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Properties of the reaction front in a reversible A +B C reaction-diffusion process
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We study the properties of the reaction front formed in a reversible reaction-diffusion process,
k

A +B—C, with initially separated reagents. It is shown that the dynamics of the front can be described
g

in terms of a crossover between "irreversible" scaling at short times (t &&g ') and "reversible" scaling
at long times (t &)g '). The reversible regime is dominated by diffusion and the critical exponents
characterizing the properties of the front are independent of dimension.

PACS number(s): 82.20.Wt, 82.20.Db, 82.20.Mj, 66.30.Ny

Reaction fronts formed in diffusion-limited 3 +B~C
type reactions have been much investigated recently
[1—12). The interest stems partly from the fact that mov-
ing reaction fronts are important in a variety of physical
and chemical phenomena where pattern formation occurs
[13,14], and one of the few examples where the properties
of the front can be studied in detail is the A +B~C pro-
cess. There is also a more practical reason for the in-
terest: When investigating chemical reactions in noncon-
vective media (e.g. , in gel), it is easier to prepare an initial
state with spatially separated components than to mix the
reagents uniformly. Initial separation leads to a reaction
front (i.e., to a spatially localized region where the pro-
duction rate of C is nonzero) that can be visualized and
the time dependence and the spatial dependence of the re-
action rate can be measured. Thus the experiments pro-
vide information not only about the rate law but also
about the segregation of the reagents [4] and, consequent-
ly, they allow direct testing of such ideas in reaction ki-
netics as the idea of self-ordering of reactants [15—17].

In a simple geometry where the density of the reagents
depends only on one spatial coordinate, one can charac-
terize the reaction zone by the location of its center,
xf (t), by its width, W(t), and by rate of production of C
at the center, R (xf, t). The solution of rate equations as
well as simple scaling arguments suggest [1] that the time
evolution of these quantities obeys scaling in the long-
time limit and one has xf —t 'r, W(t) —t ', and
R (xf, t)-t ~ . These results are expected to be valid
above an upper critical dimension [6] d„=2 and, indeed,
they have been verified both experimentally [4] and by
simulation studies [2,3,5,6).

Scaling behavior is usually limited in extent and one
expects that there exist lower and upper cutoffs in time

(r& and r„) where the power-law behavior discussed above
breaks down. The physical origin of the short-time
(r (w&) breakdown has been discussed recently [7,12]. At
times smaller than the inverse reaction rate, the particles
mainly mix instead of reacting and thus the observed re-
sults are due to diffusion rather than reaction. Accord-
ingly, an initial behavior that is rich in detail [12]
emerges from both theoretical considerations and experi-
ments.

There is no upper cutoff to scaling (r„=ao ) in case of a
strictly irreversible reaction. In reality, however, every
reaction is reversible and the rate g of the back reaction
C~A +8 introduces a new time scale (g ') into the
problem. In this paper, the reversibility effects are stud-
ied using scaling arguments, numerical integration of the
rate equations, and cellular-automata simulations. The
results indicate that the "irreversible" scaling discussed
above crosses over into a "reversible" scaling at times
t &~„=g ' and the exponents in the reversible regime
are mean-field-like ( W-t r, R -const) independently of
dimension.

A mathematical description of the reversible reaction-
k

diffusion process we are interested in, A +B=C, can be

given by the following equations:

8 a=D&V a —kR+gc

B,b =D&V' b —kR +gc,

B,c =DcV c+kR —gc

where a, b, and c are the local concentrations of A, B,
and C, respectively, and D. is the diffusion constant of
the species j. For simplicity, we assume that
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where p; is a, b, e for i =1,2, 3, respectively. The ex-
ponent a characterizes the width of the reaction zone
( W-t ), while p is the exponent of the production rate
at the center of the zone [R (O, t)-t ~]. Substituting the
scaling forms into Eqs. (1), one finds that the three ex-
ponents a, P, and y are related by two scaling laws:

y+a= —,', y+2a=P, (3)

and there is only one independent exponent. The above
scaling relations are still quite general, since no explicit
form of the reaction term R has been used. Further ap-
proximation can be made by neglecting the Auctuations
and assuming that R factorizes into a product of the local
concentrations of A and B. Then the mean-field form of
the reaction rate RMF-ab leads to another relation
among the exponents, p=2y, and all the exponents are
determined. The results obtained in this way o:M„=—,

' and

PM„=—', are in agreement with those of Galfi and Racz

The situation is simpler in the reversible (gAO) case.
For large times, t &)g, the reversibility of the reaction
starts to play a role and a "local equilibrium" domain is
formed around the center. In this domain, the concentra-
tions of all species approach a stationary value and only
the extrema of the Aat region evolve in time. Thus if scal-
ing is assumed to hold in the reaction zone then the ex-
ponents P and y in (2) should be zero:

p;(x, t) =p~(xt "), R (x, t) =P~(xt ") . (4)

Let us substitute the above forms into Eqs. (1) and con-
sider first the equation for c(x, t) Assuming that . the

D„=D~=D. It is expected that, just as in the case of
the irreversible reactions [2,3], the long-time scaling
properties are not affected by this assumption. The reac-
tion term R is proportional to the joint probability of
having an A and a B particle simultaneously present at a
given location. The forward and backward reaction rates
are k and g, respectively.

As an initial condition, the reagents A and B are
chosen to be separated with no C present. We assume
constant densities for both x & 0 (a =ao, b =0) and x )0
(a =0, b =ho) and we also assume that ao=bo Wi.th
these initial conditions, the system becomes effectively
one dimensional since the densities depend only on x at
all time. Furthermore, the center of the reaction front
remains motionless [xf(t)=0]. It is expected again that
the motion of the center does not affect the t ~~ scaling
properties of W(t) and R (xf, t).

We start analyzing Eqs. (1) by applying a scaling
theory that has been developed for the irreversible case
[6]. In order to contrast the reversible and irreversible
reactions, let us first review the irreversible case (g =0).
The basic assumption is that for x &&I d, where I.d -t '

is the width of the depletion zone (defined as the region
where both a and b are significantly smaller than their in-
itial values), the densities and the reaction rate can be
written in the following scaling forms:

p, (x, t)=t 'p, (xt ), R(x, t)=t ~P(xt ), (2)

scaling function p~3 is smooth, and that o.„&0, the terms

B,c and V c go to zero as t~~, while the two other
terms remain finite. Thus the last two terms should com-
pensate each other, and this means that the system
reaches a state of local equilibrium for which

kR (x, t)=gc(x, t) .

Returning now to the equations of motion for a (x, t) and
b (x, t), one can see that due to the local equilibrium, they
reduce to independent diffusion equations:

B,a=DV a, B,b =DV b .

Since these equations have solutions of the form (4) with
a, =

—,', we conclude that in the reversible case, and in the
long-time regime (g t &) 1 ), the front properties are
governed diffusion, and the exponent of the width of the
reaction zone e„ is given by

(7)

Note that no explicit form of R has been assumed and the
above arguments are not related to a mean-Geld approxi-
mation.

The result a„=—,
' is easily understandable in case of

Dc&0: Once the C's have been produced, they difFuse

and, because of the reversibility of the reaction, generate
reaction events in a region of the size proportional to
t' . Thus the width of the reaction zone increases as
W-t' and we have o,„=—,'. Less obvious is that o.„=—,

'

remains valid for Dc =0. Thus in order to test the validi-

ty of the above scaling assumptions, we solved numerical-
ly the reaction-diffusion equations in the mean-field ap-
proximation (R -ab) and performed simulations of the
process on a cellular automata model. In both cases, we
mainly concentrated on the immobile C (Dc =0) limit.

Equations (1) with the approximation R-ab were
solved by standard finite-difference methods for the initial
conditions described in the paragraph following (1).
Measuring length, time, and particle density in units of
l =QD/(kao), v=1/(kao), and ao, respectively, and
setting Dz =0, one was left with g as the only control pa-
rameter. It was chosen to be g = 10 " [in units of
r= 1/(kao)], with n =2, 3,4, S. The width of the reaction
zone W(t) was calculated as

where the sums were over the discretized spatial points.
In Fig. 1, we plot the raw data for W( t). An initial tran-
sient (t «; =50) as well as the crossover at t =g ' is
clearly seen in this figure. Excluding the initial transient
from the data, one can obtain an excellent collapse of the
curves if g'~ W(t) is plotted against gt as shown in Fig.
2. Thus, for r & ~, , W(t) can be written in the following
scaling form:

and the asymptotic behavior of the scaling function
4(z)-z' for z «1 and N(z)-z'~ for z&&1 can be
seen in Fig. 2. These results demonstrate our claims that
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there is a crossover at gt —1 between the "irreversible"
W-t' and the "reversible" 8 —t' regimes and that
the reversible regime is dominated by diffusion (a„=—,

' ).
The mean-field results derived above are supposed to

be valid above some upper critical dimension d„ that is 2
for the irreversible regime [6]. In order to find d„ for the
reversible reaction, the process has also been described in
terms of a cellular-automata model: particles of type A,
B, or C perform a random walk along the main directions
of a regular lattice. %'hen an A particle collides with a B
particle moving in the opposite direction, a reaction
occurs and a C particle is produced with probability k.

FICx. 1. Width of the reaction zone 8'(t), obtained by solving
the rate equations numerically for several values of the rate g of
the back reaction C~A +B. All the quantities 8 (t), t, and g
are dimensionless since they are measured in units of
(Dlkao)', (kao) ', and kao, respectively [for definitions see
paragraph after Eq. (1)]. One can observe that there is an initial
transient t & ~; =50 before the "irreversible regime'*
[8'(t)-t'/ ] sets in for g =0. The crossover between the "ir-
reversible regime" and the "reversible regime" [ IV (t) —t '

]
can be seen to occur at t-g

We allow for no more than one particle of a given species
per site and per direction (exclusion principle). In this
approach the reaction term R is not assumed to factorize
as a product of a and b; thus the microscopic fluctuations
are taken into account.

The dynamics is quite similar to that used previously to
study the irreversible case and the details can be found in
Refs. [6] and [18]. The new ingredient is that the C par-
ticles can transform back to an A and a B, with a proba-
bility g. Note that the A +B~C and C~A +B reac-
tions take place with probability k and g, respectively,
only when they are allowed by the exclusion principle.
The values of k and g as de6ned here are proportional to
the k and g of the rate equations. The proportionality
factors (of order 1) can be derived following the pro-
cedure explained in Ref. [5]. Their actual value is not im-
portant in what follows.

The simulations have been performed in one and two
dimensions. The expected crossover for the one-
dimensiona1 case can be seen in Fig. 3. In the long-time
regime, it is found for several values of k and g that the
width of the reaction zone increases with an exponent
a„=0.495, in agreement with the predicted o., =

—,'. The
exponent associated with the short-time regime, however,
is not equal to that of the irreversible case (a=0 29 in
one dimension [6]). This is not surprising since a=0.29
corresponds to a very-long-time behavior [5,6] that is
never attained because of the crossover to the reversible
regime. The behavior in two dimensions is also found to
be in agreement with the scaling predictions.

In summary, our study of the reversible A +B—C
reaction-diffusion process shows that the asymptotic
properties of the reaction front are in some sense simpler
than in the purely irreversible case. Due to local equilib-
rium, the long-time limit of the dynamics is governed by
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FIG. 2. Scaling of the data presented in Fig. 1. The initial
transient (t &~; —50) is excluded from this plot. The two
straight lines correspond to the asymptotic 8'(t)-t' and
W(t) —t ' behaviors.

FICz. 3. Width of the reaction zone as a function of time in
the one-dimensional cellular-automata simulations of the
A +B~Cprocess. The probabilities of the forward and of the
backward reactions are 1 and 0.0001, respectively. Length is
measured in units of the lattice spacing while time is scaled by
the number of moves per particle. The system size is 8192, and
the diffusion coe%cient of the C particles is Dc =0. An average
is made over 128 systems. The straight line represents asymp-
totic behavior 8 ( t) —t ' . The short-time ( t —50) behavior of
W ( t) is approximately given by 8'( t ) —t
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diffusion and, consequently, the critical exponents
characterizing the scaling properties are correctly given
by the mean-field approximation. The fiuctuations do not
modify the exponents even in one dimension, only the
nonuniversal properties are affected. The trace of the ir-
reversible regime can be seen in the early-time dynamics,
however, provided the crossover time ~, =g ' is large
enough for the irreversible regime to set in. Since there is
at least one experiment [4] where the irreversible regime
is seen during all of the observation time, one should be

able to find experimental circumstances where the cross-
over between the irreversible and reversible regimes can
also be observed.
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