T
[

Let us emphasize that there is no difference among the (a'a)= f (a*a—1)Pym(a*,a)da (12)

equations for ®(gym), P( ), and Py, as long as the system
(1)-(4) is classical. This problem has been studied in
[5,7]. In the classical limit the term Q in Eq. (8) vanishes
and @, is a classical distribution function [5]. For Q=0
and I'=0, Eq. (8) reduces to the classical Liouville equa-
tion, and for Q=0 and I'40 to the classical Fokker-
Planck equation. So, we can say that the K term governs
classical dynamics whereas the Q term adds the quantum
(operator) correction. The decision as to whether chaos
does or does not appear in the system (1)—(4) can be
made by investigating the separation rate of two peaks of
a @, function initially close to each other or by the
analysis of equations for the statistical moments originat-
ing in Eq. (8). Thus, instead of attempting to solve the
partial differential equation (8) we deal with the problem
of solving a set of ordinary differential equations for the
statistical moments.

III. TRUNCATION SCHEME

A. Statistical moments

The calculation of statistical moments with the help of
®, is simple. For example, if we want to calculate the
average number of photons (a Ya) we use one of three
functions @ y), @ 4), or P(gypm)- We have

(aTa)=fa*a(I>(M(a*,a)d2a )
(a'a)= [(a*a— D@ (a*,a)d?a,

(10)
(11)

The value of {a'a) is always the same but the averag-
ing procedure differs in each case. The relations
(10)-(12) are a 51mPle consequence of the boson commu-
tation relatlon [a,a']=1 and the definition

(a*a)y= [a*a®,(a* a)d’a,

where (a* a)N) (a'a), (a*a) 4=(aa’), and
(a*a)ym=4(a’a+aa’). It is obvious that some ex-
pectation values do not depend on ordering, for example
<aT">:<a*">(N)=(a*"><A)=<a*">(sym)-

The function @, allows us to define the quantum cu-
mulants. The cumulants of first order are given by

(13)

(a*)y=¢&* (a)y=§¢. (14)
The cumulants of second order have the forms

(a*a),,—(a*){a), =B » (15)

(a*?)y—(a*))=C*, (a*)y—(a)l)=C. (16)

It is easy to note that simple relations hold among
B(y), B(4), and By, namely, B, =By +1 and
B (ym)=%(2B(y,+1). Thus the average number of pho-
tons can be expressed with the help of s ordering as fol-
lows: {a'a)=G, +&*E where G,)=B,—(1—s)/2.
The Fokker-Planck equation (8) generates an infinite
and hierarchic set of equations for the statistical mo-
ments. In this paper we restrict ourselves to the second
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truncation, i.e., to the equations for &, C, and G(,,. We
arrive at the following set of equations (see Appendix):

g—é=—%F§+f7—i[26(s)§+C§*+§2§*] , (17)

-3%2—I‘C—i[§2(1+ZG(s))+C(1+4I§|2)]
—6iG,,C , (18)

dg,:j) =—TG, +i[CE*—C*§]+T(n) . (19)

The above set consists of five equations in the real vari-
ables Re&, Im&, ReC, ImC, and G,.

B. First truncation — classical limit

The physical sense of the truncation is clear if we note
that the first truncation (C =G, =0) gives only the clas-
sical equation for the anharmonic oscillator

%:—%F§+ﬂ(f)—i§2§* . (20)

Thus, (a'a)=|£|? is a classical intensity. The system
(20) is nonautonomous if the function ¥ is explicitly time
dependent. The autonomized version of Eq. (20) is given
by

a8 _ _ YLy
o8 = —ITE+Fw)—ig%E"

aw _
dr

It is readily seen that the set of equations (21) consists
of three equations of motion in the real variables Reé,
Img, w. It is well known that chaos in autonomous sys-
tems can appear only if the number of equations is equal
to three or greater. Therefore, if #(7)=const, chaos in
the system does not appear since the set (21) becomes a
two-dimensional autonomous system. The driving field is
in the form of a train of rectangular computer-simulated
pulses. The length of the pulse is denoted by T';, whereas
T, is the distance between the pulses, and &, is their
height. The time evolution between two kicks is
governed by the dissipative dynamics ruled by
H=H,+H,;. For T,=0 the train of pulses becomes a
coherent driving field.

We examine the dynamics of the system (20) with the
initial conditions £(0)=1++i. Moreover, we put I'=0.5,
Fo=2, T,=1, and 0< T, <7.5. To identify order and
chaotic behavior of a nonautonomous system we usually
use its autonomized version. The spectrum of Lyapunov
exponents for a three-dimensional autonomized system
like (21) has a Lyapunov spectrum of the type
{A1,A5,A3=0}. It can be calculated adopting the pro-
cedure proposed by Wolf et al. [12]. Wolf’s procedure
works well if the function F(w) possesses its first deriva-
tive at any point. This requirement is not well satisfied in
our case, where the function F(w) is in the form of sharp
pulses. However, the existence of the first derivative of
F(7) is not necessary if the dynamical system remains
nonautonomous [13]. Then the number of Lyapunov ex-

, w(0)=0. (21)

ponents reduces from three {A,1,,0} to two {A;,A,}
[14]. We have the following (nonautonomized) spectra: a
chaotic attractor {+,—}, a quasiperiodic orbit {0, —},
and a limit cycle or fixed point {—,—}. Therefore, in
this notation there is no difference between a limit cycle
and a fixed point.

The spectrum of Lyapunov exponents for the system
(20) plotted versus the pulse duration T, is presented in
Fig. 1. We note that by fluently varying the length of the
pulse T'; we turn order into chaos and chaos into order.
For 0<T;<0.84 and 1.08<T7,<7.5 the maximal
Lyapunov exponents A, are negative or equal to zero and,
in consequence, lead to limit cycles and quasiperiodic or-
bits. In the points where A;=0 the system switches its
periodicity. By way of example, this takes place near
T,=0.7. For T{=0.65 and T;=0.75 we observe two
limit cycles in the phase space (Ref,Img) with the
Lyapunov spectra { —0.36,—0.36} and { —0.36, —0.37},
respectively. The difference is that the first limit cycle is
related to one-period oscillations in the intensity |&|?
whereas the second limit cycle is related to two-period os-
cillations.

It is interesting to note that the region 1.08 < T, <7.5
is reached in multiperiod oscillations of the intensity |&|%.
For T,=6 we observe a limit cycle (Fig. 2, solid line)
which is related to three-period oscillations of the intensi-
ty. This is shown in Fig. 3 (solid line). The Lyapunov ex-
ponents are { —0.20, —0.52}.

For T;=1.56 we observe four-period oscillations of
the intensity |£|% In this case the spectrum of Lyapunov
exponents is given by { —0.06, —0.66}. The limit cycle
for T, =1.56 is shown in Fig. 4(a) and the four-period os-
cillations of the intensity in Fig. 5(a).

Chaos appears only in the region 0.85 <7 <1.08 and
is maximal for 7, =0.98. Then the Lyapunov spectrum
is {0.30,—1.02}. The case with T;=0.98 is illustrated

04
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FIG. 1. Spectrum of Lyapunov exponents A;,A, for the
nonautonomous system (20) plotted vs the pulse duration
0=<T,=<7.5 for T,=1, F,=2, I'=0.5, and £(0)=1+i. The
classical case.
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FIG. 2. Phase portraits Re£ vs Img. Limit cycles. Solid line,
the classical case; Eq. (20) with the initial condition £(0)=1+1i.
The parameters of the pulse are T, =6, T, =1, and F,=2. The
damping constant is I'=0.5 and 100 < 7<200. Dashed line, the
quantum system; Egs. (17)-(19) with the initial conditions
£(0)=1+i and G;,(0)=C(0)=0. The parameters of the pulse
are T, =6, T,=1, and F,=2. The damping constant is I'=0.5
and 100 <7< 200.

in Figs. 6(a) and 7(a). The phase point is seen to plot a
typical chaotic trajectory. The intensity |£|> behaves
similarly, varying chaotically in the course of time.

The situation presented in the above figures changes
dramatically if, instead of Eq. (20), its quantum version
Egs. (17)-(19) is taken into account.

C. Second truncation — quantum correction

The dynamics of the nonautonomous system (17)—(19)
including the quantum corrections is governed by five

<atra>

FIG. 3. Time evolution of the classical (solid line) and quan-
tum (dashed line) intensities for the parameters of Fig. 2.

Lyapunov exponents (five equations in real variables).
Our system is studied with {(z ) =0 and the initial condi-
tions £(0)=1+i and G,,(0)=C(0)=0. The spectrum of
Lyapunov exponents {A;,A,,A3,A4,As} plotted versus the
pulse duration T, is presented in Fig. 8. Here, A, is the
maximal Lyapunov exponent, and is negative in contrad-
istinction to Fig. 1. Therefore the chaotic oscillations
due to quantum corrections vanish, and the regular oscil-
lations remain regular but change their structure.

After quantum correction the geometry of the limit cy-
cle for T{=6 remains unchanged, albeit its ‘“volume”
(basin of attraction) is reduced. This is visualized in Fig.
2 (dashed line). The values of the Lyapunov exponents
for the “reduced” limit cycle are {—0.17,
—0.56,—0.66, —0.66, —0.84}. The maximal Lyapunov
exponents before and after the quantum correction satisfy
the relation A% <A$"2", The quantum correction more-
over reduces the oscillations of the intensity. The three-
periodic oscillations (Fig. 3, solid line) remain three-
periodic but their amplitude is reduced (Fig. 3, dashed
line).

2 ,
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25 15 05 05 Img 15

FIG. 4. Same as in Fig. 2 but for T,=1.56, T,=1, F=2,
I'=0.5; (a) shows the limit cycle for the classical system, (b)
shows the same limit cycle after the quantum correction.
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It is interesting to note that after quantum correction
for some cases we can also observe a reduction of periodi-
city. For example, in the case of T;=1.56 the four-
period oscillations [Figs. 4(a) and 5(a)] in the quantum
version become two-periodic [Figs. 4(b) and 5(b)]. As is
seen the geometry of the limit cycles before and after the
quantum correction differs strongly. The Lyapunov ex-
ponents for the quantum case presented in Figs. 4(b) and
5(b) are {—0.18,—0.19,—0.77,—0.77,—0.97}. Obvi-
ously }\(;lass > A?uant.

The chaotic trajectory [Fig. 6(a)] is now a periodic tra-
jectory [Fig. 6(b)], and the chaotic oscillations of the in-
tensity [Fig. 7(a)] change into four-period oscillations
[Fig. 7(b)]. The Lyapunov exponents now become
{—0.15,—0.53,—0.53,—0.76, —0.91}. We have ASls
>0 and A{"*™ <0. Let us emphasize that a similar transi-
tion from chaos to order has been found by Jensen and
Niu [2] for the quantum kicked rotator.

D. Third truncation

The question is what happens if third-order or higher-
order corrections are taken into account? Let us note
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FIG. 5. Time evolution of the classical (a) and quantum (b)
intensities for the parameters of Fig. 4.

that the set (17)-(19) consists of five equations in real
variables. If third-order truncation is performed, the set
(17)-(19) is additionally modified and supplemented
with four equations in real variables thus leading to nine
equations. The fourth truncation leads to 15 equations in
real variables, etc. From the formal point of view, the
quantum corrections become more and more rigorous
with higher and higher order of the approximation. On
the other hand, even if the numerical calculations are
performed in extended precision, computer errors can ac-
cumulate significantly leading to spurious high-order
quantum corrections due to the increasing numbers of
equations and iterations. We have estimated that the
second truncation gives a quantum correction to the clas-
sical solution, whereas third truncation gives only a 0.2%
correction. Therefore, the third-order correction is rela-
tively small and has been neglected. Moreover, we can-
not obtain an integral of motion in this case (energy is
nonconserved).

Let us emphasize that there is yet a stronger argument
which causes that the third-order truncation is artificial

2
K4
'

1

-1 F

(b)

-2.0 -1.0 0.0 Im& 1.0

FIG. 6. Same as in Fig. 2 but for 7,=0.98, T, =1, F,=2,
I'=0.5, £(0)=1+i, and G,(0)=C(0)=0; (a) is the classical
chaotic orbit, (b) is the same orbit after quantum correction.
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rather than systematic as proved by Pawula [15] on the
basis of a theorem proposed by Marcinkiewicz [16]. This
theorem leads to the conclusion that the function ®,, (for
all s) with a finite cumulant expansion cannot be positive
if the order of the highest nonvanishing cumulant is
greater than 2. Therefore it appears illogical to truncate
an infinite and hierarchic set of equations for cumulants
retaining a finite number of the equations for cumulants
higher than 3.

IV. CONCLUDING REMARKS

In this paper we have studied the quantum and classi-
cal dynamics of a dissipative anharmonic oscillator
driven by a train of pulses. We have shown that chaotic
behavior of the classical system—at a particular set of
parameter values—disappears in the quantum case. For
the quantum system the maximal Lyapunov exponent is

. (a)

135

0.0 200 400 60.0 800 1 1000

(b)

<ata>
w
|

N

0.0 20.0 40.0 60.0 80.0 Tt 1000

FIG. 7. Time evolution of the classical (a) and quantum (b)
intensities for the parameters of Fig. 6. The intensity |£|?
evolves from chaotic oscillations, in the classical limit, to four-
period oscillations after quantum correction.

always negative in contradistinction to the classical sys-
tem. This is obvious from Fig. 9. And, moreover, Fig. 9
shows explicitly that the quantum correction does not
shift classical chaos to different regions of the parametric
space.

There are regions for the classical system where the
maximal Lyapunov exponent is negative, pointing to or-
dered motion. In this case, after quantum correction, the
maximal Lyapunov exponent changes its value albeit
remaining negative. Therefore the system maintains its
ordered behavior, but the limit cycles change their basins
of attraction. For some cases we also observe changes in
the periodicity of intensity. Generally, the symmetry of
the Lyapunov exponents A;,A, for the classical system
(Fig. 1) is perturbed by the quantum correction [Fig.
8(a)]—but the crucial result resides in the elimination of
the region of chaos. This fact can provide the back-

M,2

(a)

0.0

-0.2

-0.6 |

-0.8

0.0 1.0 20 3.0 4.0 5.0 6.0 7.0 T4

X345 (b)

-0.3 |

A3

--= Xs

-0.5

0.7 f

R

-0.9

-11

-13

0.0 1.0 2,0 3.0 4.0 5.0 6.0 70 T,

FIG. 8. Spectrum of Lyapunov exponents A, A,, A3, A4, and
As for the nonautonomous system (17)—(19) plotted vs the pulse
duration 0= T, <7.5 for T, =1, F=2, L' =0.5. The initial con-
ditions are £(0)=1+i, G(,(0)=0 and C(0)=0. Figure (a)
presents the same Lyapunov exponents as in Fig. 1 but after the
quantum corrections. Figure (b) shows the other exponents As,
A4 and As.
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FIG. 9. Maximal Lyapunov exponents for the system before
(solid line) and after quantum correction (dashed line). See Figs.
1 and 8(a).

ground for the further experimental verifications of the
quantum theory.

In Ref. [17] Ford and Ilg have proved that the time
evolution of finite, bounded, undriven quantum systems is
nonchaotic. We conclude with the following statement:
we have found an example of a system which is driven,
dissipative, and at the same time chaotic in its classical
description—but its quantum treatment leads to non-
chaotic motion.
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APPENDIX: THE DERIVATION OF EQS. (17)-(19)

Let us start with the definition of the statistical mo-
ments

(a*"’a”)m=fa""”a"CD(s)(a*,a)d%z , (A1)
where d’a=d(Rea)d(Ima). Therefore, the equation of
motion for {a*™"a" ), is given by

d<l>(s)(a*,a)
dr

If we use Eq. (8) for d®(a*,a)/dr and integrate by
parts the right-hand side of Eq. (A2) we get the equation
of motion for {a*™a") . The second truncation means
that we restrict ourselves only to the set of equations for
the first- and second-order statistical moments {a) ),
(a*a) ), and (a?) ). We have

%(a*ma”)(”:fa*"‘a" d’a. (A2)

d .
:1_,;((1)(3): —3T{a) +F—ia*a),

+i(1—S)<a)(s) s (A3)

d
a7 (@ = T +2Ha,

—2i{a*a’) \+i(2—3s)(a?), , (A4)
%(a*a)m= —F(a*a)(s)+7[<a>(s,+ (a* )(s)]
+T <n>+%—s—’ (A5)

We see that the right-hand sides of Egs. (A3)—(AS5) con-
tain the statistical moments higher than second order.
To get Egs. (A3)-(AS5) in a closed form we have to ex-
press these moments as functions of the first- and
second-order moments. We substitute

(a*a®),=2£B,, +E*C+E2%* (A6)
(a*a®)=3E%B,)+3B,,C+3E*ECHEE . (A7)

The cumulants &, B, and C are defined by (14), (15),
and (16), respectively. The relations (A6)—(A7) can be
formally derived as follows [3,18]:

am +n
o(—p*)"p™
where C()(8*,B) is the quantum characteristic function
related to s ordering:

C(s)(B*,B)zeXp[ —B*BB(S) +%B*2C +';‘Bzc*
—B*E+BE*] .

To get Eq. (17) we substitute Eq. (14) and Eq. (A6) into
Eq. (A3). We have

(a*"’a”)(s)= C(s)(B*yﬁ)|ﬁ=B*=0 ’ (A8)

(A9)

48— re+g—i

dr 2

1—s
B(S)— 2

E+CE*+E%¢6* ] :
(A10)

On substituting G,=B)—(1—s)/2 into the above
equation, we get Eq. (17).

In a similar way we obtain Eq. (18). First, let us note
that from Eq. (16) we have

(_i_(_:__d<a2>(s) d<a>(s)
dr dr dr

Second, we insert Egs. (A3) and (A4) into Eq. (A11) and
after some mathematics we get

1—s
B(s)_ ) H

1—s
2

—2<a>(s) (All)

£=—Fc—i§2(1+2
dr

+iC(1+4|£]%)—6i |B () — Cc. (A12)

Taking into account that G,,=B ) —(1—s)/2 we im-
mediately get Eq. (18).
To obtain Eq. (19) we note that from Eq. (15) we have
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dB _d{a*a)y d{a*)
dr  dr  dr
d{a),

dr '

) (a)gs)

—(a* ), (A13)

On substituting Eq. (A5) and Eq. (A3) into Eq. (A13) we

get

dB(s)

=—-T
dr

B(S)_'%i ]+i(C§*2—C*§2)+r(n> .

(A14)
On substituting G(;,= B, —(1—5)/2 we obtain Eq. (19).
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