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Pulse propagation in optical fibers near the zero dispersion point
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The problem of nonlinear pulse propagation in optical fibers near the zero dispersion point is investi-
gated. It is shown, both analytically and numerically, that stable double-humped solitary-wave solutions
potentially can be used for transmission. The results clarify previous problems with the existence of
single-humped localized solitary waves, i.e., fundamental solitons, which are forbidden in the strict
mathematical sense.

PACS number(s): 42.81.Dp, 42.65.Re

Since the pioneering theoretical [1] and experimental
[2] works on the problem of soliton propagation in opti-
cal fibers the field has grown significantly. It is now a
common belief that solitons are important in fiber optics.
Typical examples for applications are long-distance opti-
cal communication systems and optical switching devices
(see, for example, the review [3]). Solitons also are impor-
tant for the modeling of the different types of mode-
locked ring lasers [4,5].

The peak pulse power necessary to establish a funda-
mental bright soliton in fibers is inversely proportional to
the square of the pulse duration and directly proportional
to the fiber dispersion. Therefore, a natural way to
reduce the power required for launching a pulse with
fixed duration is to use a wavelength where the dispersion
is minimal. The linear dispersion results from both the
material of the fiber and the geometrical characteristics
of the fiber. At the so-called zero-dispersion point (ZDP)
the second-order dispersion vanishes and the total fiber
dispersion is minimal. The power required to generate a
bright soliton near the ZDP is consequently much small-
er than that required in the region of anomalous disper-
sion; but it is known that pulses launched very close to or
exactly at the ZDP cannot propagate for a long time at
this wavelength, because of the self-phase-modulation
(SPM) -induced spectral broadening. As a consequence
of the resulting time-dependent nonlinear phase shift, the
pulse creates its own second-order dispersion (see, e.g.,
Refs. [6,7]). The value of such an induced second-order
dispersion may be estimated by the relation
k"=k"'~5co,„~/2ir. Here 5co,„ is a maximum of the
SPM-induced spectral broadening, which depends on the
initial parameters of the pulse, and is larger for pulses
with higher peak powers. The prime denotes the deriva-
tive of the wave number k with respect to the frequency
CO.

As has been demonstrated in [7,8], for a given pulse
width the minimum power required to establish a
soliton-type pulse near the ZDP is really substantially
lower than the power required to launch a soliton in the
anomalous dispersion region. It was also discovered that
the wave packet forming near the ZDP has a solitonlike
form that radiates continuously [10]. The amplitude of
radiation is small when the frequency shift from the ZDP
is large enough [11]. In this Rapid Communication we
demonstrate that the main reason for the appearance of
radiation is the absence of symmetry for the one-hump

where n2 is the Kerr coefficient, k is the wave number,
k'=dk/de, no is the linear part of the refractive index,
and p is a geometrical factor. We consider a wavelength
region AA, around the zero dispersion wavelength
where k" r~ ~k"'~ (r is the pulse width). It is con-
venient to reduce Eq. (1) to a dimensionless form

by using the following transformation:

g(Z, T tcZ)e'—1/2
2v cx kn2p

E(z, t), a=
no

fundamental soliton. We find that bound states in the
form of two coupled fundamental solitons possess the ap-
propriate symmetry; they do not emit radiation. We will
present simple analytical descriptions of these solutions
that are in good agreement with the numerics. We also
demonstrate numerically that bound states with well-
separated humps are quite stable against small perturba-
tions, so that they can be used, in a certain parameter re-
gime, for transmission.

SPM and group-velocity dispersion, which are impor-
tant for soliton propagation in fibers, also play an impor-
tant role in the problems of the generation of nonlinear
pulses (see, e.g. , [4]). As was noted [5], there is a certain
wavelength that separates the stable and unstable regimes
of the operation of colliding-pulse mode-locked (CPM)
rings lasers. This wavelength is critical from the point of
view of dispersion, and may be considered as a general-
ized ZDP, which is appropriate to the dye laser. This
analogy was recently confirmed experimentally [5]. Thus
we believe that our results may be applicable not only to
the problem of the nonlinear pulses' propagation in fibers
near the ZDP, but also to other problems where higher-
order dispersion plays a significant role.

Let us start with the structure of pulses in single-mode
fibers near the ZDP. The pulse envelope propagation in
optical fibers near the ZDP is governed by a modified
nonlinear Schrodinger equation (NSE) [9—13]

i (E, +k'E, )
— E„—kE +k —plE E=O

no
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where ~ is a typical pulse length. For a sin le-
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3X2'C -T, .+ e 'sin(a )e "~ sin
K
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The derivation of this relation starts from Eq. (2). After
appropriate manipulations we use the symmetry relations
(5) and calculate some coefficients by using the approxi-
mate form (6); C is a numerical constant which can be
determined from some well-defined integrals. It should
be noted that the constant C can be calculated analytical-
ly. However, one will find that many terms in the expan-
sion (6) contribute to the value of C; the convergence
with higher orders in K is very slow. In order to avoid
unessential complexity here, we evaluate C numerically;
C = 12.94. Equating the right-hand side of Eq. (8) to zero
for stationary solutions we obtain (for both type-I and
type-II solutions)

To= +21nK —lnC .
2K

(9)

This is a very useful relation between the eigenvalues K

and the distance (2To) between the two humps of the
"stationary" solution (see Fig. 1).

The matching of the oscillatory parts at T =0 gives the
relation (Tollr) a=no. , w—here n is an integer. From
this additional condition we can determine the spacing
between the discrete eigenvalues K =K„. Defining
lr„+,=lr„+5m„, and making use of Eq. (9), a short calcu-
lation leads to

Kn
3

2 lnC Kn
Kn 1 —lnKn + +

2 2'

(10)

for both the type-I and type-II solutions. We should
mention that the three relations presented in Eqs. (7), (9),
and (10), respectively, agree excellently with the nuineri-
cal findings. For example, in Fig. 2 the solid line shows

the average distance between the two peaks (e.g. , for
type-I solutions):

a2
, f Tl@l'dT

5 2To 2=3X2 e 'sin (a)

the curve (9) (for lnC=2. 56). It is a very good fit to the
numerically found discrete a —To relation (shown by
crosses). In Fig. 3 we depict the eigenvalue spacings 5a„
versus a„(denoted by X) and lr„ i (depicted by +). The
solid line represents the relation (10). Again the agree-
ment is excellent. We have also investigated the fine
structures of the "stationary" solutions and examined in
detail the matching via radiation tails. Details will be
published elsewhere. As a result we can state that
higher-order dispersion leads to the pinning of fundamen-
tal solitons in the form of double-humped localized solu-
tions. This phenomenon is presumably quite general for
higher-order dispersion [17] and may be found also in
other problems with higher-order dispersive effects. It
should be also mentioned that we expect that a whole
family of multiple-humped solutions will exist.

Next, we investigate the stability of the newly found
solutions. The general result is that, for small K, corre-
sponding to large distances 2To between the humps, the
solutions are stable over long propagation distances,
whereas for large K values the solutions are quite rapidly
destroyed. A typical example for an unstable solution is
shown in Fig. 4 for K=0.22. The solution is completely
destroyed after Z =120 if we start at Z =0 with an exact
stationary double-hump pulse (To ~ 2). On the other
hand, and this is physically most important, for K~0. 11
(To ~7) the solutions are very stable over long distances
(Z ) 10 ). To appreciate these findings, we have to take
into account

2. 87X 10-4
K z(km) =

r(psec)b, A,(pm)
'

61'[~(psec)]

psec
km

leading to z (km ) = 1.4 Z for r =0.57 psec, hA, = 5 X 10
pm, lk"'l=0. 08 psec /km, i.e., a=0. 1. Thus, if the
pulses are well separated, they can move without
significant changes in shapes over distances of several
thousands of kilometers. A typical example is the solu-
tion (lr=0. 1119)shown in Fig. 1. When inserted into the
Z-dependent equation as initial distribution, we do not
observe any significant changes in shape up to Z = 10,
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FIG. 3. Eigenvalue spacings 6K„=K„+1 K„(logarithmic
scale) vs K„(denoted by X) and K„, (depicted by +) (both in
logarithmic scales), respectively. The solid line represents the
analytically found relation (10).
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FICJ. 4. Z dependence of a "stationary" tt solution under per-
turbations, for lr=0. 22. The absolute value Igl as a function of
T is shown for Z =0 (solid line), 110 (dotted line), and 120 (bro-
ken line), respectively. In contrast to the results for small K

values (see, e.g. , Fig. 1), the solution is unstable and rapidly des-
troyed.
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