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Hydrodynamic friction of arbitrarily shaped Brownian particles
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We present a simple and accurate method of estimating the translational hydrodynamic friction on
rigid Brownian particles of arbitrary shape. The Brownian friction coefficient f takes the form

f=6mqC&, .where C„ is mathematically equivalent to the electrostatic capacitance of the particle 0 in
units where the capacity of a sphere equals its radius. This formula is particularly useful for particles
consisting of a few globular subunits, for which slender body approximations are not very accurate.

PACS number(s): 51.10.+y

A classical problem of surprising difficulty in low-
Reynolds-number hydrodynamics, and one that has be-
come increasingly important in chemical engineering, po-
lymer science, and biophysics, is the determination of the
viscous drag on bodies of arbitrary shape [1]. Analytical
calculations of the friction coefficient can be performed
for only a limited number of shapes (see below) and calcu-
lations for bodies of complex shape have required ap-
proximation. Such calculations are greatly facilitated by
an angular averaging of the Oseen tensor [2,3], and this
approximation, along with others [3], was introduced by
Kirkwood and Riseman (KR) in their classical treatment
of dilute polymer solutions [2]. A stochastically tumbling
Brownian particle experiences all orientations giving rise
to an averaged translational scalar friction coefficient.
The angular average approximation [1] involved in the
KR calculation of the particle friction presumes that all
orientations are equally probable. This approximation
also arises in Ferrel's "mode-coupling" theory of critical
slowing down in binary mixtures and de Gennes's theory
of the cooperative diffusion coefficient of semidilute poly-
mer solutions, and the reader is referred to these papers
for a discussion of this averaging [2]. We adopt this
idealized average for the description of the scalar transla-
tional friction and we follow the logical consequences of
this assumption in relation to exactly known theoretical
results and available experimental data for bodies of vari-
ous shapes. We emphasize that our calculations strictly
avoid the slender body and configurational preaveraging
approximations, which are also implicit in the general
"preaveraging" approximation of KR [1].

We start by considering the Oseen tensor [1] describing
a point hydrodynamic source,
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where r and r& are two points in the Quid, g is the Quid

viscosity, and I is the identity tensor. Now imagine form-
ing a rigid, closed "hull" by stretching a piecewise
smooth skin over the Auid-accessible surface of the

Brownian particle. Choose the origin inside this hull,
take rz as a point on the hull, and construct the isotropic
angular average (AA) of Tn, corresponding heuristically
to the physical averaging of the Brownian motion process,

(2)

We then observe that (Tn) is the free-space Green's
function for the Laplacian operator. Based on this obser-
vation we introduce a "momentum fiux tensor" U(r, ro)
by

„(r„)(T„)= U„(, „), (3)

where o& is a scalar function specified below. The sur-
face integral of Un defines a "stress potential" P:

which also satisfies Laplace's equation by linear superpo-
sition, and this implies that oz is constrained to be a
"surface charge density" or in the hydrodynamic analog
a "momentum Aux density. "

The crucial step is the construction of the AA hydro-
dynamic stress tensor S from the symmetrized product of
the gradient of the stress potential and the AA rigid-body
velocity uz. This procedure must ensure not only that
linear and angular momentum are conserved, but that the
associated drag force is collinear to the average velocity
u& (Brownian symmetry). These conditions are satisfied
if S takes the form

S =6vrrlt(Vp)(un)+(un)(Vp) —(Vp). (un)II . (5)

where the fluid is assumed to be undisturbed at infinity,

The Navier-Stokes equation for steady fiow then becomes

V S =(6~g)u V' /=0
(6)
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&= Oat
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and the AA flow field is simply u (r)=P(r)un. Equation
(6) implicitly assumes a hydrodynamic "stick" boundary
condition and that the particle is perfectly rigid. It
should be noted that the AA approximation is expected
to yield accurate values only for the scalar friction. The
actual stress tensor and Aow field are much more complex
functions than those considered in this paper.

The drag force F may now be obtained as
l/a f (& &)I2f (0)' C{O 0)/2C(O)

TABLE I. Ratio of the AA friction on a pair of identical
spheres to twice the friction on an isolated sphere, where a is
the radius and 1 is the separation distance. The third column
presents this same ratio for the capacitances. An experimental
value of 0.691 has been observed for the dimensionless friction
of touching spheres 1/a =2 [8,9].

F =6vrqgnI(VP)(un. nn)+uri(VQ nti )

—(Vy) ~ (un)n„], (7)

2
4
6

10

0.6961
0.8027
0.8578
0.9092
1.000

0.6931. . . =ln2
0.8026
0.8577
0.9093
1.000

where nz is a unit normal on 0, pointing into the Auid.
Since

(8)

Eq. (7) reduces to the simple form

F = 6~au—n g n&n(rn» (9)

where uz is the velocity of a rigid Brownian particle
averaged over all equally probable orientations with
respect to a given driving force ( F). —

Equations (6), (8), and (9) define an AA translational
friction coefficient f:

f =6vri)Cn, (10)

where Cz is mathematically equivalent to the electrostat-
ic capacitance of 0; i.e., the total charge on the conduct-
ing "hull" Q, which is maintained at unit potential with
respect to infinity. The main point is that Cz is generally
much easier to calculate than the components of the fric-
tion tensor for bodies of arbitrary shape. Consider, for
instance, the following examples.

Case (1). The capacity of an ellipsoid is well known
[4]

Cti=2 f [(a +8)(b +8)(c +6)] '~2dg

where a, b, and c are the lengths of the three semi-axes.
Combination of Eq. (11)with Eq. (10) gives an estimate of
the friction on an ellipsoid. For the degenerate case in
which two semi-axes are identical, Eqs. (10) and (11)
reduce to the exact Perrin formulas for the average
translational friction on prolate and oblate ellipsoids, and
Eq. (11)holds more generally for triaxial ellipsoids [5].

Case (2). Two identical spheres separated by a fixed
distance (see Table I) [6—8] can be likewise treated. Ana-
lytic calculation of the capacitance of two spheres at arbi-
trary separation is a classical but nontrivial mathematical
problem, and tables of the capacity of two spheres are
available [6]. A combination of these results with Eq.
(10) is given in Table I, and good agreement is exhibited
at all separations.

For comparison we note that the original KR approxi-
mation for "touching" spheres leads to an error of over
4%, and only slight improvement (error remains larger
than 4%) is obtained by including the Rotne-Prager
correction to the leading point-source Oseen-tensor hy-
drodynamic interaction [9]. These errors for arrays of
spheres apparently accumulate at a rate of about 2.5'

'References [7,9].
Reference [6].

C(doughnut)/C(O*) =0.871,

f (doughnut) If (0*) =0.872,
(12)

where 0* refers to the smallest sphere that encloses the
doughnut. The exact calculation of the doughnut friction
involves an infinite series of transcendental functions
whose numerical determination could be responsible for
the small discrepancy in Eq. (12). At any rate, the capa-
city estimate of the friction [Eq. (10)] is very accurate. It
is also a simple matter to estimate the friction on a short
rod based on Eq. (10) to compare with the best numerical
[9] and experimental estimates [14] of the friction. The

per pair of touching particles in the array [9], so it is evi-
dent that the point-source approximation can lead to
rather appreciable errors. Swanson, Teller, and de Haen
have conjectured that the friction of an arbitrarily shaped
body can be calculated by covering the body with an
infinite array of hydrodynamic sources interacting
through the Rotne-Prager tensor [9]. Numerical calcula-
tions for these hydrodynamic source arrays distributed
on two spheres support their conjecture. However, these
"shell-model" calculations "require so much computer
time that the method is not generally practical" [9]. Our
calculation scheme avoids the point-source approxima-
tion altogether and the advantage of this approach is
demonstrated by the results of Table I.

Case (3). Analytic calculations of the friction for right
circular cylinders ("rods") and circular tori ("rings")
based on the KR slender body approximation lead to
rather inaccurate estimates of the friction for short rods
or small rings. This point has been made before by
Goren and O' Neill [10], in a comparison of their exact
hydrodynamic calculations for a ring of finite cross sec-
tion to the slender body calculations for a ring [11]. Tira-
do and de la Torre [12] compare numerical "shell-model"
calculations and experimental data for rods to slender
body calculations for rods. There is still no exact analytic
calculation for the friction on a rod. The worst case for
the slender body theory corresponds to a ring whose
inner radius vanishes ("doughnut") [10]. The capacity of
a ring and the special case of doughnut are well known
[13],so that the prediction of Eq. (10) can be compared to
the analytic results of Goren and O' Neill for the friction
of a doughnut [10],
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where C(O) denotes the capacity of a sphere whose
volume is the same as the cylinder and the rod aspect ra-
tio A, is defined in Table II. Equation (10) gives excellent
agreement with previous estimates of the rod friction in
Table II and Eq. (13) is exact in the disk limit A, ~O. This
disk limit result is well known as a limit of the ellipsoid.

Case (4). The friction on a cube [16,17], tetrahedron
[17,18], and octahedron [16,17], for which there are no
previous analytic estimates of the friction, is also readily
estimated from Eq. (10),

C(cube)/C(O) = 1.06, f (cube)/f (0)= 1.08(expt),

C(tet)/C(O)=1. 17, f (tet)/f (O)=1.18(expt), (14)

C(oct)/C(O)=1. 06, f (oct)/f (0)=1.07(expt),

where 0 refers to the equal volume sphere and where the
scalar friction coefIicients were determined from experi-
ments with macroscopic models. The capacities of many
other shaped bodies (lens, spindle, inverted prolate ellip-
soid, and inverted oblate spheroid) are known exactly,
but hydrodynamic data and theoretical calculations for
these cases are lacking for comparison.

Case (5). The friction ft associated with the motion of
Oat bodies of arbitrary shape normal to their surface is
given by [19]

ft =8' r) Cn . (15)

From Eqs. (10) and (15), the two principal components of
the friction in the plane of 0 are related in the AA ap-
proximated by

1 1 1 1 1+ +6~qC„3 f, f, 8~qc„
(16)

For symmetric (f, =fz) and highly asymmetric bodies

(f2 &)f & ), we can solve Eq. (16) for the components of
the friction tensor.

Case (6). A useful estimate for the capacitance, and by

TABLE II. Ratios of capacitances and friction coeNcients of
short circular cylinders to those of equal volume spheres, where
A, is the ratio of cylinder length to cross-section diameter. Ca-
pacitance ratios were calculated from Eq. (13).

C(cyl)/C(0) f(cyl, expt)/f (0)' f(cyl, num)/f (0)

Smythe approximation for the capacity of a rod equals
[15]

C(rod)/C(O) =(2 3 /7r)A, ' (1+0.869K, )

0&1,&8 (13)

Eq. (10), the hydrodynamic friction of convex but
nonslender "globular" bodies is given by Russel's approx-
imation [6]

C =(A /4m)' (17)

where A z is the surface area of Q. The estimate of fric-
tion based on Eqs. (10) and (17) was introduced phenome-
nologically by Pastor and Karplus [20,21].

Case (7). Generalization of the AA friction to d di-
mensions is straightforward and f for a sphere of radius
R is obtained as

f (0)= [d /(d —1)]H (d)R

H(d)=4m. " [I (d/2 —1)] ', d ) 2
(18)

where I is the gamma function. This agrees with
Brenner's exact result for d dimensions [22]. For a d~~-

dimensional Hat disk of radius R embedded in d-
dimensional space (d )2) we have the new result

f (disk) = [d/(d —1)]2 (dl, d)H (d)R"

2 (d„,d) = I (d„/2)/[I"(e)I (d/2)],
(19)

e=(2+d(~ —d)/2, e) 0 .

Observe that 3 ~0 at the critical dimension at which
@~0+. For random coils d~~ corresponds to a fractal di-
mension of 2 and thus the critical dimension is d =4.
The capacitance of any bounded plane set or set of Haus-
dorff dimension dH=2 vanishes above four dimensions.
For rods (d~~

= 1) the critical dimension is d =3 and we
obtain the usual log corrections from the Perrin formula
in the limit of long rods. Calculation of the capacitance
of a random coil leads to the same integral equation en-
countered in the Kirkwood-Riseman theory of polymeric
friction. This important case will be discussed elsewhere.

The connection between hydrodynamic friction and ca-
pacitance is easily extended to collections of bodies of ar-
bitrary shape. Consider, for instance, the Brownian
motion of a body Q in the presence of fixed obstacles.
The AA fti is then determined by Cn in the presence of
grounded (P =0) conductors. Note that fn, which
defines a scalar diffusion coefFicient obtained by averaging
over all directions of motion with equa1 probability, now
depends on the position and orientation of 0 with respect
to the fixed obstacles.

As a final point, we note that C& can be determined by
the average volume V, of the "Wiener sausage" (a region
of space in which the center moves along a fixed Wiener
trajectory) swept out at time t by 0 as it undergoes
Brownian motion, where it is understood that self-
intersections do not contribute to the volume [23]:

1.15

1.06
1.04
1.09
1 ~ 16
1.22

1.16
1.08
1.05
1.10
1.17
1.23

1.07
1.05
1.10

1.23

V,
lim =C'+4(2~) (C* ) t ' +

t

C~ =2aC~ .
(20)

'Reference [14].
Reference [9].

Thus, the AA momentum Aux from B is analogous to a
course-grained collision frequency in the kinetic theory of
gases, the difference between the two models residing in



R2986 JOSEPH B. HUBBARD AND JACK F. DOUGLAS 47

the assumptions of Brownian versus piecewise rectilinear
motion. Note that if 0, is not a sphere, the cross-
sectional area of the Wiener sausage fluctuates along its
length. In particular, for needle-shaped bodies the shape
fluctuations vary from thin tubes to flat ribbons and self-
intersections are negligible. This disappearance of self-
intersections reflects the absence of hydrodynamic

screening in highly extended bodies. Shape fluctuations
should tend to be less extreme for bodies of high symme-
try and in fact the capacity of a body of a given volume is
minitnized for a sphere [24]. Distortion of a body away
from a more symmetric shape should generally increase
the friction [17]. An investigation of which symmetry
elements most affect friction would be interesting.
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