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Blow-up in the Boussinesq equation
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The Boussinesq equation is known to be the fundamental nonlinear model, describing wave propa-
gation in a weakly dispersive nonlinear medium. In this paper, we prove the existence of the collapse
dynamics for the two basic forms of the Boussinesq equation in the case of the periodic boundary
conditions. The sufficient criterion of the blow-up is found analytically.

PACS number(s): 03.40.Kf, 43.25.+y

I. INTR.ODUCTION

Utt —tIxz + &zxxx + (&')xz = o (2)

The linear parts of Eqs. (1) and (2) determine dis-
persion relations of the linear waves in two difFerent
cases. Equation (1) corresponds to the negative wave
dispersion: io = k /(1 + k ). Respectively, Eq. (2)
is derived for linear waves with the positive dispersion:
u2 = k2 + k4. By a sign of the dispersion one means
that in the long-wavelength limit (k ~ 0) the disper-
sion relation of the linear waves is close to that for the
sound waves, i.e. , io = k(l + k~), and by definition, upper
and lower signs correspond to the positive and negative
dispersions, respectively.

Equations (1) and (2) are the universal model for non-
linear wave dynamics in weakly dispersive media. Equa-
tion (1) is the so-called "improved" Boussinesq equation
[3—6]. The term "improved" means that, in comparison
with the "ill-posed" Boussinesq equation

v„—v..—v....+ (U')..= 0, (3)

for which the linear dispersion relation io2 = k~ —k4 leads
to a nonphysical instability of linear waves, Im(io) ) 0,
for k ) 1, Eq. (1) does not admit such a type of instability
of linear modes. The efFect of replacing 8 by 0, in the
third term of Eq. (3) has been discussed in Ref. [6].

Equations (1) and (2) occur in a wide variety of phys-
ical systems [3-12]. They are of fundamental physical in-
terest, because they describe Che lowesC-order (in terms
of wave amplitudes) nonlinear effects in the evolution of
perturbations with the dispersion relation close to that
for the sound waves. For example, Eq. (1) describes a
continuum limit of a one-dimensional nonlinear lattice
[7], shallow-water waves [1,2] (see also [8]), a propaga-
tion of nonlinear acoustic waves on a circular rod [4,
9], solitons in the nonlinear electric transmission hnes
(see, e.g. , Ref. [10]),and in other models supporting lin-
ear waves with the negative dispersion. Equation (2) is
the so-called well-posed Boussinesq equation which oc-

It is known that the propagation of nonlinear pulses in
a weakly dispersive medium is governed by the Boussi-
nesq equation [1, 2], which can be written in the following
two basic forms:

&tt —&*a —&exit + (tI')** = o

curs in the problems dealing with propagation of nonlin-
ear waves in a medium with positive dispersion, for ex-
ample, electromagnetic waves interacting with transver-
sal optical phonons in nonlinear dielectrics [ll], magne-
tosound waves in plasmas [12], and magnetoelastic waves
in antiferromagnets [13]. It is known that for the tran-
sonic speed perturbations, by neglecting the interaction
of waves moving in the opposite directions, Eqs. (1) and
(2) may be reduced to the Korteveg —de Vries equation.

Equations (1) and (2) have been the subject of exten-
sive investigations. The main features of these equations
are rather well established. The well-posed Boussinesq
equation (2) is integrable by the inverse scattering trans-
form (IST) [14]. Dynamics of nonlinear waves in Eqs.
(1) and (2) was studied in a number of papers, both nu-
merically and analytically [3—12]. Stability of the bound
states in the form of solitary waves and cnoidal waves
were investigated in [15,16]. Numerical studies of the
nonlinear dynamics for unstable solitons of Eq. (1) have
demonstrated the possibility of the blow-up [9]. Blow-
up [this term is generally used to refer to nonexistence
of global solutions for the initial-value problem (see e.g. ,

[20-22])] was proved for Eq. (2) in the case of special
initial conditions [17]. It should be noted that the suffi-
cient conditions for the blow-up in Eq. (2), which were
obtained in Ref. [17], are not satisfied by soliton solu-
tions of Eq. (2). An interesting fundamental issue is the
coexistence of integrability of Eq (2) by. the IST with
a possibility of the blow-up-type dynamics in this equa-
tion. As was found [15] by using the IST, certain soliton
solutions of Eq. (2) may collapse for a finite time.

A time evolution of an arbitrary initial wave packet is
one of the most important problems related to Eqs. (1)
and (2). A question of the central interest to the analysis
of an initial-value problem is whether or not the blow-up
appears for given initial data. In Ref. [17] (see also [18]),
by using the method suggested in Ref. [19], it was shown
that for a large set of initial data there are no smooth
solutions of the initial-value problem of Eq. (2) for all
time. This approach is limited by the additional restric-
tion on the initial distribution of perturbations, namely,
the condition jUdx = 0 was assumed to be fulfilled.

In most of the numerical investigations of the nonlinear
dynamics given by Eqs. (1) and (2), the periodic bound-
ary conditions were used. However, one may notice that
there is no analytic proof of the blow-up for Eqs. (1)
and (2) in the case of periodic boundary conditions. Our

1993 The American Physical Society



47 BLOW-UP IN THE BOUSSINESQ EQUATION R797

motivation in this work is to develop the method of an-
alytic proof of blow-up to the case of periodic boundary
conditions and to apply it to Eqs. (1) and (2). Thus,
the primary objective of the present paper is to prove
the blow-up in Eqs. (1) and (2) for the case of periodic
boundary conditions and to obtain exact sufBcient crite-
ria of the collapse dynamics. In the limit when the spatial
period L tends to infinity, the conditions of the blow-up
for the infinite system are naturally recovered.

II. BASIC EQUATIONS
AND CONSERVED QUANTITIES

= U —U'
bU

and, respectively, a similar representation takes place for
Eq. (2):

bH2
U~ ———

bC

C~ —— ——U —U~ —U .ba2
bU

Here non-negative operator Q is defined as

0Q= —,+l.

Q i is the inverse operator to the Q. The corresponding
Hamiltonians Hi ——Ji+ J2 —Js and Hz = Ii+I2+Is I4-
are of the form

Hg ———=1
2 0 Q-'0 dx+-,' U dx ——2 1

3 U dx

and

C dx+2i U dx
—L

+-1
2 U Udx —— U dx

I —I
(9)

2L being the system length.
Obviously, the Hamiltonians Hi and H2 are the inte-

grals of motion of the corresponding dynamical systems.
Additionally, Eqs. (1) and (2) possess the following

integrals of motion, which are generated by the invariance
of the equations under space translation. For Eq. (1) the
total momentum of the system takes the form

(Io)

In this section we discuss briefly general properties of
Eqs. (1) and (2) and the method of majoring equations
that will be used to prove the blow-up.

Equations (1) and (2) may be written as a first-order
system in the Hamiltonian form. For Eq. (1) the Hamil-
tonian structure is given by

bIIg =Q @zz,
6C

and for Eq. (2), momentum is of the form

P2 ——

It is easy to see also that the integral
L

—L

is a conserved quantity. This integral has the sense of
the total "mass" of the perturbations or the total dis-
placement and in the mathematical literature it is often
referred to as the Casimir invariant. As we demonstrate
below, the quantity M plays an important role in the
nonlinear dynamics governed by Eqs. (1) and (2).

The main question we would like to answer in this pa-
per is as follows: Which initial conditions to the Boussi-
nesq equation lead to the collapse dynamics? To an-
swer this question we use the so-called majoring equation
method (see, e.g. , Refs. [22,23]). This method works as
follows. For a given partial difFerential equation, one con-
siders an appropriate integral characteristic of solutions
as a function of time. With a successful choice of such a
quantity, one may obtain an ordinary differential equa-
tion or differential inequality to this function. Solving
this equation (or differential inequality) one may find the
conditions under which the function in question becomes
infinite in a finite time. The most often used majoring
inequality was suggested by Levine [19] and developed
by Kalantarov and Ladyzhenskaya [17]. This majoring
inequality is of the form

4'qq@ —(1+o.)4t,4q & 0,

where arbitrary coefficient n is assumed to be positive.
If at the initial moment t = 0 @(0)) 0 and @q(0) ) 0,

then the function @ -+ oo as«, & e(0)~~e, (o).
To prove the blow-up in a distributed nonlinear sys-

tem, it is enough to demonstrate that some appropriate
function of time defined with the help of solutions of cor-
responding partial differential equation satisfies the in-
equality (13).

Although the method described above can be very use-
ful, this procedure cannot be considered as a universal
method, because there are no certain rules for the se-
lection of the integral quantity which may be shown to
become singular in a finite time. Nevertheless, to date
this method is the most successfully used approach for an
analytical proof of the blow-up. In this paper we basically
follow the method developed in [17] and extend it to the
case of the periodic boundary conditions. Throughout
this paper we consider Eqs. (1) and (2) on the interval
x e [ I, L] under the p—eriodic boundary conditions.

III. %VELL-POSED BOUSSINESQ EQUATION

First we consider the blow-up in the well-posed Boussi-
nesq equation (2). For the initial-value problem on the
interval x c (—oo, +oo), it was shown in [17] that the
quantity Z(t) = I w dx (where tv~ = U) becomes in-
finite in a finite time under some additional assumptions.



R798 SERGEI K. TURITSYN 47

fC dx

By using the Cauchy-Schwarz inequality, one may obtain
the following estimate which will be used later:

Ri ——2 f@~dx & 2R ~ (2Ii) ~

—L
(16)

Differentiating Eq. (13) with respect to t, integrating by
parts, and using Eq. (9), we come to the relation

L L
=2 C dx —2

—L —L
(U —(U))(U —U —U )dx

= 4Zy —4I2 —4I3 + 6I4
L

+2(U) (U —U )dx.
L

We are in a position now to demonstrate that the func-
tion R(t) may be majorized from below by some function,
which becomes singular in a finite time. Making use of
the formulas (9) and (14), one may observe that R satis-
fies the following master inequality:

R,iR —(1 + n) R, & R[ —6Hz + 10Ii + 2' + 2Is
—8(l + n) Ii + 4(U) L —4(U) I2],

so that, letting the free positive parameter n & &~, we
find that

RiiR (1+n)Rt & R—[—6Hz+M L +2I2(1 —ML )].

(»)
Here we use the relation between the integral of the total
mass M and (U): M = 2I (U).

It follows from Eq. (17) that under assumptions

(18)

6H2 ( M2L, —1 (19)

the right-hand side of the inequality (17) is non-negative.
Because H2 and M are the integrals of motion for Eq.
(2), it is evident that if the conditions (18) and (19) take

This quantity, however, cannot be used as a majoring
function in the ease of the periodic boundary conditions,
due to the lack of the periodicity of integrand function
m. It will therefore be necessary to find a new candidate
for this role.

Define the function f by the relation f = U —(U),
where (U) stands for the mean value, obtained by period
averaging, (U) = zz f z Udx. It is easy to check that
the function f is periodic with the period 2I. From Eq.
(6) it follows that

(14)

Here we have used the fact that (U) is an integral of the
motion of Eq. (2).

Consider now the time evolution of the following pos-
itive quantity R(t) = f z f dx:

place at the initial moment, then they will be satisfied
for all t. Thus,

R„R—(1+n) R,' & 0, (20)
and under additional assumption R& & 0 at the moment
t = 0, it can be shown [19] that function A = R ~ tends
to zero as t —+ tp = Rp/nRp&.

It is easy to obtain, in this case, that function R is
bounded from below as

i/a
R(t) &Rp ~, ',

~
(»)

Summarizing, we prove that if the initial data satisfy
the conditions (a3) 6H2 & M L, (b3) M & L, and
(c3) Rg]g —p & 0, then the positive function R(t) be-
comes infinite in a finite time. That corresponds to the
appearance of a singularity in the initially smooth solu-
tion of Eqs. (1) and (2). The local structure of the so-
lutions in the vicinity of the blow-up point was analyzed
in Ref. [15]. For a certain class of solutions of Eq. (2) it
may be proved by the IST that near the collapse point
the solutions have a self-similar form, locally.

We close this section with a remark that, indeed, a
sharper criterion can be achieved by using the inequality

P2 & f &
U2dx f &

C'zdx for the estimation in (16) the
terms proportional to Ii and Iz.

IV. BLOW-UP IN THE IMPROVED
BOUSSINESQ EQUATION

In this section, we shall present a blow-up theorem
for Eq. (1). This case may be handled in the similar
way to that for Eq. (2). To the best of our knowledge
the analytic proof of the blow-up for Eq. (1) has been
unknown even for the case of the infinite interval. It is
our aim in this section to present a proof of the blow-up
for Eq. (1), both for periodic boundary conditions and
for the case of an infinite system.

Let us first treat the periodic case. From the results of
the preceding section we are able to presuppose a form
of a majoring function for Eq. (1). It is quite reasonable
to consider the function g defined by the relation g
U —(U). Here and throughout this section the function U
is a solution of Eq. (1) and (U) =

z& f & Udx = M/2L.
From the definition, it follows that the function g is of
the period 2L and it satisfies the equation

(22)

The main point in the proof is a choice of the majoring
function. Let define the quantity S(t) by the relation
S = f ~ gQg dx, where Q = —ss, + l.

Similarly to the approach used in the preceding section,
we assume that at the initial moment t = 0 the follow-
ing conditions are satisfied: (a4) 6Hi —M L ( 0,
(b4) M & L, and (c4) Sq~i p & 0.

Then, under these assumptions, it is easily demon-
strated that S(t) becomes infinite in a finite time.

The proof of this theorem is in every respect similar to
the procedure used in the preceding section.

Differentiating S with respect to t we get
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gQ dz.
L

(23)

Note that the non-negative operator Q may be written
in the form Q = —&, + 1 = (& + 1)(—& + 1) = AtA.
A similar representation may be found for Q i. As a
result, it can be shown that the right-hand side of Eq.
(24) is estimated from above by the following inequality:

initial-value problem to Eq. (1) for the infinite inter-
val. For the case of the finite value of the integral
M = j z Udx in the limit I —+ +oo it is easy to
show that the conditions (a4), (b4), and (c4) result in
(a) H2 & 0 and (b) St]t=c ) 0.

One may observe that on the infinite interval the quan-
tity S makes sense for Eq. (1) only under the additional
constraint

St &2S ~
Udx = 0. (25)

Calculating the second derivative of the function S, we
have

= 4' —2 (U —(U))(U —U )dx.

It follows from the latter equation and inequality (24)
that the function S satisfies the majoring inequality:

SttS —(1+a)S, & S[—6Hi + 10' + 2J2+ M I
—2MI Jz —8(1+n) Ji).

We still have the freedom to set parameter a to be less
then 4. Such a choice leads to the conclusion that under
assumptions (a4), (b4), and (c4) function S(t) develops
singularity in a finite time. Thus, conditions (a4), (b4),
and (c4) determine the initial field distributions which
are themselves smooth, but for which the solution that
emanates from them becomes infinite in a finite time.

Letting L —+ +oo we obtain similar results for the

V. CONCLUSION

We have considered two basic forms of the Boussinesq
equation which describe propagation of nonlinear waves
in a weakly dispersive medium. We have proved the
occurrence of the blow-up for the periodic solutions of
the well-posed Boussinesq equation. The sufficient con-
ditions were determined under which the solutions of the
initial-value problem with the periodic boundary condi-
tions develop a singularity. For the improved Boussinesq
equation we have obtained analytically the sufficient cri-
terion of the blow-up both for the solutions of the prob-
lem with the periodic boundary conditions and for the
solutions of the initial-value problem on the infinite in-
terval.
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