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Pulse propagation in optical fibers near the zero dispersion point
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The problem of nonlinear pulse propagation in optical fibers near the zero dispersion point is investi-
gated. It is shown, both analytically and numerically, that stable double-humped solitary-wave solutions
potentially can be used for transmission. The results clarify previous problems with the existence of
single-humped localized solitary waves, i.e., fundamental solitons, which are forbidden in the strict

mathematical sense.
PACS number(s): 42.81.Dp, 42.65.Re

Since the pioneering theoretical [1] and experimental
[2] works on the problem of soliton propagation in opti-
cal fibers the field has grown significantly. It is now a
common belief that solitons are important in fiber optics.
Typical examples for applications are long-distance opti-
cal communication systems and optical switching devices
(see, for example, the review [3]). Solitons also are impor-
tant for the modeling of the different types of mode-
locked ring lasers [4,5].

The peak pulse power necessary to establish a funda-
mental bright soliton in fibers is inversely proportional to
the square of the pulse duration and directly proportional
to the fiber dispersion. Therefore, a natural way to
reduce the power required for launching a pulse with
fixed duration is to use a wavelength where the dispersion
is minimal. The linear dispersion results from both the
material of the fiber and the geometrical characteristics
of the fiber. At the so-called zero-dispersion point (ZDP)
the second-order dispersion vanishes and the total fiber
dispersion is minimal. The power required to generate a
bright soliton near the ZDP is consequently much small-
er than that required in the region of anomalous disper-
sion; but it is known that pulses launched very close to or
exactly at the ZDP cannot propagate for a long time at
this wavelength, because of the self-phase-modulation
(SPM) -induced spectral broadening. As a consequence
of the resulting time-dependent nonlinear phase shift, the
pulse creates its own second-order dispersion (see, e.g.,
Refs. [6,7]). The value of such an induced second-order
dispersion may be estimated by the relation
k" =k |80 /2. Here 8wp,, is a maximum of the
SPM-induced spectral broadening, which depends on the
initial parameters of the pulse, and is larger for pulses
with higher peak powers. The prime denotes the deriva-
tive of the wave number k with respect to the frequency
.

As has been demonstrated in [7,8], for a given pulse
width the minimum power required to establish a
soliton-type pulse near the ZDP is really substantially
lower than the power required to launch a soliton in the
anomalous dispersion region. It was also discovered that
the wave packet forming near the ZDP has a solitonlike
form that radiates continuously [10]. The amplitude of
radiation is small when the frequency shift from the ZDP
is large enough [11]. In this Rapid Communication we
demonstrate that the main reason for the appearance of
radiation is the absence of symmetry for the one-hump
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fundamental soliton. We find that bound states in the
form of two coupled fundamental solitons possess the ap-
propriate symmetry; they do not emit radiation. We will
present simple analytical descriptions of these solutions
that are in good agreement with the numerics. We also
demonstrate numerically that bound states with well-
separated humps are quite stable against small perturba-
tions, so that they can be used, in a certain parameter re-
gime, for transmission.

SPM and group-velocity dispersion, which are impor-
tant for soliton propagation in fibers, also play an impor-
tant role in the problems of the generation of nonlinear
pulses (see, e.g., [4]). As was noted [5], there is a certain
wavelength that separates the stable and unstable regimes
of the operation of colliding-pulse mode-locked (CPM)
rings lasers. This wavelength is critical from the point of
view of dispersion, and may be considered as a general-
ized ZDP, which is appropriate to the dye laser. This
analogy was recently confirmed experimentally [5]. Thus
we believe that our results may be applicable not only to
the problem of the nonlinear pulses’ propagation in fibers
near the ZDP, but also to other problems where higher-
order dispersion plays a significant role.

Let us start with the structure of pulses in single-mode
fibers near the ZDP. The pulse envelope propagation in
optical fibers near the ZDP is governed by a modified
nonlinear Schrodinger equation (NSE) [9-13]
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where n, is the Kerr coefficient, k is the wave number,
k'=dk /dw, n, is the linear part of the refractive index,
and p is a geometrical factor. We consider a wavelength
region AA around the zero dispersion wavelength A,
where |k”|r>|k"’| (r is the pulse width). It is con-
venient to reduce Eq. (1) to a dimensionless form

iV +Yrr— Y+ W12 =ik(brrr —¥r) , 2
by using the following transformation:
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where 7 is a typical pulse length. For a single-mode fiber

with parameters discussed, e.g., in Ref. [14], near the

ZDP we have
K=—k"'/3|k"|7‘z7><10_4 A.(;Lm)—086

T(psec)[1.27—A(um)] °

In [11] it was shown that fundamental solitons are des-
troyed by a third-order dispersion term, and radiation is
caused by the latter. Kuehl and Zhang [15] calculated
the radiation, confirming the results of Wai, Chen, and
Lee [11]. The main point in these investigations is that
the localized single-humped fundamental soliton solutions
of Eq. (2) for 3, =0 should fulfill the boundary condition
|#]| —0 as well as the symmetry relation (T)=y*(—T).
This means that Re is symmetric, while Imy is antisym-
metric with respect to 7. Expanding with respect to
small k, Wai, Chen, and Lee [11] showed that for single-
humped solutions

Imypr[o <<k™ (3)

for all m, i.e., the antisymmetry is satisfied in an asymp-
totic expansion to all polynomial orders. Nevertheless,
an analysis beyond all orders showed that the proper
solutions do not satisfy Imy,y|,=0; the deviation is of
the order of exp(—w/2«). This elegant mathematical
finding corresponds to the physically observed slow decay
of fundamental solutions.

The new localized “stationary” solutions of Eq. (1)
presented here are of a double-hump form and can be in-
terpreted as a superposition of two coupled fundamental
solitons. They do not have radiation tails for |T| — . It
should be noted that, contrary to the two-soliton solu-
tions of an ordinary NSE, the double-humped solitons are
apparently ‘“‘stationary‘‘ pulses. Similar structures were
observed in experiments with a passively mode-locked
neodymium fiber laser [16]. In the latter experiments it
was found that the multiple pulses do not change with in-
creasing cavity round-trip time, i.e., multiple-pulse out-
puts cannot be attributed to higher-order soliton solu-
tions of a usual NSE.

We have found that localized solutions can be present-
ed in the form =1),+8y, where ¢, is a localized
double-humped solution

Q

FIG. 1. A “stationary” (3z =0) solution of Eq. (2). The ab-
solute value of ¢ is shown vs T for k=0.1119. Note that the
two humps are well separated. In the nonstationary problem
this form is unchanged up to Z = 1000.
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$o=G(Ty+T)+G*(Ty—T), @)

and 8¢ corresponds to trapped radiation (8¢ <<), de-
caying to zero for |T|— . All the solutions obey the re-
quirement of exponential decay at infinity and fulfil the
following symmetry conditions at T"=0:

Imy|o=Rer|o=Imyrr|o=0 . (5)

Generally, two types of solutions appear, alternating with
increasing  (discrete) «  values: solutions with
Rey|o=Imy;|[,=0 (type I) on the one hand, and
Rey|o~k Imy7|,70 (type II) on the other hand.

It is straightforward to calculate G to any order in «;
e.g., for a type-I solution we obtain

V2

G(z)=—-—cosh(z) e
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and 8y(z)= A4 expliz /k) for z—0. Without going into
too many details, let us mention that the idea is to super-
impose symmetrically two single-humped soliton solu-
tions including their radiation tails. The functions con-
sist of exponentially decaying tails and oscillatory parts.
We match the two solutions (including the tails) for
| T| << Ty, and thereby get discrete eigenvalues x for the
existence of completely localized double-humped eigen-
states. In Fig. 1 a typical solution is shown.

The continuity of (the two parts of) ¥ and ¢ at T =0
determines the phase «, e.g.,

T, K
a~2+2 (7)

up the first order in k. The two humps of the solutions
are more separated the smaller « is. The dependence of
Ty on « is shown in Fig. 2. Note that the relevant x
values are discrete, but a continuum approximation be-
comes valid for k—0. Within the latter, a simple model
calculation leads to the following evolution equation for
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FIG. 2. Hump position T, vs k. The crosses designate the
discrete eigenvalues found from numerics. The solid line is our
analytical result (9), being valid in the continuum approxima-
tion.
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the average distance between the two peaks (e.g., for
type-I solutions):

32 o
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The derivation of this relation starts from Eq. (2). After
appropriate manipulations we use the symmetry relations
(5) and calculate some coefficients by using the approxi-
mate form (6); C is a numerical constant which can be
determined from some well-defined integrals. It should
be noted that the constant C can be calculated analytical-
ly. However, one will find that many terms in the expan-
sion (6) contribute to the value of C; the convergence
with higher orders in « is very slow. In order to avoid
unessential complexity here, we evaluate C numerically;
C =~12.94. Equating the right-hand side of Eq. (8) to zero
for stationary solutions we obtain (for both type-I and
type-II solutions)

Toz—277;+21nK—InC . ©)

This is a very useful relation between the eigenvalues «
and the distance (27)) between the two humps of the
“stationary” solution (see Fig. 1).

The matching of the oscillatory parts at T =0 gives the
relation (T /k)—a=nm, where n is an integer. From
this additional condition we can determine the spacing
between the discrete eigenvalues k=k,. Defining
K, +1=K,+8k,, and making use of Eq. (9), a short calcu-
lation leads to

— fo
8k, =~ C R (10)
n n
1—Ink, + 2 + -

2
1—_K
o "

for both the type-I and type-II solutions. We should
mention that the three relations presented in Egs. (7), (9),
and (10), respectively, agree excellently with the numeri-
cal findings. For example, in Fig. 2 the solid line shows
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FIG. 3. Eigenvalue spacings 6«,=k,,—k, (logarithmic
scale) vs k, (denoted by X) and «, —; (depicted by +) (both in
logarithmic scales), respectively. The solid line represents the
analytically found relation (10).
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the curve (9) (for InC=2.56). It is a very good fit to the
numerically found discrete k—7 relation (shown by
crosses). In Fig. 3 we depict the eigenvalue spacings 8«,
versus k, (denoted by X) and «, _; (depicted by +). The
solid line represents the relation (10). Again the agree-
ment is excellent. We have also investigated the fine
structures of the ‘“stationary” solutions and examined in
detail the matching via radiation tails. Details will be
published elsewhere. As a result we can state that
higher-order dispersion leads to the pinning of fundamen-
tal solitons in the form of double-humped localized solu-
tions. This phenomenon is presumably quite general for
higher-order dispersion [17] and may be found also in
other problems with higher-order dispersive effects. It
should be also mentioned that we expect that a whole
family of multiple-humped solutions will exist.

Next, we investigate the stability of the newly found
solutions. The general result is that, for small «, corre-
sponding to large distances 27, between the humps, the
solutions are stable over long propagation distances,
whereas for large « values the solutions are quite rapidly
destroyed. A typical example for an unstable solution is
shown in Fig. 4 for k=0.22. The solution is completely
destroyed after Z =~ 120 if we start at Z =0 with an exact
stationary double-hump pulse (73 =2). On the other
hand, and this is physically most important, for k <0.11
(T, =7) the solutions are very stable over long distances
(Z > 10%. To appreciate these findings, we have to take
into account

2.87x107*

~—28f2 Y __6k[7(psec)]?
K psec)AA(pm)” 2 k™) zZ, ap

1 | psec?
k"]

km
leading to z(km)~1.4 Z for 7=0.57 psec, AA=~5X10"3
pm, |k'’|=0.08 psec®/km, ie., k=~0.1. Thus, if the
pulses are well separated, they can move without
significant changes in shapes over distances of several
thousands of kilometers. A typical example is the solu-
tion (k=0.1119) shown in Fig. 1. When inserted into the
Z-dependent equation as initial distribution, we do not
observe any significant changes in shape up to Z ~10°,
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FIG. 4. Z dependence of a ‘“‘stationary” 3 solution under per-
turbations, for k=0.22. The absolute value |9| as a function of
T is shown for Z =0 (solid line), 110 (dotted line), and 120 (bro-
ken line), respectively. In contrast to the results for small x
values (see, e.g., Fig. 1), the solution is unstable and rapidly des-
troyed.
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2000 o 0.3 of T, from the numerical simulations. Note that
- KBS Z ~exp(T,) holds for small k, although there is some un-
i :i:? certainty in defining Z directly (e.g., from the inverse
L R 1 growth rates of the pulse separation).
1500 |- ;E:? —-0.25 Finally, let us mention another aspect that is also of
- ;2:::7 T great practical importance. When generating the pulses
7 | »:?21 1k we cannot expect to tailor exactly the forms of the “sta-
I i:::" ~ tionary” (and quite stable) solutions considered here.
1000 - ézng —o.2 From the mathematical point of view, since Eq. (1) is not
- R . completely integrable, there is no evidence that any ini-
’ R3] i tial distribution will finally evolve into the pulses (4);
%03 1 . y . P

r K however, our numerical simulations showed that the

L ".’4 - N
500 0.15 stable propagation of two-humped pulses is a rather gen-
L eral case of evolution. When prescribing initially some
- double-humped distributions, e.g., each hump being of a

p p g

r sech form and the distance between the pulses being of
[ " order 2T y(«), for small k the stable propagation was also

o 0.1 0 p g
0 2 4 To 8 8 observed. This shows that the solutions investigated here

g

FIG. 5. Scaling of the “life distances” Z (left ordinate) of
double-humped solutions as a function of the humps’ separation
T,. The width of the curve originates from numerics. On a
different scale (right ordinate) we have plotted k=«(T,), so that
it is easy to estimate the life distance for a given «.

even if noise is added initially. (This is the reason why we
do not present additional figures for nonvanishing Z
values for that « value. In that parameter regime,
changes would not be observable.) This behavior, of
course, stimulates the question: How do the characteris-
tic decay times of the bound states scale with k? Defining

Z "'=(3Iny/dZ| we find from our simple and intuitive
analytical approach (8)
Z~e'o, (12)

where for Ty=T,(k) we can use the expression (9). This
scaling clearly explains why for k <0.11 no significant
changes are observed at distances Z =~ 10°, which are of
practical importance. In Fig. 5 we demonstrate this
theoretical prediction (12). The scaling (12) is confirmed
by plotting the approximate life distances Z as a function

can be used for transmission. Moreover, recently there
has been much interest in the study of dark solitons (see,
e.g., Refs. [18,19]). We have also investigated the propa-
gation of dark solitons in fibers near the ZDP. A presen-
tation of that result is in progress.

In summary, higher-order dispersion may lead to the
coupling of fundamental solitons into pairs. By con-
structing bound states out of fundamental solitons in op-
tical fibers near the ZDP we find nonradiating and quite
stable solutions if the humps are well separated. For
practical purposes, the separation should be of the order
of several picoseconds; then the pulses can propagate
over thousands of kilometers without significant changes
when damping mechanisms are neglected. In future in-
vestigations we shall include dissipative and amplifying
mechanisms in order to further improve the applicability,
but already now we can state that because of the high
efficiency of operation near the ZDP this area is promis-
ing and should be further investigated.

This work is supported by the Deutsche
Forschungsgemeinschaft. S. K. T. thanks the Humboldt
foundation for additional support that made this colla-
boration possible.

[1] A. Hasegawa and E. Tappert, Appl. Phys. Lett. 23, 142
(1973).

[2] L. F. Mollenauer, R. H: Stolen, and J. P. Gordon, Phys.
Rev. Lett. 45,-1095 (1980).

[3] G. 1. Stegeman and E. M. Wright, Opt. Quantum Elec-
tron. 22, 95 (1990).

[4] O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc.
Am. B 2, 753 (1985).

[S] F. W. Wise, I. A. Walmsley, and C. L. Tang, Opt. Lett. 13,
129 (1988).

[6] G. P. Agrawal, Nonlinear Fiber Optics (Academic, Orlan-
do, FL, 1989).

[71 P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee,
Opt. Lett. 12, 628 (1987).

[8] A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, Opt.
Lett. 13, 770 (1988).

[9] K. J. Blow, N. J. Doran, and E. Commins, Opt. Commun.
48, 181 (1983).

[10] P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen,

Opt. Lett. 11, 464 (1986).

[11]P. K. A. Wai, H. H. Chen, and Y. C. Lee, Phys. Rev. A
41, 426 (1990).

[12] G. R. Boyer and X. F. Carlotti, Opt. Commun. 60, 18
(1986).

[13] G. P. Agrawal and M. J. Potasek, Phys. Rev. A 33, 1765
(1986).

[14] D. Marcuse, Appl. Opt. 19, 1653 (1980).

[15] H. H. Kuehl and C. Y. Zhang, Phys. Fluids B 2, 889
(1990).

[16] M. Hofer, M. H. Ober, F. Haberl, and M. E. Fermann,
IEEE J. Quantum Electron. 28, 720 (1992).

[17] V. K. Mezentsev and S. K. Turitsyn, Sov. Lightwave
Commun. 1, 263 (1991).

[18] D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkow-
sky, Phys. Rev. Lett. 60, 29 (1988).

[19] Yu. S, Kivshar, Special Issue, “Dark Solitons in Nonlinear
Optics,” IEEE J. Quantum Electron. 29, 250 (1993).



