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Chaos and order in a kicked anharmonic oscillator: Classical and quantum analysis
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The classical dynamics of a kicked anharmonic oscillator is analyzed in terms of Lyapunov exponents.
The inhuence of the quantum corrections on the behavior of the limit cycles and chaotic attractors is
considered. Phase portraits are presented. We have shown that quantum corrections destroy chaotic
motion even if the system is driven, dissipative, and classically chaotic.

PACS number(s): 05.45.+b, 42.50.Lc

I. INTRODUCTION where

In the past decade increasing interest has been devoted
to the study modifications introduced by quantum
mechanics into the dynamics of classical systems which
manifest deterministic chaotic behavior. This problem is
frequently referred to as "quantum chaos" —for a review,
see Refs. [1,2]. It seems that the simplest and clearest
comparison of quantum and classical dynamics is to be
found in Wigner's formulation of quantum mechanics —a
circumstance well known from quantum optics, where
Wigner-like distributions are widely used [3]. This ap-
proach makes it possible to treat quantum systems in a
"classical way" including all their quantum features and
to contrast the quantum and classical dynamics within
the framework of a phase picture [4]. The aim of this pa-
per is to study the dissipative classical and quantum dy-
namics of an anharmonic oscillator driven by a kicked
force —a train of pulses. Whereas the case of a coherent
driving force is well established [5], that of a train of
pulses has not, to our knowledge, been previously applied
to the calculation of the dynamical properties of the
anharmonic oscillator. Some aspects of the kicked dy-
namics, however, without damping and in the context of
discrete mappings, have been also studied by Berman and
Zaslavsky [6). The quantum anharmonic oscillator plays
a significant role in applications not only in quantum op-
tics [5—10] (Kerr effect), but also in quantum statistical
physics.

The method used in this paper is similar to that applied
by Jensen and Niu [2] for the kicked rotator. However,
the difference is that whereas they applied discrete map-
ping, we study a continuous system (differential equations
for the statistic moments) using a Runge-Kutta method.

II. MODEL AND BASIC EQUATIONS

Let us shortly summarize what is well known about the
dynamics of an anharmonic oscillator. We write the
Hamiltonian in the form [5,9,10]

H=H j +H2+H3,

+ X t2 2

2

H2 =i fiF(a" a), —

H3=A'gfl b bi +A'g(. KIbjat+K'bta) .
J J

(2)

(3)

(4)

In the single-mode Hamiltonian 0&, the quantities a
(a ) are the photon annihilation (creation) operators, re-
spectively; co is the frequency of the harmonic oscillator,
y is the anharmonicity parameter. The Hamiltonian H2
describes the interaction between the classical external
driving field F and the single-mode field. The loss mecha-
nism is described by the coupling to a heat bath governed
by the reservoir Hamiltonian H3. Here, the b (b. ) are.
the boson annihilation (creation) operators of the reser-
voir. Oscillations with the frequencies O. and E are the
coupling constants of the interaction with the reservoir.
We treat the quantum losses in Louisell's approach [11],
that is, on eliminating the reservoir operators we obtain
the master equation for the density operator p in the form

[Hi+H2, p)+L;, [p] .
at

(5)

The irreversible term L;,[p] describes damping and has
the form

L;„= (2apa —a ap —pa a)

+y(n )(a pa+apa —atap —paar) .

The parameter y is the damping constant, and ( n ) is the
mean number of reservoir photons. The quantum theory
of damping [11] assumes that the reservoir spectrum is
Aat, so the mean number of reservoir oscillators
(n ) =(b (0)b (0))=[exp(%co/kT) —1] ' in the jth
mode is independent of j. Thus, the reservoir oscillators
form a thermal system. The case ( n ) =0 corresponds to
vacuum fluctuations (zero-temperature heat bath). It is
convenient to consider the quantum dynamics of the sys-
tem (1)—(4) in the interaction picture. Then the master

1063-651X/93/48(1)/101(8)/$06. 00 48 101 1993 The American Physical Society



102 P. SZLACHETKA, K. GRYGIEL, AND J. BAJER

equation for the density operator p is given by [8,10]

~P . i f2 2—i [ ,'a—"a +i9(at —a),p]
()'T

+—(2apa —a ap —pa a)r
2

+I &n &(a pa+apa aap—paa —), (7)

where a= iy is the redefined time, I =y/g, and V=F/y.
The Hamiltonian A'boa a does not appear in Eq. (7) as a
consequence of the interaction picture.

The above master equation can be transformed, apply-
ing Louisell's technique [11], to a c-number partial
differential equation. Three kinds of equations can be de-
rived from (7). First, an equation for the Wigner function

) related to symmetric (Weyl) ordering of the field
operators a,a; second, an equation for the Wigner-like
function 4( ~) related to antinormal ordering of the

operators; and third, an equation for the Wigner-like
function 4& related to normal ordering. The statistical
properties of the 4 functions are discussed fully in the
book by Perina [3]. These are quasidistribution functions
in the complex plane (a, a*), where the quantity a is an
eigenvalue of the annihilation operator a, i.e., (2

~
a &

=a a &. Here,
~
a & is a coherent state.

For convenience we introduce the so-called s ordering
of the field operators a, a . Then we can write

+(sym) +(0)~ @(g)—+( ]), and C (z) —C
From (7) we get the generalized Fokker-Planck equa-

tion for the quasidistribution (I)(,)(a,a;r) related to the s
ordering [10]:

B4(,) =E+Q,
a7.

where

82E= [(—,'I a —%+ianna/ )C)(,)]+ [(—,'I a*—V—ia*faf )4(,)]+I &n &

Bcz Bcx BeBe*

Q= i (1——s) a4 —(1—s) a*4 +— a (I) —— a* (I) +a () n s () 2 s (l nz (s —1)
Ba () 2 ~ 2 () 2 ~ g2 () 4

cl

Ba* Ba
a*4(,)

(s —1)
Il ~ (1—s) (l

0' BA BcxBA'

Let us emphasize that there is no difference among the
equations for +(gym)p +(Q)p and 4(&) as long as the system
(1)—(4) is classical. This problem has been studied in
[5,7]. In the classical limit the term Q in Eq. (8) vanishes
and (I)(,) is a classical distribution function [5]. For Q =0
and I =0, Eq. (8) reduces to the classical Liouville equa-
tion, and for Q=O and I %0 to the classical Fokker-
Planck equation. So, we can say that the X term governs
classical dynamics whereas the Q term adds the quantum
(operator) correction. The decision as to whether chaos
does or does not appear in the system (1)—(4) can be
made by investigating the separation rate of two peaks of
a +(,) function initially close to each other or by the
analysis of equations for the statistical moments originat-
ing in Eq. (8). Thus, instead of attempting to solve the
partial differential equation (8) we deal with the problem
of solving a set of ordinary differential equations for the
statistical moments.

&ata &
= f (a*a—

—,
' )(I)(,„)(a*,a)d a . (12)

The cumulants of second order have the forms

The value of & a a & is always the same but the averag-
ing procedure differs in each case. The relations
( 10)—( 12) are a sim pie consequence of the boson comrnu-
tation relation [a,a ]=1 and the definition

& a*a &(,)
=fa*a@(,)(a*,a)d'a, (13)

where &a*a&()v)=&a a &, &a"a&(z)=&aa &, and
&a'a&(,„)=—,'&ata+aa &. It is obvious that some ex-
pectation values do not depend on ordering, for example
&utn& —

&
nn&

& n&n& nn&

The function 4(, )
allows us to define the quantum cu-

mulants. The cumulants of first order are given by

(14)

III. TRUNCATION SCHEME & a'a &(.)
—

&
a' &(.) & a &(,) =B(.) (15)

A. Statistical moments

The calculation of statistical moments with the help of
@(,) is simple. For example, if we want to calculate the
average number of photons & a a & we use one of three
functions +(~), +(~), or N(sym) We have

&a a &= f a*a@()v)(a*,a)d a, (10)

& a (2 &
= f (a*a—1)@(„)(a*,a )d a,

&a*'& —&a*&' =C' &a'& —&a&' =C . (16)

It is easy to note that simple relations hold among
B(&), B(z), and B(, ), namely, B(z) =B(~)+ 1 and
B(,„)= —,)(2B(&)+1). Thus the average number of pho-
tons can be expressed with the help of s ordering as fol-
lows: &a a &=G(,)+g'g, where G(,)=B(,) —(1 —s)/2.

The Fokker-Planck equation (8) generates an infinite
and hierarchic set of equations for the statistical mo-
ments. In this paper we restrict ourselves to the second
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truncation, i.e., to the equations for g, C, and G(,~. We
arrive at the following set of equations (see Appendix):

d-= —
—,
' I g+ 7—i [2G(,)g+ Cg*+g g' ], (17)

= —rc —I [g'(1+2G„,)+c(i+41/I')]

—6iG(, ) C,
dG( )' = —rG„,+I [cg*'—c*g']+r(n ) .

(18)

(19)

The above set consists of five equations in the real vari-
ables Re(, Imp, ReC, ImC, and G(,~.

B. First truncation —classical limit

The physical sense of the truncation is clear if we note
that the first truncation (C =G(, ~

=0) gives only the clas-
sical equation for the anharmonic oscillator

d = —
—,'I g'+9'(r) ig (' .—

Thus, (a a ) = lgl is a classical intensity. The system
(20) is nonautonomous if the function P is explicitly time
dependent. The autonomized version of Eq. (20) is given
by

(20)

„=—,rg+ V(w ) —g'g*,

dw =1, w(0)=0 .
d~

(21)

It is readily seen that the set of equations (21) consists
of three equations of motion in the real variables Re/',
Imp, w. It is well known that chaos in autonomous sys-
tems can appear only if the number of equations is equal
to three or greater. Therefore, if P(r)=const, chaos in
the system does not appear since the set (21) becomes a
two-dimensional autonomous system. The driving field is
in the form of a train of rectangular computer-simulated
pulses. The length of the pulse is denoted by T„whereas
Tz is the distance between the pulses, and Vo is their
height. The time evolution between two kicks is
governed by the dissipative dynamics ruled by
H =H

&
+H3 ~ For T2 =0 the train of pulses becomes a

coherent driving field.
We examine the dynamics of the system (20) with the

initial conditions g(0) = 1+i Moreov. er, we put I =0.5,
Vo=2, Tz= 1, and 0(T, (7.5. To identify order and
chaotic behavior of a nonautonomous system we usually
use its autonomized version. The spectrum of Lyapunov
exponents for a three-dimensional autonomized system
like (21) has a Lyapunov spectrum of the type
[X„A,z, A,3=0]. It can be calculated adopting the pro-
cedure proposed by Wolf et al. [12]. Wolf's procedure
works well if the function F(w) possesses its first deriva-
tive at any point. This requirement is not well satisfied in
our case, where the function F(w) is in the form of sharp
pulses. However, the existence of the first derivative of
F(r) is not necessary if the dynamical system remains
nonautonomous [13]. Then the number of Lyapunov ex-
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FIG. 1. Spectrum of Lyapunov exponents A, &, A,2 for the
nonautonomous system |,'20) plotted vs the pulse duration
0~ T, ~7.5 for T2=1, V0=2, I =0.5, and g'(0)=1+i The.
classical case.

Ponents reduces from three IA, I, A,z, 0j to two [A, &, A,zj
[14]. We have the following (nonautonomized) spectra: a
chaotic attractor I+, —j, a quasiperiodic orbit I0, —j,
and a limit cycle or fixed point [ —,—j. Therefore, in
this notation there is no difference between a limit cycle
and a fixed point.

The spectrum of Lyapunov exponents for the system
(20) plotted versus the pulse duration T, is presented in
Fig. 1. We note that by fluently varying the length of the
pulse T, we turn order into chaos and chaos into order.
For 0& T, &0.84 and 1.08 & T, &7.5 the maximal
Lyapunov exponents A,

&
are negative or equal to zero and,

in consequence, lead to limit cycles and quasiperiodic or-
bits. In the points where A, , =O the system switches its
periodicity. By way of example, this takes place near
T& =0.7. For Tj =0.65 and Tj =0.75 we observe two
limit cycles in the phase space (Ref, Imp) with the
Lyapunov spectra [

—0.36, —0.36j and [
—0.36, —0.37j,

respectively. The difference is that the first limit cycle is
related to one-period oscillations in the intensity
whereas the second limit cycle is related to two-period os-
cillations.

It is interesting to note that the region 1.08 & T, & 7.5
is reached in multiperiod oscillations of the intensity

l g
For TI =6 we observe a limit cycle (Fig. 2, solid line)
which is related to three-period oscillations of the intensi-
ty. This is shown in Fig. 3 (solid line). The Lyapunov ex-
ponents are [ —0.20, —0.52 j.

For T, =1.56 we observe four-period oscillations of
the intensity lgl . In this case the spectrum of Lyapunov
exponents is given by [

—0.06, —0.66j. The limit cycle
for T, = 1.56 is shown in Fig. 4(a) and the four-period os-
cillations of the intensity in Fig. 5(a).

Chaos appears only in the region 0.85 & T, & 1.08 and
is maximal for T, =0.98. Then the Lyapunov spectrum
is [0.30, —1.02j. The case with T, =0.98 is illustrated
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We see that the right-hand sides of Eqs. (A3) —(A5) con-
tain the statistical moments higher than second order.
To get Eqs. (A3) —(A5) in a closed form we have to ex-
press these moments as functions of the first- and
second-order moments. We substitute

-0.6
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7'0 T1

& a*a )(,)
=2'(, )

+g"C+g g*,
&
a*a' )(,(

=3g B(,) +3B(,)
C +3(*gC+g*g

(A6)

(A7)
FIG. 9. Maximal Lyapunov exponents for the system before

(solid line) and after quantum correction (dashed line). See Figs.
1 and 8(a).

The cumulants g, B(,(, and C are defined by (14), (15),
and (16), respectively. The relations (A6) —(A7) can be
formally derived as follows [3,18]:

ground for the further experimental verifications of the
quantum theory.

In Ref. [17] Ford and Ilg have proved that the time
evolution of finite, bounded, undriven quantum systems is
nonchaotic. We conclude with the following statement:
we have found an example of a system which is driven,
dissipative, and at the same time chaotic in its classical
description —but its quantum treatment leads to non-
chaotic motion.
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where C(,i(p', p) is the quantum characteristic function
related to s ordering:
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I g+ J —i 2 B(,)—— /+CD'+g g'

(A10)

APPENDIX: THE DERIVATION OF EQS. (17)—(19)

Let us start with the definition of the statistical mo-
ments

&a™a")= Ja* a"@„(a~,a)d a (Al)

d d 4(,((a', a )
&a' a) = a™a" da.

d7- (s) d7
(A2)

where d a=d(Rea)d(Ima). Therefore, the equation of
motion for & a™a")(,

~
is given by

On substituting G(, ( =B(,( —(1—s )/2 into the above
equation, we get Eq. (17).

In a similar way we obtain Eq. (18). First, let us note
that from Eq. (16) we have

dC d&a )() d&a)()
2 a (~)d7 d1 d'r

(A 1 1)

Second, we insert Eqs. (A3) and (A4) into Eq. (All) and
after some mathematics we get

If we use Eq. (8) for dC&(, i(a*,a)/dr and integrate by
parts the right-hand side of Eq. (A2) we get the equation
of motion for &a™a")(,i. The second truncation means
that we restrict ourselves only to the set of equations for
the first- and second-order statistical moments &a)(,(,
& a'a )(,i, and & a )(,(. We have

= —I C —ig 1+2 B( i—1 —s
2

+iC(1+4 g!!) 6i B(,'( —— C . (A12)

&a)(,)= —
—,'r&a)(, )+7—i&a*a')(,

)

+i(1—s)&a)(,), (A3)

Taking into account that G(,)=B(,( —(1—s)/2 we im-

mediately get Eq. (18).
To obtain Eq. (19) we note that from Eq. (15) we have
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dB( )

d1

d &a*a&(,) d &a* &(,)
get

d &a&(,)

(s) (A13)
B(s) 1 —$

2
= —r B, — + (cg*'—c*g')+r&

(A14)

On substituting Eq. (A5) and Eq. (A3) into Eq. (A13) we On substituting G(, ) =B(,) —(1—s ) /2 we obtain Eq. (19).
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