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Spinodal decomposition in a three-dimensional Auid model
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We study spinodal decomposition after a critical quench to finite temperature for a three-dimen-
sional Langevin fluid model which includes the full couplings between the order parameter and the
currents. Our results agree with the expectation based on phenomenological considerations, namely,
that the asymptotic growth exponent for this model is n=l, and, when compared to two-dimensional
results for the same model, indicate that the dimensionality may be relevant in this problem.
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Spinodal decomposition (SD) is the process of phase
separation and domain growth which occurs after a sys-
tem is placed (e.g. , by means of a temperature quench) in
an unstable region of its phase diagram. It has been ex-
perimentally studied both in fluid systems [1] and in

binary alloys [2]. Beyond an initial transient when
domains first form, their size l(t) is characterized as a
function of time by a function which at long times is typi-
cally a power law l(t) —t", where n is called the growth
exponent. The determination of n at "asymptotic" times,
and the classification of SD phenomena into "universality
classes" possibly depending on dimensionality and on cer-
tain relevant system characteristics, have been the object
of much study.

One of the relevant factors which inAuences the growth
law is the presence of currents. In simple Auid systems,
two time regimes [1] are observed: At relatively early
times, a power law with an exponent n =0.3-0.4 is seen,
which changes to n=1 at later times. Only one regime,
with small n, is seen in alloys. The behavior in the Quid
case is generally understood in terms of the hydrodynamic
phenomenology developed in Ref. [3], where it is shown
that an early n =

3 exponent should change to n =1 be-
cause of the formation of cylindrical domain structures.

Extensive numerical work on SD has been done. Here
we focus on a three-dimensional Langevin equation model
for a fluid, incorporating currents and temperature fluc-
tuations. Within the Langevin-equation context, and for
quenches through the critical point (the case studied here)
it is well established that for model B (in the usual taxon-
omy [4]), where the only variable is the order-parameter

I

density, the exponent n is n =0.3 in two dimensions
(d=2) [5]. At d=3 the same result has been established
[6], although only for quenches to zero temperature.
These results apply to alloys. For Auids, an extensive
study [7,8] of SD for a Langevin model including coupling
to hydrodynamic currents (an extension of model H [4])
has been performed at d =2, where it was found that for
critical quenches, there are two regimes for n. One has
n=0.3 at earlier times, increasing to a value of n =0.69 at
the latest times considered. Since the hydrodynamic ar-
guments of Ref. [3] are specifically tied to d=3 (indeed,
hydrodynamic behavior at d=2 is quite another story) it
is not well established whether d is a "relevant parameter"
for Auid spinodal decomposition.

In this Rapid Communication, we present results, in
three dimensions, for critical quenches to finite tempera-
ture for precisely the same model studied in Ref. [7].
These are the first d =3 results obtained for these
quenches within a model that explicitly contains a hydro-
dynamic current, and the appropriate associated convec-
tion terms, coupled to the order parameter [9]. Our re-
sults can be directly compared to those of model B (in two
or three dimensions) and to the two-dimensional results
for the same model [7]. We find that they support the
phenomenological theory of Ref. [3], in agreement with
experiment.

The model equations that we use were derived in Ref.
[7] from the appropriate p and j-dependent free-energy
functional, using standard procedures. Defining appropri-
ate units of length and time, they can be written in dimen-
sionless form as

8,&(r, t) =V [4t (r, t) —p(r, t) V4t(r, t)] —gV. [4t—(r, t)j (r, t)]+It(r, t),
8j&; (r, t) =riV j;(r, t)+cr+V;Vt jt, (r, t) grip(r, t)V; [tlat (r—, t) —

tlat(r, t) Vp(r,t)]-
gg [Vy [f;(r, t )j k (r, t ) ] +j k (r, t )Vj q (r, t )]+ v; (r, t ) .

(la)

(lb)
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(p(r, t)p(r', t')) = —2eV 8 (r —r')6(t —t'),

(v;(r, t) vk(r', t')) = —2e(rIV 8; I, +oV;Vk)

XB (r —r )6(t —t ) .

(2a)

(2b)

In (2) e is the noise strength (dimensionless temperature).
In (1) the parameter g is the coupling between order pa-
rameter and current. At g=0 one recovers model B.
Here, as in Refs. [7,8], we shall set g= l. This model is an
extension of "model H," as discussed in Refs. [7,8]. The
first two terms on the right-hand side of (lb) are viscous
drag terms from the Navier-Stokes equation. The re-
maining terms include the convective derivative and addi-
tional nonlinear couplings. In general, a full description
of a Auid system requires coupling to an additional scalar
field representing the pressure fiuctuations [10], coupled
to p(r, t) through the longitudinal part of the current.
However, it was shown in Ref. [8] that this additional
term does not change the two-dimensional results.

The parameters in the problem are (besides g) rl, a, and
E. We have taken g = 1, o =2, and e =0.1. These values
are exactly the same as those used in two dimensions in
Ref. [7], and allow direct comparison of d=2 and d=3
results. Note that we do not assume that the temperature
is irrelevant, as has been done in the three-dimensional
work on model B [6]. We know of no arguments that
would warrant such an assumption for model H, and the
assumption seems to us in any case of relatively little
value in simplifying the problem: Several runs are neces-
sary even at T (or e) =0 to average over random initial
conditions. The computer-time savings associated with
not having to generate noise fields are partly negated by
the fact that domain growth is more rapid in the presence
of temperature fIuctuations. Further, given the very high-
ly nonlinear nature of our equations, the danger of reach-
ing special solutions when solving (at T=O) a set of deter-
ministic equations is hard to contend with.

We have utilized here precisely the same numerical
procedures developed in Refs. [7,8] (and references
therein) and will not discuss them again in this work. We
use a cubic lattice of size N . We have found, by experi-
rnenting with relatively small system sizes, that finite-size
eA'ects set in when the domain size (as specified below) is
about —0.2N where N is the lattice size. We have per-
formed 50 runs at N=50, which allows us to study the
intermediate-time behavior up to t =120. These results
will be reported elsewhere [11]. Here we will focus on re-
sults for six runs at N =81, which allows t =300 to be
reached before finite-size eAects are encountered. This
size compares favorably with N =66 used in three-
dimensional model B work [6]. The time step needed is
6't =0.01, which is a factor of about 5 smaller than the
value at which instabilities occur. A total of 34 h of Cray
2 computer time per run were needed.

All quantities in Eq. (1) are dimensionless. p and j are
the order-parameter and current fields, respectively, g is
the dimensionless shear viscosity and a = —,

' tl+ (, where g
is the dimensionless bulk viscosity. The quantities p and v
are Gaussian noise fields satisfying

Space permits giving here only the most salient results.
Additional information will be given in Ref. [11]. Here
we will focus on the analysis of our results for the quasi-
static order-parameter correlation function C(r, t):

C(r, t) =(p(r, t)p(0, 0)), (3)
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FIG. 1. The spherically averaged order-parameter correlation
function C(r), as a function of r, at times 50, 100, 150, 200, 250,
and 300.

which can be used to characterize the order-parameter
growth. Additionally, we have obtained the current corre-
lation functions C;I, (r) —=&j;(r,t)jk(0,0)). As in the two-
dimensional case, C;k reaches, in a relatively short time,
its equilibrium value as given by the equipartition the-
orem. It contains no information on order growth, which
is contained in C(r, t) [or its Fourier transform C(K, t)].
We consider here specifically C(r, t), the spherically aver-
aged value of C(r, r).

Our results for C(r, t) are shown in Fig. 1 at suitable
time intervals. We note the growth of local order (r=0
peak height) as well as the order range. We will charac-
terize the latter by l(t) =R(t), where R(t) is defined as
the first zero of C(r, t). We will show below that C(r, t)
scales in the later part of the time range considered. Oth-
er measures of order range will be dealt with in Ref. [11].

In Fig. 2 we show our results for R(r) vs t over the en-
tire range studied. In this figure [which can be contrasted
with the corresponding Fig. 8 of Ref. [7] or Fig. 14 of Ref.
[6] for the purposes of comparing with the same model in
two-dimensions or with the three-dimensional model B]
we see that R(r) has an initial region of relatively slow
growth, followed by a faster region. This is the same as in
two-dimensions. However, it is not possible now to derive
a value of n at the longer times studied by fitting a straight
line through the last points in the time range. Defining a
time-dependent exponent n(t) by the expression
n(t) =d 1 Rn(t)/dint for example, one finds that n(t) in-
creases throughout the time range studied, without any
signs of saturation. This is in contrast to the two-
dimensional case, where, towards the end of the runs, any
change in the effective exponent was not obvious.
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FIG. 2. The first zero of C(r, t) as a function of time. Note
that the growth exponent is increasing with time.
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FIG. 3. The effective growth exponent n(R(t)), as defined in
the text, plotted against I/R(t). The straight line is a best fit to
all times t ~ 90, and it intercepts they axis at n =0.99.

Thus, to study the behavior of the system at long times
we turn to the procedure employed in Ref. [12] of plotting
an efl'ective exponent n(t) versus the corresponding value
of I/R(r) and looking for the trend as the value of I/R(r)
decreases towards zero. This is done in Fig. 3. The ex-
ponent value plotted there is obtained from a best
straight-line fit to the three points in Fig. 2 centered
around the value of R(t) considered. The rather large er-
ror bars in the plot arise, obviously, from the relatively
small number of runs considered here. However, the
trend is rather clear: at a value of R which corresponds to
a time t =80-100 (in our dimensionless measure) a
marked increase in n becomes evident. At earlier times n
is much flatter [13]. We have fitted a straight line, there-
fore, through all data points in the range 90~ t (300,
and this line is indicated in Fig. 3. The intercept with the
y axis, which we identify with the asymptotic value of n, is
0.99 in excellent agreement with the value of unity expect-
ed from phenomenological considerations [14]. This is in
contrast with the two-dimensional results [7] where n ap-
pears to saturate.

Finally, we brieAy consider scaling. We replot the
correlation function C(r, t) as a function of x =r/R(r).
In the scaling regime the scaling function f(x) defined as

FIG. 4. The scaling function f(x) as defined in Eq. (4) plot-
ted for 11 times between t =200 and t =300. The solid line
shows, for comparison, the d =2 scaling function (Ref. [7l).

C(r, t) =f(r/R(t)) =f(x) (4)

should be independent of t. The function f is plotted in

Fig. 4 for 11 values of t ranging from t =200 to t =300.
Although this is a rather limited range, we see that the
data appear to scale quite well, despite the fact that n is
clearly still changing in the time range plotted. Indeed
scaling is better, particularly at small x, than in the corre-
sponding range at 1=2 (Ref. [7]). We note that such
scaling behavior is attained, in the case of model B
quenches to zero temperature [5], only at fairly long times
(roughly r —500 in our units) [15]. Assuming that the
function plotted can indeed be identified with the scaling
function, it is instructive to examine its dimensionality
dependence. By comparing with Ref. [7] we see that the
dimensionality eAect is quite considerable: the three-
dimensional function has a shallower first minimum, a
lower secondary maximum and a considerably smaller
value of the second zero than that found in the two dimen-
sions. The reasons for this are not clear but we can point
out that the scaling function for model 8 exhibits similar
trends when going from two [16] to three [6] dimensions.

It is worthwhile to emphasize here the most salient
differences between this work and that of Ref. [9], where
linear growth in time is also reported. In the paper by
Koga and Kawasaki, a very diA'erent model is studied
~here the currents are modeled by an interaction involv-
ing the order parameter which is nonlocal in space. The
physical interpretation and relation to phenomenology of
that model are diScult. The system size used there is only
N =64. The model used by Pori and Dunweg is a
simplified version of the one used here, with the tempera-
ture set to zero and the nonlinear convective terms, in
(lb) dropped for the sake of computational simplification.
There is no argument that shows that these terms are ir-
relevant to spinodal decomposition. They use Ã =80 but
the maximum size of l(t) they attain is smaller than ours.
Thus, we believe our study is more complete and physical-
ly realistic.
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In summary, we have obtained results for spinodal
decomposition after a critical quench to nonzero tempera-
ture for a three-dimensional fluid model which includes
the full couplings between order parameter and currents.
Our results agree with the phenomenological expectation

that the asymptotic growth exponent is unity. This is our
main result. When compared with the two-dimensional
results for exactly the same model, they support the con-
tention that the dimensionality [17] may be relevant to
the fluid problem.
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