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Solid nematic liquids, formed by cross-linking polymer liquid crystals into elastomers, are shown
to display novel and complex elasticity. The internal (nematic) direction suffers a barrier to its
rotation and this couples to standard elasticity. By considering imposed strains we illuminate this
elasticity and also demonstrate an entirely new nematic phase transition. At a critical strain there

is a discontinuity of director rotation.
PACS number(s): 36.20.Ey, 61.30.Cz, 61.41.4-e

Polymer liquid crystals (PLC’s) are long chain
molecules composed of monomers capable of forming ne-
matic or more complex mesophases. They combine the
orientational order of nematic liquid crystals and the
entropy-driven aspects of high polymers. In particu-
lar, they change their shape on orientationally ordering.
Given that most properties unique to polymers depend
on their shape, it is clear that new properties can arise
in these unusual materials.

Long ago de Gennes [1] recognized that the most dra-
matic manifestation of shape-change coupling to orienta-
tional order would be in elastomeric networks of PLC’s.
Like conventional elastomers these materials can sustain
very large deformations, which cause molecular extension
and orientation, but, conversely, spontaneous alignment,
or a nematic phase induced by applied stress, can lead to
spontaneous distortion or a jump in a stress-strain rela-
tion.

More recently molecular models of these effects have
been constructed (Abramchuk and Khokhlov [2], Warner,
Gelling, and Vilgis [3]), and an understanding of me-
chanical critical points, memory of cross-linking, shifts in
phase equilibria, and stress-strain relations obtained. Ex-
periments before and after these theories have seen these
basic effects [4], including nematic solid monodomains
[5]. Such single-crystal samples are made by cross-linking
in a field-oriented nematic melt, or by two-stage cross-
linking and stressing the intermediate state. Internal
stresses in the latter method also give instabilities, but of
a different type from those proposed in this article. An
initial phenomenological theory of the coupling between
elastic, nematic, and electromagnetic fields has been set
up by Brand [6] and a complete (group-theoretical) anal-
ysis of the linear elastic and piezoelectric possibilities car-
ried out by Terentjev [7].

In this Rapid Communication we wish to sketch some
new, complex elastic phenomena that seem to be unique
to nematic solids. Networks cross-linked as nematic mon-
odomains retain a memory of their initial state, char-
acterized by the initial value of the order parameter,
Q?j, say. The order parameter tensor for uniaxial ne-
matic liquid crystals is Qi; = Q°(nin; — 36;;) with
Q° = (Py(cosB)) (where 3 is the local chain direction).
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It was shown earlier [3] that the magnitude Q° of the or-
der at cross-linking determines the increase in the phase
transition temperature above the melt value. Here we
show that the principal axis n° of QY. gives the solid an
extra direction and that there is a barrier to the rotation
of the current director from this direction. Internal rota-
tional barriers and the concomitant resistance to strains
interacting with these internal angular degrees of free-
dom yield the so-called “couple-stress” elasticity of the
Cosserat form [8]. We shall demonstrate that the inter-
play between elastic-nematic memory and strain yields
phase transitions and instabilities. Imposition of a bulk
strain with principal axis not coincident with those of Q?j
causes deformations of n®, which can be continuous, or
display a threshold, depending on the geometry. These
are in some sense bulk versions of Fréedericksz transitions
(where the barriers stem from the surfaces).

In a nematic monodomain with director n® coincident
with the z axis, spans R® of polymer chain between
network points have at the moment of cross-linking a
Gaussian distribution:

- 3 -
Po(R0) ~ DtV exp (- OB, ()

where summation over repeated indices has been as-
sumed. L is the contour length of the chain strand, and
the matrix l?j of the inverse effective step lengths defining
the chain shape parallel and perpendicular to the director
n® for a uniaxial phase is

@)™t =1/136:; + (/1] = 1/10)ndn3, ()

with eigenvalues 1/1% and 1 /lﬁ in its principal frame.
The effective step lengths are related to the radii of gyra-
tion by ((Rﬁ)2) = lﬁ(QO)L, etc. (often Iy > [, ). Chain
shape clearly depends on the nematic order parameter
Q° = (Py(cosB)), with 8 the local chain direction. Let
the current span be R; = )\in?, with A;; the macroscopic
deformation of the whole block of rubber. We employ
the affine deformation assumption. We consider deforma-
tions A;; imposed with respect to the initial cross-linking
state. Throughout this paper we assume the incompress-
ibility of rubber, i.e., Det[\;;] = 1. In general, the current
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temperature may be different from that of the formation
state. Span probabilities are governed by a distribution
P(R) differing from that in Eq. (1) only in the (I;;)~!
tensor, which describes the current chain shape. Taking
F./kgT = —(In P(R)) p,(Rro), that is, the usual quenched
average, one obtains for the elastic free energy per net-
work strand

2F,

kT

(here and below the )\ notation symbolizes the diadic
tensor form of \). The current director, denoted by n, is
coincident with the initial n® if A;; has the same principal
frame. Minimization of Eq. (3) gives the spontaneous
relaxation of deformations and one recovers the previous
result for the shape change Am = ()19 /1011)"/3 [3].

We are interested here in the case where an imposed
deformation A;; has principal axes not coincident with
n®, thereby causing the equilibrium state to have n at
some angle § with respect to n®. We now determine
this angle as a function of the magnitude of deformation
and the orientation of the frame of \;; with respect to

0, What is revealed is an unusual elasticity with an

= 1Ak (k) " As = Te[l0 - AT - 171 (3)

n°.
internal barrier to rotation, and phase transitions of n.
We consider:

(i) Uniaxial extension at an angle o with respect to
z (coincident with the initial director n°). Figure 1(a)
shows the geometry. In terms of the unit vector u of
the direction of extension, the deformation tensor at a
constant volume is Ai; = (1/v/N)8i; + (A — 1/VA)uiu;.

(ii) Simple shear at an angle o, Fig. 1(b). In terms of
unit vectors along the direction of shear u, and along the
gradient v, the deformation is A;; = 8;; + Au;v;.

It is clear [for A > 1 in Fig. 1(a) and for general X in
Fig. 1(b)] that n must be in the plane of z (i.e., of n°) and
u, and it is sufficiently general to consider a 2 x 2 problem
in (z,z). The current conformations /;; depend on the
current order parameter @ (which may be much larger
than QU if temperature has dropped since fabrication). In
general, since the axes of A;; are not coincident with those
of l?j, the distortion forces the phase to be biaxial, with a
second-order parameter X, so that [;; has three distinct
elements I, {,, and I, depending on @ and X. Strictly
speaking the total free energy Fiotal = Fnem + Fel must
be minimized with respect to @, X, and 6 for each A;;
imposed. Experience shows that X is generally small [9].
However, it turns out that the optimal angle 6 does not

(b)

FIG. 1. Alignment geometry in the (z,z) plane for (a)
extension and (b) simple shear. no and n are initial and
current directors, respectively; unit vectors u (u, v for simple
shear) define the principal axes of deformation.
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depend on Q and X (although Fe and Fpenm do): since
it is sufficient to consider a 2 x 2 problem, we can always
write ;' in the form of Eq. (2) with Iy — I, I1 — I,
ignoring the third dimension (1/l,)§¥. Then the only
part of the free energy (3) that depends on the current
orientation n [or on the angle A = a — § = cos™(n - u)]
is the second term below:

Fy = FO(Qa)‘)
52 (z'ln' - 711) LI ACEPVRRICEPVS

The dependence on order parameter is in the prefactor
and is irrelevant when we minimize this free energy with
respect to 8. If we only want the orientation of n we can
ignore the self-consistency problem (the minimization) in
Q and X.

(i) Uniazial Extension: After constructing the elastic
free energy and minimizing with respect to 6 one obtains
the condition (recall A = a — 6)
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FIG. 2. Director orientation under extension. (a) 6 vs X,

at fixed angles ; curve 1, & = 80°; curve 2, 89°; curve 3, 90°.
(b) 6 vs a for fixed extensions; curve 1, A = 1.2, curves 2 and
3 are for )\ just below and above the critical value A, = 3(1/3),
and curve 4, A = 2. In all cases initial anisotropy lﬁ /1% =3.
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FIG. 3. Director orientation under shear, 8 vs A at initial rotation until A > A.. The system then breaks its sym-

anisotropy l" /1% = 3 for fixed angles a; curve a, a = 0°%
curve b 30°; curves ¢ and ¢/, a just below and above the
critical a* = 37.2°; curve d, a = 45°, and curve e 90°.

where A\ = (I}/1%. )1/3 is a parameter dependent on the
anisotropy of the initial strand conformation. Analysis of
this is straightforward, but we simply show the rotation
6 as a function of the imposed A at constant o [Fig. 2(a)]
and 6(a) for various A [Fig. 2(b)]. When A;; is imposed
at an angle a = 7/2 the internal barrier prevents any

J

3 _ .
tan 2A = 2 (A2 — 1) [sin 20 + A cos 2a]

- A3 +1)

metry and jumps to 8 = 7/2. For smaller o there is
no degeneracy in the direction of rotation and the n is
continuously dragged around towards a. The curves for
different « cross and this is more easily seen in Fig. 2(b),
where, for a given A < A, the 6(a) curves have max-
ima, which disappear with a singularity at the critical
extension A = A;. The discontinuity in 8()), caused by
a degeneracy in the direction of rotation at a = 7/2, is
seen again in a different guise in the simple shear results.
(i1) Simple Shear: Similar manipulation yields

A2(A3 +1) +2(A2 — 1) [(1 — A2/2) cos 2a — Asin2a]’

Limits of this result are illuminating. When the initial
state is isotropic, A¢ = 1, then tan2A = —2/X\ with
2A = —m/2, that is, § = w/4, with A — 0+, i.e,, nis
induced to be along the the direction suffering the ex-
tensional component of the shear, as one would expect.
For a nematic monodomain with anisotropy [j/13 =3 at
formation, the director orientation 8()) is presented in
Fig. 3. For large enough initial angle o between unit vec-
tors u and ng, so that the stretch diagonal can be brought
to /2 with respect to n (allowing for rotations of n as
shear proceeds), there is a discontinuity also seen in (i).
Analytical conditions for this transition will be presented
elsewhere. Figure 4 shows how the critical shear A\* and
the critical angle a* for this transition depend on the
initial anisotropy of the chain, A = (lﬁ J19)173.

We have demonstated that nematic solids are a quali-
tatively new type of elastic medium with an elastic bar-

[
rier to the rotation of its internal direction n, a barrier
which in turn couples with strain. We have illustrated
this elasticity by considering the simple case of imposed
deformation. Imposed stresses induce a most complex
response, since director instabilities will be accompanied
by strain instabilities. These are seen in a blurred form in
stress-strain measurements on polydomain nematic elas-
tomers [4]. Our work is an initial step to explaining this
response.

We have given a microscopic basis to this new elastic-
ity. Within the limitation of uniform directors and de-
formation, the linear phenomological continuum expres-
sion for the free energy is given in [7]. We have demon-
strated that new nematic transitions are possible in ne-
matic solids using mechanical applied fields and having
bulk rather than surface barriers to rotation.
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