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Entropy-driven DNA denaturation
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We present a nonlinear dynamical model for DNA denaturation which includes cooperativity effects
through anharmonic nearest-neighbor stacking interactions. Transfer-integral calculations show that
this one-dimensional model, without including long-range interactions, exhibits a sharp denaturation
reminiscent of a first-order transition at a temperature lower than a similar model with harmonic cou-
pling. Self-consistent phonon calculations point out the essential role of nonlinear effects in the rnecha-
nism.

PACS number(s): 87.10.+e, 63.70.+h, 64.70.—p

There is a growing appreciation that biomolecular
structure is not sufficient to determine biological activity
which is also governed by large-amplitude dynamics of a
molecule [1]. DNA transcription is a typical example
since the reading of the genetic code involves the propa-
gation along the helix of a local opening which exposes
the bases for chemical reaction. However, a microscopic
theory of this basic process of life is still beyond our
capabilities due to the complex role played by RNA po-
lymerases in the mechanism. Since it involves a local
denaturation of the double helix, a preliminary step for
the understanding of the transcription is the study of
DNA thermal denaturation. A semiquantitative under-
standing of DNA melting based on the Ising model of
statistical physics has been available since the late 1960's
[2] but a quantitative understanding of the transition
remains elusive. Moreover, the Ising model, in which a
base pair is considered as a two-state system being either
closed or open, could not describe the dynamics of the
precursor effects and, in particular, the large-amplitude
fIuctuational openings observed well below the denatura-
tion temperature [3]. Adding to the statistical-mechanics
analysis of the melting the ideas developed in the past few
years that collective nonlinear excitations could play a
large role in DNA dynamics [4], a simple model describ-
ing the nonlinear motions of the bases was proposed [5,6].
In the most reduced form of the model, each base pair is
described by a single degree of freedom representing the
stretching of the hydrogen bonds connecting the two
bases. A transfer-integral (TI) approach showed that the
model can exhibit a denaturation transition, and analyti-
cal investigations of its nonlinear dynamics suggested
that intrinsic energy localization could initiate the dena-
turation. This was later confirmed in the model by
molecular-dynamics simulations [7].

Although this nonlinear dynamical model exhibited a
thermal behavior in qualitative agreement with the exper-
iments, an essential feature was still missing. Namely, al-
though DNA is essentially a one-dimensional (1D) sys-
tern, the thermal denaturation of a homopolymer occurs
in a remarkably narrow temperature range (a few K) [8],
so that it seems to challenge the usual belief that phase

transitions do not occur in 1D [9]. This peculiarity,
which was not properly accounted for in our model, had
been considered by Poland and Scheraga in 1965 (Ref.
[10]) within the Ising description. They showed that an
extremely sharp change in the population of closed states
can occur in models in which certain types of many-body
or long-range interactions exist. For DNA, the Ising
model must include cooperatiuity sects which amount to
saying that a closed base pair which is at the boundary of
an open domain has a higher probability to open. More-
over, as shown in 1974 by Azbel [11],the winding entro-
py which is released when the two strands are separated
contributes to the denaturation, which appears as an en-
tropy driven phase transition [12]. However, these con-
cepts appear in the Ising models through phenomenologi-
cal parameters which have not been related to microscop-
ic physical properties of the molecule such as the poten-
tial parameters linking its different components.

In this Rapid Communication, we show how the sim-
ple 1D model that we introduced previously for the non-
linear dynamics of DNA denaturation [5] can be
modified to include the cooperativity effects in terms of a
nonlinear contribution to the base-pair stacking interac-
tion potential. This results in a dramatic change in the
denaturation rate, i.e., the proportion of broken base
pairs for a given temperature increase. Although we do
not know analytically that this 1D model with nearest-
neighbor interactions exhibits a true phase transition, nu-
merically it shows a very sharp melting transition in good
agreement with experimental observations. Moreover,
while the previous model required unrealistically weak
stacking interactions to avoid a too high denaturation
temperature, the 1arge entropy increase associated with
melting in the presence of the nonlinear stacking interac-
tion significantly lowers the denaturation temperature so
that more realistic stacking potential parameters can be
used.

Our model can be considered as a simple extension of
the Ising models. Instead of a two-state variable, the
status of each base pair n is described by the scalar vari-
able y„which represents the transverse stretching of the
hydrogen bonds connecting the two bases. The Hamil-
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tonian is

II=g[—,'my„'+ V(y„)+ IV(y„y„&)] .

The first term is the kinetic-energy term for bases of mass
&nm. The on-site Morse potential V(y„)=D(e "—1)

represents not only the H bonds connecting two bases be-
longing to opposite strands, but also the repulsive in-
teractions of the phosphates, and the surrounding solvent
effects. The stacking energy between two neighboring
base pairs is described by the anharmonic potential:

IV(y„,y„&) =—(1+pe " " ' )(y„—y„&)' .
2

(2)

Idy„, exp( —P[ W(y„y„, )+ —,
' [ V(y„, )

+ «y. )] I )0;(y. ) =e 'y;(y„), (3)

This new intersite coupling, replacing the simple harmon-
ic coupling of our previous approach [5], is the essential
feature of the model and is responsible for its qualitative-
ly different properties. The choice of this potential has
been motivated by the observation that the stacking ener-

gy is not a property of individual bases, but a character of
the base pairs themselves [13]. When the hydrogen bonds
connecting the bases break, the electronic distribution on
bases is modified, causing the stacking interaction with
adjacent bases to decrease. In Eq. (2), this effect is en-
forced by the prefactor of the usual quadratic term
(y„—y„,) . This prefactor depends on the sum of the
stretchings of the two interacting base pairs and de-
creases from —,'k(1+p) to —,'k when either one (or both)
base pair is stretched. The qualitative features of poten-
tial (2) are in agreement with the properties of chemical
bonds in DNA. They also provide the cooperativity
effects that were introduced phenomenologically in the
Ising models. A base pair which is in the vicinity of an
open site has lower vibrational frequencies, which
reduces its contribution to the free energy [14]. Simul-
taneously a lower coupling along the strands gives the
bases more freedom to move independently from each
other, causing an entropy increase which drives a sharp
transition. Our approach can be compared to recent
views on structural phase transition in elastic media
which stress that intrinsic nonlinear features characterize
the physics of these transformations, and extend the stan-
dard soft mode picture [15]. It is important to note that,
although cooperativity is introduced through purely
nearest-neighbor coupling terms, it has a remarkable
effect on the 1D transition.

In order to make the above qualitative discussion pre-
cise, we have investigated the statistical mechanics of
Hamiltonian (1) with the TI method. This provides exact
results, including the full nonlinearities. The classical
partition function may be factored as Z =Z Z, where
the kinetic part is the usual 1D partition function
Z =(2vrmkz T) The potential par. t Z is expressed—PNF. ,

3'

as Z» =g;e ' in terms of the eigenvalues of the sym-
metric TI operator [16]:

10

6—
IA

4—

I

l

I

I

I

I

/

I

200
I

400
TEMPERATURE (K)

FIG. 1. Variation of the mean value (y ) vs temperature for
k =0.04 eV/A, D =0.04 eV, a =4.45 A, a=0.35 A
m =300 a.m.u. , and p=0. 5. The solid line corresponds to the
anharmonic stacking interaction and the dashed and dash-
dotted lines correspond to two cases of harmonic stacking in-
teractions with coupling constant k'= 1.5k (which would corre-
spond to a=0, p=0. 5) and k"=k (which would correspond to
a =0,p =0.0), respectively. The plus signs correspond to
molecular-dynamics simulations with the anharmonic stacking
interactions and the triangles correspond to simulations for the
harmonic coupling k'= 1.5k.

P, being the eigenfunction associated with the eigenvalue
In the thermodynamic limit, Z» reduces to—PNCOZ =e ' (Ref. [17]) and the potential part of the free

energy per particle is then given by
9» = —(k~ T/N) lnZ =Eo, where Eo is the lowest eigen-
value of the TI operator [18]. Owing to the presence of
the nonlinear coupling and to avoid any continuum ap-
proximation (because realistic DNA parameter corre-
sponds to rather large discreteness effects [3]),we numeri-
cally determined the spectrum of the TI operator [16]
rather than relying on a pseudo-Schrodinger approxima-
tion [17]. Due to the Morse shape of the one-site poten-
tial, the spectrum of the TI operator contains both a
discrete part and a continuum. As in the harmonic case,
the melting is associated with the disappearance of bound
states [5], and to a qualitative change of the eigenfunction
associated with the lowest eigenvalue.

The mean stretching (y) of the hydrogen bonds is
gi~~~ by [5] (y) =(P~(y)!y!Po(y)) = f y (2oy)y dy. This is

shown versus temperature in Fig. 1 for two cases of har-
monic stacking interactions with coupling constants k
and k(1+p) and for the anharmonic stacking potential
(2). The denaturation is much sharper for the anharmon-
ic case than for any harmonic stacking interaction, and
furthermore the denaturation temperature is significantly
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Since the TI calculation indicates a spectacular

inhuence from the anharmonicity, it is interesting to go
beyond this numerical approach in order to obtain
analytical results in the low- and high-temperature re-
gimes and to better understand the denaturation mecha-
nism. First, in the high-temperature regime the whole
system is on the plateau of the Morse potential, with an
effective harmonic coupling constant k. Therefore, the
system being equivalent to a harmonic chain, without
substrate potential we expect that its free energy will. sim-

ply be

k~T& —
& mk~T

g ln
2k sin (vrp/N)

(4)
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FIG. 2. Variation of the specific heat vs temperature. The
very narrow peak corresponds to the anharmonic case
(o;=0.35,p =0.5) and the dotted curve and the solid broad peak
corresponds to harmonic coupling ( k ' = 1.5k and k"=k, re-

spectively).

and the specific heat per particle in units of kz will be
equal to 1. Figures 1 and 2 show that, above the transi-
tion, this picture is correct.

In the low-temperature regime, introducing
u„=y„—(y) =y„—il and two variational parameters,
0 and sI), we apply the self-consistent phonon (SCP)
method, by considering the trial harmonic Hamiltonian

Ho=+ mu„—+ (u„—u„+i) + u„
~

~

2

lowered in the anharmonic case. The difference between
the behavior of the model with harmonic and anharmon-
ic stacking interactions is even more striking in the
specific heat shown in Fig. 2. %'hile the curves present
broad peaks, due to the 1D Schottky anomaly for har-
monic coupling (a=O), the anharmonic case exhibits an
extremely sharp peak at T =361.5 K, which is very rem-
iniscent of the behavior of a system undergoing a first-
order transition. Whether or not the transition is truly
first order (this can be destroyed by disorder anyway,
especially in 1D), the TI results show that the thermal
denaturation is extremely sudden in our model using a
physically reasonable anharmonic nearest-neighbor in-
teraction. It must be stressed that the qualitative change
of behavior introduced by the anharmonic coupling is not
due to special values of the parameters —the two har-
monic coupling cases have been calculated for coupling
constants corresponding to the maximum and minimum
value possible in the anharmonic case. The thermal be-
havior of the model with anharmonic stacking interac-
tion is in much better agreement with DNA denatura-
tion curves than in the harmonic case.

The results of the TI calculation have been checked by
molecular-dynamics simulations at temperatures con-
strained by the Nose scheme [19]. The values of (y ) de-
duced from the simulations are shown in Fig. 1. They are
numerically in perfect agreement with the TI results. Be-
sides this check, the molecular-dynamics simulations
show that, while the coupling term (2) has a dramatic
effect on the sharpness of the transition, it does not quali-
tatively affect the dynamics of the system in the vicinity
of the transition. The results exhibit the same localiza-
tion of energy leading to denaturation "bubbles" as with
a harmonic coupling [7]. Details of nucleative events in
the presence of the anharmonic springs will be discussed

At first order, the free energy of the system is bounded
from above by [20]
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FIG. 3. Variation of the free energy vs temperature for the
anharmonic coupling case (a =0.35,p=0. 5). The solid line cor-
responds to the exact free energy calculated with the TI
method, the dashed line corresponds to the first-order SCP re-
sult, the dash-dotted line corresponds to the second-order SCP,
and the dash-dot-dot-dot line corresponds to the high-
temperature harmonic approximation. Note that while the
first-order SCP method is necessarily an upper bound of the ex-
act free energy, this is not required for the second-order approx-
imation.
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9'& —kq T inZo+ (H H—c )

2~kb T
ln 0 +4P sin ( srp /N )

+V, , (6)

As shown in Fig. 3, the agreement with the exact TI re-
sult is poor except at very low temperature because, given
the even parity of Ho, the first-order expression of V
averages out all the odd terms of the Morse potential.
Although the calculation is tedious, the second-order
correction for the free energy [20,21],

can be calculated analytically exactly for our model. The
result is too long to be given here but Fig. 3 shows that it
significantly improves the agreement with the exact re-
sults up to about 250 K (with our parameter set). How-
ever, the SCP calculation still fails in the vicinity of the
melting transition, emphasizing the fundamental role of

where Zo is the partition function for the trial Hamil-
tonian and the mean value is calculated with this approx-
imate Hamiltonian. Minimizing expression (6) with
respect to g, (u ) =(u„) and (U ) =(u„u„,), we ob-
tain three equations which have to be solved self-
consistently. This system has a solution for T (400.9 K
which appears as the transition temperature for the SCP
calculation. The resulting first-order expression for the
free energy is

p D +De —ay+(a /2)(u )[(a2+atz)( u 2) act( U2) 2]

+De 2aq+2a'iu'1[ —(aa+2a2)(u2)+aa(U2)+1]

the nonlinear effects in the denaturation: they cannot be
described, even approximately, by a harmonic trial Ham-
iltonian with temperature-dependent coefficients.

In summary, the model that we have discussed here
shows that the cooperative efFects that had been intro-
duced phenomenologically in the Ising models of DNA
denaturation can be justified at a microscopic level by an
appropriate anharmonic stacking interaction potential.
This rejects the change in the electronic distribution on
the bases when the hydrogen bonds are broken. With
this interaction, the systems shows a very sharp melting
transition at a substantially reduced temperature. The
SCP calculation can be performed analytically up to
second order and shows the essential role of the nonlinear
effects in the vicinity of the transition. Besides its interest
as a step toward the understanding of DNA transcrip-
tion, this model shows that a simple 1D system with suit-
able nonlinear nearest-neighbor coupling can exhibit a
very sharp transition. Although it does not contradict
the well-known result that there are no phase transitions
in 1D systems with short-range interactions, this example
points out that, in some cases, such systems can support a
very sharp transition as the analysis of Morris and Good-
ing [22] predicted.
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